Certification of Derivatives Computed
by Automatic Differentiation

Mauricio Araya Polo & Laurent Hascoét

ZIINRIA

SOPHIA ANTIPOLIS

Project TROPICS

WSEAS, Cancun, México, May 13, 2005.

Plan

Introduction (Background)

Automatic Differentiation
— Direct Mode

— Reverse Mode

The Problem

— Example

Our Approach
— Description

— Numerical Result
Conclusions

Future Work

Introduction (Background)

Automatic Differentiation (A.D.) : Given program that
evaluates function F, builds new program that evaluates
derivatives of F.

Scientific Applications : Derivatives are useful in optimization,
sensitivity analysis and inverse problems.

Non-differentiability : Introduced in programs by conditional
statements (tests). May produced wrong derivatives.

Lack of Validation : A.D. models (neither A.D Tools) include
verification of the differentiability of the functions.

Novel A.D. model with Validation : We evaluate interval around
input data where no non-differentiability problem arises, this
information propagated through conditional statements.

Automatic Differentiation

Programs Structure: set of concatenated sequence of
instructions J;
P=1I;1Iz;..;1p_1;1p

but control flow (flowgraph):

depending on the inputs the exam-
ple program might be:

3

/ \ P=1y;Ty;Iq;I,
or

|
2 ditional statement (test).

P = Il;Tl;I3;I4

instruction 71 represents the con-

Mathematical Models: composition of elementary functions f;

Y = F(X) = fp0 fpe1 0.0 f20 fi

Program P evaluates the model F, for every function f; we have
a computational representation I;, in right order.

Automatic Differentiation (2)

Direct Mode: directional derivatives.

Y' = F'(X) - dX = fl(zp-1) - fo_1(2p—2) - o fi(z0) - dX
with z; = f; 0...0 f1, and f/() jacobians.
then the new program P’,

P =151 155 051, y5 1131,

with I/ corresponding to f/()

flowgraph again' depending on the inputs the diffe-
’ rentiated example program might
be:
| |
]
/ 3 3\ P =1I7;I1;Ty;15;I5;1);14
or
1, L / / /
|11|1 —> T]. |41|4 P:I1§113T13I3;I3;I4;I4

\ / the differentiated example pro-

gram retains the control flow struc-

1.
| |
22 ture of the original program.

Automatic

Differentiation (3)

Original Code

Direct Differentiated Code

subroutine sub1(x,y,01)

T =Y *xx

ol =xxx+yx*xy

if (o1 > 190) then
ol = —o0l x0l1/2
else
ol = 0ol * o1 * 20
endif
end

subroutine subl_d(x, xd, vy,
yd, o1, old)

xd = yd * x + y * xd
T =Y *x

old =2 xx *x xd + 2 *x y * yd
ol =x*xx+yx*xy

if (o1 > 190) then
old = —(old * o1)
0ol = — (0l x 01/2)
else
old = 40 x 0ol1ld * ol
ol = ol x ol *x 20
endif
end

Table 1: Example of Direct Mode of AD.

Automatic Differentiation (3)

Reverse Mode: adjoints, gradients.

/ —

X =F*(X)-Y = fi*(@o0) - fo* (@1) oo - [, (wp—1) - ¥

then the new program P,

P:11;12;...;Ip_l;]p;l_p;l_p_l;...;]_2;1_1 or ﬁ:ﬁ;?
with I; corresponding to fz./t().
L0,

! 21= fila); e &
J'P—QZfP—E(IP%)' Remark: The reverse sweep (P)

Lp-1= fp—l(%—?); eventually needs some values of the

time retrieve retrieve forward sweep (P), but =z, and

etrieve others =, might be modified by the

forward sweep, thus we have to

o (:Ep_z). P ' store them, which for some pro-
- .[*(;EU), grams leads to important memory

consumption.

Automatic

Differentiation (4)

Original Code

Reverse Differentiated Code

subroutine subl(x,y,01)

T =Y * T

ol =x*xx+yx*xy

if (o1 > 190) then
0l = —ol x0l1/2
else
ol = ol *x o1 x 20
endif
end

ol

=1

subroutine subl_b(x, xb, vy,

yb, 01, olb)
PUSH(x)
T =Y * T

ol =xxx+y=x*xy

if (o1 > 190) then

0lb = — (ol * olb)
else

0olb = 40 x 0ol * 0olb
endif

xb = xb + 2 x x * olb
yb = yb+ 2 x y x 01b

POP(x)
yb = yb + x x xb
xb = y x xb

end

Table 2: Example of Reverse Mode of AD.

The Problem

Motivation:

The question of derivatives being valid only in a certain domain is
a crucial problem of AD. If derivatives returned by AD are used
outside their domain of validity, this can result in errors that are

very hard to detect.
Description:

e Programs have control flow structure, including conditional
statements (tests). Some of the test are introduced by
intrinsic functions like abs, min, max, etc.

e Differentiated program keeps the control flow structure of
given program. Sometimes the derivatives depends in the
control flow structure.

e \When some input is too close to a switch of the control
flow, the resulting derivative may be very different or
wrong, to the point of be useless.

The Problem (2)
\\\\\\W{Mﬁ%&%&%ﬁ& '1e+06 /
-500000 Wm\\\
-1e+06 \I
156406 1 : : | | 6\

0

Plot of left shows the evaluation of program example with discontinuity problem. Plot of right
10

shows the evaluation of differentiated program example with input space direction (1,1).

(x=3.64,01d=1512117.125) and (x=3.65,01d=-38513.449) !l

The Problem (3)

LT s
- |

[y

Ayl

b
(=

Al
]

ra

e /

L

1 2

14

1o

G

[

T

Main cases of problems introduced by conditional statements.

(from B. Kearfott paper)

11

Our Approach

e every test (t) is analyzed, under small change in the input
the test must remain in the same “side” of the inequality.

variables used by instructions
needed to built the current test

+t;, >0 (1)

e and the variation of the intermediates variables is
AB; = J(By;...;Bo) - AX = J(B;) - ...- J(Bg) - AX
where AX represents the variation of the inputs values.
e re-composing the expression At; +t; > 0 from (1),

<J(Ti)-J(Bi)-...-J(Bo)-AXfej> 2_<ti’€j> (2)

12

Our Approach (2)

we want isolate AX, a good way to do that is transpose the
jacobians in (2)

< AX - J(Bo)* SO J(B@)* . J(TZ’)* ey > 2 — < t@'|€j > (3)

we can use the reverse mode of AD to compute

unfortunately, in real situations the number of tests is so
large that the computation of this approach is not practical.

Solutions:
— combine constraints to propagate just one. half-spaces.

— reduce the size of the problem. less tests or less inputs,
or both.

13

Our Approach (3)

we analyze one test (t¢y), under small change in the input
the test must remain in the same ‘“side” of the inequality.

if to >0 then Atg+tg >0 (4)

the variation of t (At¢p) have to be expressed in terms of the
intermediates variables (By).

Atg = J(Tp) - ABy

and the variation of the intermediates variables is
ABg = J(By)-3-X

where (- X represents the variation of the inputs values. 3
the magnitude and X the direction of the variation.

re-composing the expression (4),

8- J(To) - J(Bo) - X > —to

14

Our Approach (4)

the following expression give us the magnitude of change of the input values, without change
the sign of the test.

B8 >

~ J(Tp) - J(Bg) - X

to compute expression (5) we introduced a function call that propagate the effect of every
test trough the program, resulting in a interval of validity, as follows:

(5)

Direct Differentiated Code

Direct Differentiated Code with Validation

subroutine subl_d(x,xd,y,yd,0l1,01d)

xd = yd * x + y *x xd

T =Y *xx

old =2 xx *xxd + 2 xy *x yd
ol =x*xx+y*xy

if (o1 > 190) then
old = —(old * ol)
0ol = — (0l % 01/2)
else
old = 40 x old * ol
ol = ol *x 0ol * 20
endif
end

subroutine subl_dva(x,xd,y,yd,0l,01d)

Ii xd = yd x x + y * xd

Iq r =Y *xx

Ié old =2 xx *xxd + 2 x y *x yd
Iy ol=ax*xx+yx*xy

Vi CALL VALIDITY_TEST(ol - 190, old)
T4 if (o1 > 190) then

Ig old = —(old * ol)
I5 ol = — (ol *x 01/2)
else
Iy old = 40 * old * ol
Iy ol = ol * o1 * 20
endif
end

15

Our Approach (5)

gmin-gmax

B =

In the example, the 8 magnitude is:

— (o1 — 190)

190 — (22 4+ y2)

old

2-z-(yd-z+y-zd)+2 y-yd

® \We can access global variables gmin and gmax, which hold the upper and lower bounds

15

05

Evaluation of program P’ validated, xd,yd = 1,1.

gmin —
gmax ——

gmin=n.d.p

gmax = n.d.p

3.2 34

4 42

44

of the validity interval. The numerical results of the example are:

X old agmin gmax
3.60 1402902.000 n.d.p 0.046
3.61 1429547.625 n.d.p 0.036
3.62 1456628.250 n.d.p 0.026
3.63 1484149.250 n.d.p 0.016
3.64 1512117.125 n.d.p 0.005
3.65 -38513.449 0.004 n.d.p
3.66 -39235.445 0.014 n.d.p
3.67 -39969.062 0.023 n.d.p
3.68 -40714.464 0.033 n.d.p
3.69 -41471.812 0.043 n.d.p

16

Our Approach (6)

The following numerical result was obtained using a CFD solver
STICS, 21.200 l.o.c., the differentiated version has 59.320 l.o.c,
542 validated tests from 2.582 total tests.

STICS

STICS with input=(norg,adens,+}) and
output=(azomes,gnplante,resmes,+).

17

gmin-gmax

0.018
0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

Our Approach (7)

e Preliminary results of validation.

STICS

10

STICS with input=(norg=4,adens,+) and output=gmin.

18

Conclusions

e Users overlook the problem of wrong derivatives due
changes in control-flow. AD tools must be able to detect
this kind of situation and provide warning.

Project Tropics, INRIA. ion about valid domains of
input ect differentiated programs.

e The oposed model was developed inside the A.D Tool
Tapenade. http://www-sop.inria.fr/tropics.

e The overhead of use our method is only 3% over plain
direct mode, this figure was obtain testing the model in
several real-life codes.

19

Future Work

e Integrate the approach to real-life algorithms, applications.
(underway). Promising adaptation to Non-Smooth
Optimization.

e Extend the approach (or propose a new one) for the reverse
mode of AD.

20

Bibliography

Araya-Polo M., Hascoet L., Domain of Validity of Derivatives
Computed by Automatic Differentiation, Rapport de Recherche
RR-5237, INRIA Sophia-Antipolis, 2004.

Hascoet, L., Pascual, V., TAPENADE 2.1 User’s guide.
Technical report #224. INRIA, 2004.
http://www-sop.inria.fr/tropics.

Berz, M., Bischof, G., Corliss, G., and Griewank, editors.
Computational Differentiation: Techniques, Applications, and
Tools. SIAM, Philadelphia, PA, 1996.

Corliss, G., Faure, Ch., Griewank, A., Hascoet, L., and
Naumann, U. Automatic Differentiation of Algorithms, from
Simulation to Optimization, Springer, Selected papers from
AD2000, 2001.

Kearfott, R. B., Treating Non-Smooth Functions as Smooth
Functions in Global Optimization and Nonlinear Systems Solvers,
Scientific Computing and Validated Numerics, ed. G. Alefeld
a nd A. Frommer, Akademie Verlag, pp. 160-172, 1996.

21

TROPICS Project, INRIA Sophia-Antipolis

Team
Laurent Hascoet (leader) Alain Dervieux
Valérie Pascual Christophe Massol
Benjamin Dauvergne Bruno KOOBUS
Stephen Wornom Mauricio Araya

and Nathalie Bellesso.

Theme
e Scientific Computing and Optimisation.
e Computer Science for analysis and transformation of
scientific programs. (Parallelization and Differentiation).

Tool
TAPENADE: analysis and A.D. of source programs.

Applications
e Sensitivity Analysis.
e Optimum Design (Aeronautics).

e Inverse Problems & Data Assimilation (Weather forecast).

22

Questions?

23

