
.

Certification of Derivatives Computed

by Automatic Differentiation

Mauricio Araya Polo & Laurent Hascoët

Project TROPICS

WSEAS, Cancún, México, May 13, 2005.

1

.

Plan

• Introduction (Background)

• Automatic Differentiation

– Direct Mode

– Reverse Mode

• The Problem

– Example

• Our Approach

– Description

– Numerical Result

• Conclusions

• Future Work

2

.

Introduction (Background)

• Automatic Differentiation (A.D.) : Given program that

evaluates function F, builds new program that evaluates

derivatives of F.

• Scientific Applications : Derivatives are useful in optimization,

sensitivity analysis and inverse problems.

• Non-differentiability : Introduced in programs by conditional

statements (tests). May produced wrong derivatives.

• Lack of Validation : A.D. models (neither A.D Tools) include

verification of the differentiability of the functions.

• Novel A.D. model with Validation : We evaluate interval around

input data where no non-differentiability problem arises, this

information propagated through conditional statements.

3

.

Automatic Differentiation

Programs Structure: set of concatenated sequence of

instructions Ii

P = I1; I2; ...; Ip−1; Ip

but control flow (flowgraph):

1

3

2

1

I

I T

I

4I

depending on the inputs the exam-

ple program might be:

P = I1; T1; I2; I4

or

P = I1; T1; I3; I4

instruction T1 represents the con-

ditional statement (test).

Mathematical Models: composition of elementary functions fi

Y = F (X) = fp ◦ fp−1 ◦ ... ◦ f2 ◦ f1

Program P evaluates the model F, for every function fi we have

a computational representation Ii, in right order.

4

.

Automatic Differentiation (2)
Direct Mode: directional derivatives.

Y ′ = F ′(X) · dX = f ′

p(xp−1) · f ′

p−1(xp−2) · ... · f ′

1(x0) · dX

with xi = fi ◦ ... ◦ f1, and f ′

i
() jacobians.

then the new program P’,

P ′ = I′1; I1; I′2; I2; ...; I′p−1; Ip−1; I′p

with I′
i
corresponding to f ′

i
()

flowgraph again:

1 1
;

33
;

;’

’

’

’ ;

1TI I

I I

I I

I I

2 2

4 4

depending on the inputs the diffe-

rentiated example program might

be:

P = I′1; I1; T1; I′2; I2; I′4; I4

or

P = I
′
1; I1; T1; I

′
3; I3; I

′
4; I4

the differentiated example pro-

gram retains the control flow struc-

ture of the original program.

5

.

Automatic Differentiation (3)

Original Code Direct Differentiated Code

subroutine sub1(x,y,o1)

I1 x = y ∗ x

I2 o1 = x ∗ x + y ∗ y

T1 if (o1 > 190) then

I3 o1 = −o1 ∗ o1/2

else

I4 o1 = o1 ∗ o1 ∗ 20

endif

end

subroutine sub1 d(x, xd, y,

yd, o1, o1d)

I′1 xd = yd ∗ x + y ∗ xd

I1 x = y ∗ x

I′2 o1d = 2 ∗ x ∗ xd + 2 ∗ y ∗ yd

I2 o1 = x ∗ x + y ∗ y

T1 if (o1 > 190) then

I′3 o1d = −(o1d ∗ o1)

I3 o1 = −(o1 ∗ o1/2)

else

I′4 o1d = 40 ∗ o1d ∗ o1

I4 o1 = o1 ∗ o1 ∗ 20

endif

end

Table 1: Example of Direct Mode of AD.

6

.

Automatic Differentiation (3)
Reverse Mode: adjoints, gradients.

X̄ = F
′
∗(X) · Ȳ = f

′
∗

1 (x0) · f
′
∗

2 (x1) · ... · f
′
∗

p (xp−1) · Ȳ

then the new program P̄ ,

P̄ = I1; I2; . . . ; Ip−1; Ip; Īp; Īp−1; . . . ; Ī2; Ī1 or P̄ =
−→
P ;
←−
P

with Īi corresponding to f
′t
i ().

Remark: The reverse sweep (←−P)

eventually needs some values of the

forward sweep (−→P), but x0 and

others xi might be modified by the

forward sweep, thus we have to

store them, which for some pro-

grams leads to important memory

consumption.

7

.

Automatic Differentiation (4)

Original Code Reverse Differentiated Code

subroutine sub1(x,y,o1)

I1 x = y ∗ x

I2 o1 = x ∗ x + y ∗ y

T1 if (o1 > 190) then

I3 o1 = −o1 ∗ o1/2

else

I4 o1 = o1 ∗ o1 ∗ 20

endif

end

subroutine sub1 b(x, xb, y,

yb, o1, o1b)

PUSH(x)

I1 x = y ∗ x

I2 o1 = x ∗ x + y ∗ y

T1 if (o1 > 190) then
←−I3 o1b = −(o1 ∗ o1b)

else
←−I4 o1b = 40 ∗ o1 ∗ o1b

endif

←−I2

8

<

:

xb = xb + 2 ∗ x ∗ o1b

yb = yb + 2 ∗ y ∗ o1b

POP(x)

←−I1

8

<

:

yb = yb + x ∗ xb

xb = y ∗ xb

end

Table 2: Example of Reverse Mode of AD.

8

.

The Problem

Motivation:

The question of derivatives being valid only in a certain domain is

a crucial problem of AD. If derivatives returned by AD are used

outside their domain of validity, this can result in errors that are

very hard to detect.

Description:

• Programs have control flow structure, including conditional

statements (tests). Some of the test are introduced by

intrinsic functions like abs, min, max, etc.

• Differentiated program keeps the control flow structure of

given program. Sometimes the derivatives depends in the

control flow structure.

• When some input is too close to a switch of the control

flow, the resulting derivative may be very different or

wrong, to the point of be useless.

9

.

The Problem (2)

 0
 1
 2
 3
 4
 5
 6
 7
 8 0 1 2 3 4 5 6 7 8

-9e+06
-8e+06
-7e+06
-6e+06
-5e+06
-4e+06
-3e+06
-2e+06
-1e+06

 0
 1e+06

o1
Evaluation of program P.

x

y

o1

-1.5e+06

-1e+06

-500000

 0

 500000

 1e+06

 1.5e+06

 0 1 2 3 4 5 6
o

1
d

x

Evaluation of program P’, xd,yd = 1,1.

Plot of left shows the evaluation of program example with discontinuity problem. Plot of right

shows the evaluation of differentiated program example with input space direction (1,1).

(x=3.64,o1d=1512117.125) and (x=3.65,o1d=-38513.449) !!!

10

.

The Problem (3)

Main cases of problems introduced by conditional statements.

(from B. Kearfott paper)

11

.

Our Approach

• every test (t) is analyzed, under small change in the input

the test must remain in the same “side” of the inequality.

for example if ti ≥ 0 then ∆ti + ti ≥ 0 (1)

• the variation of t (∆ti) have to be expressed in terms of the

intermediates variables

variables used by instructions

needed to built the current test

(Bi).

∆ti = J(Ti) ·∆Bi

• and the variation of the intermediates variables is

∆Bi = J(Bi; . . . ; B0) ·∆X = J(Bi) · ... · J(B0) ·∆X

where ∆X represents the variation of the inputs values.

• re-composing the expression ∆ti + ti ≥ 0 from (1),

< J(Ti) · J(Bi) · ... · J(B0) ·∆X|ej > ≥ − < ti|ej > (2)

12

.

Our Approach (2)

• we want isolate ∆X, a good way to do that is transpose the

jacobians in (2)

< ∆X · J(B0)∗ · ... · J(Bi)
∗ · J(Ti)

∗ · ej > ≥ − < ti|ej > (3)

• we can use the reverse mode of AD to compute

J(B0)∗ · ... · J(Bi)
∗ · J(Ti)

∗ · ej in (3).

• unfortunately, in real situations the number of tests is so

large that the computation of this approach is not practical.

• Solutions:

– combine constraints to propagate just one. half-spaces.

– reduce the size of the problem. less tests or less inputs,

or both.

13

.

Our Approach (3)

• we analyze one test (t0), under small change in the input

the test must remain in the same “side” of the inequality.

if t0 ≥ 0 then ∆t0 + t0 ≥ 0 (4)

• the variation of t (∆t0) have to be expressed in terms of the

intermediates variables (B0).

∆t0 = J(T0) ·∆B0

• and the variation of the intermediates variables is

∆B0 = J(B0) · β · Ẋ

where β · Ẋ represents the variation of the inputs values. β

the magnitude and Ẋ the direction of the variation.

• re-composing the expression (4),

β · J(T0) · J(B0) · Ẋ ≥ −t0

14

.

Our Approach (4)

the following expression give us the magnitude of change of the input values, without change

the sign of the test.

β ≥
−t0

J(T0) · J(B0) · Ẋ
(5)

to compute expression (5) we introduced a function call that propagate the effect of every

test trough the program, resulting in a interval of validity, as follows:

Direct Differentiated Code Direct Differentiated Code with Validation

subroutine sub1 d(x,xd,y,yd,o1,o1d)

I′1 xd = yd ∗ x + y ∗ xd

I1 x = y ∗ x

I′2 o1d = 2 ∗ x ∗ xd + 2 ∗ y ∗ yd

I2 o1 = x ∗ x + y ∗ y

T1 if (o1 > 190) then

I′3 o1d = −(o1d ∗ o1)

I3 o1 = −(o1 ∗ o1/2)

else

I′4 o1d = 40 ∗ o1d ∗ o1

I4 o1 = o1 ∗ o1 ∗ 20

endif

end

subroutine sub1 dva(x,xd,y,yd,o1,o1d)

I′1 xd = yd ∗ x + y ∗ xd

I1 x = y ∗ x

I′2 o1d = 2 ∗ x ∗ xd + 2 ∗ y ∗ yd

I2 o1 = x ∗ x + y ∗ y

V1 CALL VALIDITY TEST(o1 - 190, o1d)

T1 if (o1 > 190) then

I′3 o1d = −(o1d ∗ o1)

I3 o1 = −(o1 ∗ o1/2)

else

I′4 o1d = 40 ∗ o1d ∗ o1

I4 o1 = o1 ∗ o1 ∗ 20

endif

end

15

.

Our Approach (5)

• In the example, the β magnitude is:

β ≥
−(o1− 190)

o1d
=

190− (x2 + y2)

2 · x · (yd · x + y · xd) + 2 · y · yd

• We can access global variables gmin and gmax, which hold the upper and lower bounds

of the validity interval. The numerical results of the example are:

 0

 0.5

 1

 1.5

 2

 3 3.2 3.4 3.6 3.8 4 4.2 4.4

g
m

in
-g

m
a

x

x

Evaluation of program P’ validated, xd,yd = 1,1.

gmin = n.d.p gmax = n.d.p

gmin
gmax

x o1d gmin gmax

3.60 1402902.000 n.d.p 0.046

3.61 1429547.625 n.d.p 0.036

3.62 1456628.250 n.d.p 0.026

3.63 1484149.250 n.d.p 0.016

3.64 1512117.125 n.d.p 0.005

3.65 -38513.449 0.004 n.d.p

3.66 -39235.445 0.014 n.d.p

3.67 -39969.062 0.023 n.d.p

3.68 -40714.464 0.033 n.d.p

3.69 -41471.812 0.043 n.d.p

16

.

Our Approach (6)
The following numerical result was obtained using a CFD solver

STICS, 21.200 l.o.c., the differentiated version has 59.320 l.o.c,

542 validated tests from 2.582 total tests.

-10 -5 0 5 10 -10 -5 0 5 10

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

output

STICS

adens Norg

output

STICS with input=(norg,adens,+) and

output=(azomes,qnplante,resmes,+).

17

.

Our Approach (7)

• Preliminary results of validation.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

-10 -5 0 5 10

g
m

in
-g

m
ax

adens

STICS

STICS with input=(norg=4,adens,+) and output=gmin.

18

.

Conclusions

• Users overlook the problem of wrong derivatives due

changes in control-flow. AD tools must be able to detect

this kind of situation and provide warning.

• Our model give the information about valid domains of

input for direct differentiated programs.

• The proposed model was developed inside the A.D Tool

Tapenade

Project Tropics, INRIA.

. http://www-sop.inria.fr/tropics.

• The overhead of use our method is only 3% over plain

direct mode, this figure was obtain testing the model in

several real-life codes.

19

.

Future Work

• Integrate the approach to real-life algorithms, applications.

(underway). Promising adaptation to Non-Smooth

Optimization.

• Extend the approach (or propose a new one) for the reverse

mode of AD.

20

.

Bibliography

• Araya-Polo M., Hascoët L., Domain of Validity of Derivatives

Computed by Automatic Differentiation, Rapport de Recherche

RR-5237, INRIA Sophia-Antipolis, 2004.

• Hascoët, L., Pascual, V., TAPENADE 2.1 User’s guide.

Technical report #224. INRIA, 2004.

http://www-sop.inria.fr/tropics.

• Berz, M., Bischof, G., Corliss, G., and Griewank, editors.

Computational Differentiation: Techniques, Applications, and

Tools. SIAM, Philadelphia, PA, 1996.

• Corliss, G., Faure, Ch., Griewank, A., Hascoët, L., and

Naumann, U. Automatic Differentiation of Algorithms, from

Simulation to Optimization, Springer, Selected papers from

AD2000, 2001.

• Kearfott, R. B., Treating Non-Smooth Functions as Smooth

Functions in Global Optimization and Nonlinear Systems Solvers,

Scientific Computing and Validated Numerics, ed. G. Alefeld

a nd A. Frommer, Akademie Verlag, pp. 160-172, 1996.

21

.

TROPICS Project, INRIA Sophia-Antipolis

Team

Laurent Hascoet (leader) Alain Dervieux

Valérie Pascual Christophe Massol

Benjamin Dauvergne Bruno KOOBUS

Stephen Wornom Mauricio Araya

and Nathalie Bellesso.

Theme

• Scientific Computing and Optimisation.

• Computer Science for analysis and transformation of

scientific programs. (Parallelization and Differentiation).

Tool

TAPENADE: analysis and A.D. of source programs.

Applications

• Sensitivity Analysis.

• Optimum Design (Aeronautics).

• Inverse Problems & Data Assimilation (Weather forecast).

22

.

Questions?

23

