The data-flow equations of Checkpointing

in Reverse Automatic Differentiation

Benjamin Dauvergne, Laurent Hascoét

INRIA Sophia-Antipolis, France
http://www-sop.inria.fr/tropics

ICCS'2006, Reading, UK

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing 1CCS’'06 1/17

http://www-sop.inria.fr/tropics

Context: Reverse Automatic Differentiation

e gradients !

Reverse AD by program transformation

(= opportunity for data-flow analysis: activity,. . .)
e reversed data flow !

Store-All approach (= needs optimized taping, TBR)
o memory (tape) size !

Nested Checkpointing

(= repeated executions, Snapshots)

For the Data Flow Equations of these analyses, we need
formal proofs of “correctness” and “optimality”.

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing 1CCS’'06 2 /17

Checkpointing questions

When no checkpointing is done:
e Unique optimal Equations for activity,
(adjoint-)liveness, TBR
e Data Flow Equations derived formally

e No retroaction between analyses:
1) activity, 2) adjoint-liveness, 3) TBR

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing 1CCS’'06 3/17

But when checkpointing is present:

o Still no problem for activity and adj-liveness

e Examples show many optimal answers for
TBR/Snapshots

o Retroaction between TBR and Snapshot

= Qur goal is to characterize all possible “optimal”
strategies for TBR/Snapshot, and then experiment some
of them on real applications.

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing ICCS’'06 4 /17

Reverse AD without Checkpointing

e Original program U; C; D:

o Reverse diff program, no Checkpointing:
time: U @m —

c (Reg —
LTI — 1 ,,,,,, K’HW—”IE' Sweep I'D X
777777777777777777777777777777777777 |) —

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing ICCS’'06 5/17

Checkpointing tactique, Snapshots, TBR

o Reverse diff program, with Checkpointing on C:

umer @ DS
p C R
EiPUSHLii __________________________ @(’rwafd Sweep D
CHECKPOINTING . —
t3 777777777777 O X M
4l POP i —
v backward SWeep

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing ICCS’'06 6 /17

The retroaction problem
X
K»SJok?n\i “4

:fc B —

__n__(‘

Variable x needs to be saved ...
H
o either because required in U (TBR) = x € Sbk
e or because used in C (Checkpointing) = x € Snp

..but if x € Snp and x ¢ out(C) , then x ¢ Sbk !
= We have to be more systematic

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing 1CCS’'06 7/17

Necessary and sufficient constraints

o out(Green) (N use(C) =0
o out(Blue)(Req = 0

From now on, constraints on Snp, Sbk, Reqp, and Reqc
follow mechanically !

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing 1CCS’'06 8 /17

Developping the out sets
ime R

Blue

out(Green) = (out(C) U (out(D)\ Reqp)) \ Snp

out(Blue) = ((out(C)U (out(D) \ Reqp)) \ Snp
U(out(C) \ Reqc)) \ Sbk

ascoét (INRIA) Data-Flow equations of Checkpointing 1CCS’'06 9 /17

Equations for the minimal solutions

Sbk 2 ((out(C) U (out(D) \ Reqp)) \ Snp
U (out(C) \ Reg¢)) N Req

Snp 2 (out(C)U (out(D) \ Req_D)) N
B (use(C) U (Req \ Sbk))
Reqp (out(D) \ Snp) N (use(C) U (Req \ Sbk))

»
Req- 2 (out(C)\ Shk) N Req

e Retroaction is now apparent
e Hand resolution is error-prone
= use a symbolic computation tool

Dauvergne, Hascoét (INRIA) ata-Flow equations of Checkpointin, ICCS’'06 10 / 17

... for instance Maple

paprika$ maple
IN~/1 Maple V Release 5 (INRIA)
INI |/1. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
<o > Waterloo Maple Inc.
| Type ? for help.
> with(logic) ;
[bequal, bsimp, canon, convert/MOD2, convert/frominert, convert/toinert, distrib,
dual, environ, randbool, satisfy, tautology]

> Snp := bsimp((outC &or (outDb &and ¬(ReqD))) &and (useCb &or (Req \
> &and ¬(Sbk)))) ;

Snp := &or(&and(useCb, ¬(ReqD), outDb),
&and (Req, ¬(Sbk), ¬(ReqD), outDb), outC &and useCb,
&and (outC, Req, ¬(Sbk)))

> Sbk := bsimp((((outC &or (outDb &and ¬(ReqD))) &and ¬(Snp)) &or\
> ((outC &and outCb) &and ¬(ReqC))) &and Req) ;

Warning, recursive definition of name
Sbk := &or(&and(outC, outCb, Req, ¬(ReqC)), &and(outC, Sbk, Req, ¬(useCb)),
&and (Sbk, Req, ¬(RegD), outDb, ¬(useCb)))

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing ICCS'06 11 /17

The minimal solutions

Define:
Snpy = out(C) N (use(C) U (Req \ out(C)))
Opt; = RegNout(C)Nuse(C)
Opt, = Regnout(C))\ use(C)
Opt; = out(D) N (use(C) U Req) \ out(C)

Every minimal solution is of the form:

Sbk = Opt] U Opty
Snp = Snp, U Opt, U Opt;
Reqp = Opt;

Reqc = Opt; U Opt,
Eager: save now" in Snp vs Lazy: delayed” for TBR

Dauvergne, Hascoét (INRIA) ICCS'06 12 /17

“Eager Snapshots”

Take Opt] = Opt;, Opty = Opt,, and Opt; = Opt; =

Sbk = Reqnout(C)
Snp = (Reqnout(D))\ out(C))
U(Req N out(C) \ out(C))
U(use(C) Nout(D)) U (use(C) N out(C))
Reqp = 0
Reqr = 0
o Need out(C), out(D)
e Snapshot anticipates TBR =- rarely good...

ICCS'06 13 / 17

“Lazy Snapshots”

Take Opt] =0, Opt; =0, and Opt; =) =

Sbk = 0

Snp = out(C) N (ReqUuse(C))

Reqp = out(D)N (ReqU use(C)) \ out(C)
Reqc = out(C) N Req

e Saves are delayed until the very last moment
o No need for out(C), out(D)

e Best strategy in general,
except for special (contrived) cases.

ICCS’'06

Experimental Measurements

Code | Domain Time | adj.T. Eager Lazy
OPA oceanogt. 110s| 780 s| 480 Mb 479 Mb
STICS agronomy 0.23s]1.82s 80 Mb 80 Mb
UNS2D | CFD 27s| 23s| 248 Mb| 185 Mb
SAIL agronomy 56 s 17 s 1.6 Mb 1.5 Mb
THYC thermodyn. 2.7s 12 s | 33.7 Mb 18.3 Mb
LIDAR | optics 43s| 10s|146 Mb| 14.6 Mb
CURVE | shape optim. | 0.7s| 2.7s|1.44 Mb| 0.59 Mb
SONIC | CFD 0.03s| 0.2s|3.55Mb| 2.02 Mb
Contrived example 0.02 s 0.1s]8.20 Mb | 11.71 Mb

Lazy snapshots never loose on real applications.

Gain is less visible on long iterative programs.

ascoét (INRIA)

Data-Flow equations of Checkpointing

ICCS'06 15 / 17

Nested Checkpoints

What is the relative influence of nested checkpoints?

Req
\ sk Sp

—

Optimal sets depend on use(C), out(C), out(D).

Does out(P) depend on the checkpoints inside P?

(Maple:) = whatever the choice of Opt;, Opt; , Opt],
the value of out(C; D) is the same:

out(C; D) = (out(C) Uout(D))Nout(C)\ use(C) \ Req

ascoét (INRIA) ICCS’'06 16 / 17

Conclusion

e "Minimal” Snp, Reqc, and Reqp sets.

e "Lazy" strategy best in most cases.

= Future directions:

e Measurements should look not only at memory peak,
but also at memory traffic.

o Adaptive choice of Opt;, Opt;, Opt;, different for
each checkpoint.

e Try activation and disactivation of checkpoints based
on the data-flow use and out sets.

e Try moving the boundaries of the checkpoints C.

Dauvergne, Hascoét (INRIA) Data-Flow equations of Checkpointing ICCS'06 17 / 17

