
The data-flow equations of Checkpointing

in Reverse Automatic Differentiation

Benjamin Dauvergne, Laurent Hascoët

INRIA Sophia-Antipolis, France
http://www-sop.inria.fr/tropics

ICCS’2006, Reading, UK

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 1 / 17

http://www-sop.inria.fr/tropics

Context: Reverse Automatic Differentiation

gradients !
Reverse AD by program transformation
(⇒ opportunity for data-flow analysis: activity,. . .)

reversed data flow !
Store-All approach (⇒ needs optimized taping, TBR)

memory (tape) size !
Nested Checkpointing
(⇒ repeated executions, Snapshots)

For the Data Flow Equations of these analyses, we need
formal proofs of “correctness” and “optimality”.

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 2 / 17

Checkpointing questions

When no checkpointing is done:

Unique optimal Equations for activity,
(adjoint-)liveness, TBR

Data Flow Equations derived formally

No retroaction between analyses:
1) activity, 2) adjoint-liveness, 3) TBR

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 3 / 17

Our goal

But when checkpointing is present:

Still no problem for activity and adj-liveness

Examples show many optimal answers for
TBR/Snapshots

Retroaction between TBR and Snapshot

⇒ Our goal is to characterize all possible “optimal”
strategies for TBR/Snapshot, and then experiment some
of them on real applications.

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 4 / 17

Reverse AD without Checkpointing

Original program U ; C ; D:
time:
t
t
1
2

U C D

Reverse diff program, no Checkpointing:

forward sweep

backward sweep

time:
t
t

t

Req Req
1
2

3

U

U

C

C

D

D

PUSH

POP

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 5 / 17

Checkpointing tactique, Snapshots, TBR

Reverse diff program, with Checkpointing on C :

forward sweep

backward sweep

time:
t
t

t

t

Req
Req

1
2

3

4

CHECKPOINTING

U C
D

Sbk Snp
PUSH

POP

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 6 / 17

The retroaction problem

Sbk Snp

Req
Req

D

Req
C

?x

?x

x
x x

x

x

Variable x needs to be saved . . .

either because required in
←−
U (TBR) ⇒ x ∈ Sbk

or because used in C (Checkpointing) ⇒ x ∈ Snp

. . . but if x ∈ Snp and x /∈ out(C) , then x /∈ Sbk !
⇒ We have to be more systematic

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 7 / 17

Necessary and sufficient constraints

time:
t
t

t

t

Green

Blue

U C D
Sbk Snp

Req
Req

D

Req
C

1
2

3

4

out(Green)
⋂

use(C) = ∅
out(Blue)

⋂
Req = ∅

From now on, constraints on Snp, Sbk, ReqD , and ReqC
follow mechanically !

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 8 / 17

Developping the out sets

time:
t
t

t

t

Green

Blue

U C D
Sbk Snp

Req
Req

D

Req
C

1
2

3

4

out(Green) = (out(C) ∪ (out(D) \ ReqD)) \ Snp

out(Blue) = ((out(C) ∪ (out(D) \ ReqD)) \ Snp

∪(out(C) \ ReqC)) \ Sbk

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 9 / 17

Equations for the minimal solutions

Sbk ⊇
(
(out(C) ∪ (out(D) \ ReqD)) \ Snp

∪ (out(C) \ ReqC)
)
∩ Req

Snp ⊇
(
out(C) ∪ (out(D) \ ReqD)

)
∩(

use(C) ∪ (Req \ Sbk)
)

ReqD ⊇ (out(D) \ Snp) ∩
(
use(C) ∪ (Req \ Sbk)

)
ReqC ⊇ (out(C) \ Sbk) ∩ Req

Retroaction is now apparent
Hand resolution is error-prone
⇒ use a symbolic computation tool

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 10 / 17

. . . for instance Maple

paprika$ maple

|\^/| Maple V Release 5 (INRIA)

._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights

\ MAPLE / reserved. Maple and Maple V are registered trademarks of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> with(logic) ;

[bequal, bsimp, canon, convert/MOD2, convert/frominert, convert/toinert, distrib,

dual, environ, randbool, satisfy, tautology]

> Snp := bsimp((outC &or (outDb &and ¬(ReqD))) &and (useCb &or (Req \

> &and ¬(Sbk)))) ;

Snp := &or(&and(useCb, ¬(ReqD), outDb),

&and(Req, ¬(Sbk), ¬(ReqD), outDb), outC &and useCb,

&and(outC, Req, ¬(Sbk)))

> Sbk := bsimp((((outC &or (outDb &and ¬(ReqD))) &and ¬(Snp)) &or\

> ((outC &and outCb) &and ¬(ReqC))) &and Req) ;

Warning, recursive definition of name

Sbk := &or(&and(outC, outCb, Req, ¬(ReqC)), &and(outC, Sbk, Req, ¬(useCb)),

&and(Sbk, Req, ¬(ReqD), outDb, ¬(useCb)))

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 11 / 17

The minimal solutions

Define:

Snp0 = out(C) ∩ (use(C) ∪ (Req \ out(C)))

Opt1 = Req ∩ out(C) ∩ use(C)

Opt2 = Req ∩ out(C) \ use(C)

Opt3 = out(D) ∩ (use(C) ∪ Req) \ out(C)

Every minimal solution is of the form:

Sbk = Opt+1 ∪ Opt+2
Snp = Snp0 ∪ Opt−2 ∪ Opt+3
ReqD = Opt−3
ReqC = Opt−1 ∪ Opt−2

Eager: save now+ in Snp vs Lazy: delayed− for TBR
Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 12 / 17

“Eager Snapshots”

Take Opt+1 = Opt1, Opt+2 = Opt2, and Opt+3 = Opt3 ⇒

Sbk = Req ∩ out(C)

Snp = (Req ∩ out(D) \ out(C))

∪(Req ∩ out(C) \ out(C))

∪(use(C) ∩ out(D)) ∪ (use(C) ∩ out(C))
ReqD = ∅
ReqC = ∅

Need out(C), out(D)

Snapshot anticipates TBR ⇒ rarely good...

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 13 / 17

“Lazy Snapshots”

Take Opt+1 = ∅, Opt+2 = ∅, and Opt+3 = ∅ ⇒

Sbk = ∅
Snp = out(C) ∩ (Req ∪ use(C))

ReqD = out(D) ∩ (Req ∪ use(C)) \ out(C)

ReqC = out(C) ∩ Req

Saves are delayed until the very last moment

No need for out(C), out(D)

Best strategy in general,
except for special (contrived) cases.

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 14 / 17

Experimental Measurements

Code Domain Time adj.T. Eager Lazy

opa oceanogr. 110 s 780 s 480 Mb 479 Mb

stics agronomy 0.23 s 1.82 s 80 Mb 80 Mb

uns2d CFD 2.7 s 23 s 248 Mb 185 Mb

sail agronomy 5.6 s 17 s 1.6 Mb 1.5 Mb

thyc thermodyn. 2.7 s 12 s 33.7 Mb 18.3 Mb

lidar optics 4.3 s 10 s 14.6 Mb 14.6 Mb

curve shape optim. 0.7 s 2.7 s 1.44 Mb 0.59 Mb

sonic CFD 0.03 s 0.2 s 3.55 Mb 2.02 Mb

Contrived example 0.02 s 0.1 s 8.20 Mb 11.71 Mb
Lazy snapshots never loose on real applications.
Gain is less visible on long iterative programs.

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 15 / 17

Nested Checkpoints

What is the relative influence of nested checkpoints?

Sbk Snp

Req
Req

D

Req
C

Optimal sets depend on use(C), out(C), out(D).
Does out(P) depend on the checkpoints inside P?

(Maple:) ⇒ whatever the choice of Opt+1 , Opt+2 , Opt+3 ,
the value of out(C ; D) is the same:

out(C ; D) = (out(C)∪ out(D))∩ out(C) \use(C) \Req

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 16 / 17

Conclusion

”Minimal” Snp, ReqC , and ReqD sets.

”Lazy” strategy best in most cases.

⇒ Future directions:

Measurements should look not only at memory peak,
but also at memory traffic.

Adaptive choice of Opt+1 , Opt+2 , Opt+3 , different for
each checkpoint.

Try activation and disactivation of checkpoints based
on the data-flow use and out sets.

Try moving the boundaries of the checkpoints C .

Dauvergne, Hascoët (INRIA) Data-Flow equations of Checkpointing ICCS’06 17 / 17

