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So you need derivatives ?...

Given a program P computing a function F

F: R™ — R"
X =Y

we want to build a program that computes the derivatives
of F.

Specifically, we want the derivatives of the dependent,
i.e. some variables in Y,

with respect to the independent,
i.e. some variables in X.
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Divided Differences

Given X, run P twice, and compute Y

g P(X+ eX) — P(X)

€

e Pros: immediate; no thinking required !
o Cons: approximation; what ¢ 7
= Not so cheap after all !
Most applications require inexpensive and accurate
derivatives.
= Let's go for exact, analytic derivatives !
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Automatic Differentiation

Augment program P to make it compute the analytic
derivatives
P: a = bxT(10) + c
The differentiated program must somehow compute:
P’: da = db*T(10) + b*dT(10) + dc

How can we achieve this?
e AD by Overloading

e AD by Program transformation
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AD by overloading

Tools: ADOL-C, ...
Few manipulations required:

e DOUBLE — ADOUBLE ;
e link with provided overloaded +,-,*,. ..

Easy extension to higher-order, Taylor series, intervals,
... but not so easy for gradients.

Anecdote?:
e real — complex

@ X = axb —
(x , dx) = (axb-daxdb , a*xdb+daxb)
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AD by Program transformation

Tools: ADIFOR, TAF, TAPENADE,...

Complex transformation required:

e Build a new program that computes the analytic
derivatives explicitly.
e Requires a compiler-like, sophisticated tool
@ PARSING,
@ ANALYSIS,

© DIFFERENTIATION,
© REGENERATION
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Overloading vs Transformation

Overloading is versatile,

Transformed programs are efficient:

o Global program analyses are possible
...and most welcome !

e The compiler can optimize the generated program.
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Example: Tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v, pl)

REAL v1,v2,v3,v4,pl

v3 = 2.0xvl + 5.0
v4d = v3 + pl*v2/v3
END
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Example: Tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v, pl)

REAL v1,v2,v3,v4,pl

v3d = 2.0*xvld
v3 = 2.0xvl + 5.0
v4d = v3d + plx(v2d*xv3-v2*v3d)/(v3*v3)
v4d = v3 + pl*v2/v3
END
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Example: Tangent differentiation

by Program transformation

[ J
SUBROUTINE F0OO0(v1,v1d,v2,v2dyv4,v4d,pl)
REAL vi1d,v2d,v3d,v4d
REAL v1,v2,v3,v4,pl

v3d = 2.0*xvld
v3 = 2.0xvl + 5.0
v4d = v3d + plx(v2d*xv3-v2*v3d)/(v3*v3)
v4d = v3 + pl*v2/v3
END

Just inserts “differentiated instructions” into FOO
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Outline

© Formalization
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Computer Programs as Functions

We see program P as:
f=fof,10---0f
We define for short:
Wo =X and W = fi(Wk_1)
The chain rule yields:
f'(X) = fp’(Wpfl).fI;_l(Wpfz) ..... f(Wo)
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Tangent mode and Reverse mode

Full f/(X) is expensive and often useless.
We'd better compute useful “projections”.

tangent AD :
Y =f(X)X = fp’(Wp_l).fp’_l(Wp_g) (W) X
reverse AD :
X = f’t(X).V = f{(Wp).... fp’t_l(Wp_z).fp’t(Wp_l).V

Evaluate both from right to left:
= always matrix X vector

Theoretical cost is about 4 times the cost of P
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Costs of Tangent and Reverse AD

F: R" - R

m inputs

Gradient

n outputd

......D

:
Q
8

o f'(X) ~ costs (m + 17) % P using Divided Differences
o f'(X) costs m* 4 x P using the tangent mode

Good if m<=n
o f'(X) costs n x4 x P using the reverse mode

Good if m >> n (e.g n =1 in optimization

-
Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 13 / 54




Back to the Tangent Mode example

v3 = 2.0xvl + 5.0
v4 = v3 + pl*v2/v3

Elementary Jacobian matrices:

1 1
1 1
/ _
f'(X)=.. 1 5 0
P Prve
0 2 1252 g 1
V3 = 2*V1
vi = nx(l—pr*xwn/vi) + wnx*p/vs
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Tangent Mode example continued

Tangent AD keeps the structure of P:

v3d = 2.0*xvld

v3 = 2.0%xvl + 5.0

v4dd = v3dx(1-pl*v2/(v3*v3)) + v2d*pl/v3
v4d = v3 + pl*v2/v3

Differentiated instructions
inserted into P's original control flow.,
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Outline

© Reverse AD
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Focus on the Reverse mode

X = f{(X).Y = £1(Wp) ... FH(W, 1).Y

!p;l s
W=y, _
W= (W, 1) * W ;

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 17 / 54



Focus on the Reverse mode
X

— F4(X).Y = £1(W) ... FH(W,).Y
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Focus on the Reverse mode

X = f{(X).Y = £1(Wp) ... FH(W, 1).Y

~
ey
-

A
A R

e woe

Y ; _
fp(Wp 1) *x W ;
store W,_, before I, » ;
f’t (Wp 2) * W ;

estore Wy before |
A (Wo) * W

)

<I=[D: %I? SIS

Instructions differentiated in the reverse order !
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Reverse mode: graphical interpretation

g_
_
v
1/
.

Bottleneck: memory usage (“Tape").
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Back to the example

v3 = 2.0xvl + 5.0
v4d = v3 + pl*xv2/v3
Transposed Jacobian matrices:

12 1 0

FH(X) = .. b ! 1 1_p;_
1 0

Vo = Vot Vakpi/vs

Vi = Vi42%Vs

vy = 0
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Reverse Mode example continued

Reverse AD inverses the structure of P:

= 2.0%vl + 5.0
v4d = v3 + p1*v2/v3

<
w
|

........................ /*restore previous statex/

v2b = v2b + pl*vdb/v3
v3b = v3b + (1-pl*xv2/(v3*v3))*vib

. V4b . O O ........... /*restore previous statex/
vib = vlib + 2.0*v3b
v3b = 0.0

........... T ........../*restore previous statex*/

Differentiated instructions inserted
into the inverse of P’'s original control flow:
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Control Flow Inversion : conditionals

The control flow of the forward sweep
is mirrored in the backward sweep.

if (T(i).1t.0.0) then
T(1i) = S(1)*T(1)
endif

if (...) then
Sb(i) = Sb(i) + T(i)*Tb(i)
To(i) = S(i)*Tb(i)

endif
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Control Flow Inversion : loops

Reversed loops run in the inverse order

Do i = 1,N

T(i) = 2.5%T(i-1) + 3.5
Enddo

Do i = N,1,-1
Tb(i-1) = Tb(i-1) + 2.5*%Tb(i)
Tb(i) = 0.0

Enddo
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Outline

@ Memory issues in Reverse AD: Checkpointing
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Time/Memory tradeoffs for reverse AD

From the definition of the gradient X

X = fF{(X).Y = £{(Wp) ... FI{(W, 1).Y

we get the general shape of reverse AD program:

ba by

I1 I2 I3
\:4_—
— |p
time LI Ipl
—
- |,
hy

= How can we restore previous values?
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Restoration by recomputation

(RA: Recompute-All)

Restart execultion from a stored initial state:

I | | |

1 2 3 p-2 ‘pl

o >
S
O > I
time < T

I L] L] L] p_l

1
OoO—»

—
o_ 1
—

Memory use low, CPU use high = trade-off needed !

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 25/



Checkpointing (RA strategy)

On selected pieces of the program, possibly nested,
remember the output state to avoid recomputation.

I

o 7 p—

P

_>e
O
O

time

time | © ‘ é:_‘-

Memory and CPU grow like log(size(P))
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Restoration by storage

(SA: Store-All)

Progressively undo the assignments made by the forward
sweep

3 Ip-2 pl1 p

Memory use high, CPU use low = trade-off needed !
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Checkpointing (SA strategy)

On selected pieces of the program, possibly nested, don't
store intermediate values and re-execute the piece when
values are required.

S
® >
OO OO O O

Memory and CPU grow like log(size(P))

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 28 / 54



Checkpointing on calls (SA)

A classical choice: checkpoint procedure calls !

: original formof X
D . forward sweep for X
@  backward sweep for X
‘ : take snapshot

Memory and CPU grow like log(size(P)) when call tree is
well balanced.

lll-balanced call trees require not checkpointing some calls

Careful analysis keeps the snapshots small.
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Outline

e Reverse AD for minimization

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 30 / 54



Applications to Minimization

From a simulation program P :
P :(design parameters)y — (cost function)j(~y)

P :(parameters to estimate)y — (misfit function)j(~)

it takes a gradient j’(y) to obtain a minimization program.
Reverse mode AD builds program P that computes j'()

Minimization algorithms (Gradient descent, SQP, ...)
may also use 2nd derivatives. AD can provide them too.
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A color picture (at last !...)

AD-computed gradient of a scalar cost (sonic boom)
with respect to skin geometry:

GRAD

2.3

1.9781
1.6422
- 1.3083

- 097496
064057

0.30683
-0027169
-036108
069484
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... and after a few optimization steps

Improvement of the sonic boom under the plane after 8
optimization cycles:

(P/ane geometry provided by Dassault Aviation)
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Data Assimilation (OPA 9.0/GYRE)

Influence of T at -300 metres
on heat flux 20 days later
across North section

Kelvin wave

Rossby wave

Vv
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@ Some AD Tools
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Some AD tools

e NACWARE F95 Compiler: Overloading, tangent,
reverse

e ADOL-C : Overloading+Tape; tangent, reverse,
higher-order

e ADIFOR : Regeneration ; tangent, reverse?, Store-All
+ Checkpointing

e TAPENADE : Regeneration ; tangent, reverse,
Store-All + Checkpointing

e TAF : Regeneration ; tangent, reverse, Recompute-All
+ Checkpointing
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Some Limitations of AD tools

Fundamental problems:
o Piecewise differentiability
e Convergence of derivatives

e Reverse AD of very large codes

Technical Difficulties:
e Pointers and memory allocation
e Objects

e Inversion or Duplication of random control
(communications, random,...)
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@ Static Analyses in AD tools

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 38 /54



Activity analysis

Finds out the variables that, at some location

@ do not depend on any independent,
@ or have no dependent depending on them.
Derivative either null or useless = simplifications

orig. prog tangent mode w/activity analysis
cd = a*bd + ad*b cd = a*bd + adx*b
c = axb c = axb c = axb
ad = 0.0
a=>5.0 a=>5.0 a=>5.0
dd = axcd + adxc dd = axcd
d = ax*c d = a*c d = axc
ed=ad/c-axcd/c*x*2
e = a/c e = a/c e = a/c
ed = 0.0 ed = 0.0
e=floor(e) e = floor(e) e = floor(e)
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“To Be Recorded” analysis

In reverse AD, not all values must be restored during the backward
sweep.

Variables occurring only in linear expressions do not appear in the
differentiated instructions.
= not To Be Recorded.
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y =y + EXP(a)
y=y+ ax*x2
a

= 3%z
reverse mode: reverse mode:
naive backward sweep | backward sweep with TBR
CALL POP(a) CALL POP(a)
zb = zb + 3*ab zb = zb + 3%*ab
ab = 0.0 ab = 0.0
CALL POP(y)
ab = ab + 2*axyb ab = ab + 2*axyb
CALL POP(x)
ab = ab + EXP(a)*yb ab = ab + EXP(a)*xb

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006



Taking small snapshots saves a lot of memory:

C D

-— — ——

\ 4

@
timlq—oﬂ—oﬂ—oﬁ—oq—o‘—:o‘—

Snapshot(C) C Use(C) N (Write(C) U Write(D))
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© The TAPENADE AD tool
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A word on TAPENADE

a4 2

- Automatic Differentiation Tool

/. _ Name: TAPENADE version 2.1
= p
4 %‘ Date of birth: January 2002

Ancestors: Odyssée 1.7

Address: wuw.inria.fr/tropics/
tapenade.html

Specialties: AD Reverse, Tangent, Vector Tangent, Restructuration
Reverse mode Strategy: Store-All, Checkpointing on calls
Applicable on: FORTRAN95, FORTRANT7, and older
Implementation Languages: 90% javA, 10% c

Availability: Java classes for Linux and Windows, or Web server

Internal features: Type-Checking, Read-Written Analysis,

Fwd and Bwd Activity, Adjoint Liveness analysis, TBR, ...
\ J
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TAPENADE on the web

http://www-sop.inria.fr/tropics

FasuICEmoZIIa: s
Flle Fdit Wiew Go Aookmarks Tools  Window Help |
® . & @ W = T = e o
| chei e Fotaa [& Tttpiitape nade.inria fra060/tape nade/resulthtml ~| o= Search| iR
" <%Ilome | wkDookmarks # Internet 4Lookup C4New&Cool
Rotry with tho samo fi = Download difforentiated filo =
Original call graph Diffcrentiated call graph
= ady ® adj_dv
B aubh2 = maxs_dv
= subl = = subl_dv =
* maxzx =l = sub2_dv =
= ®(1) = v * u + © = |
ADJ (u, %, L) MAXX_DVI(z, zd, t, td, =z)
REAL t, u, = u - 0.0
FEAL x(14), y SUBL_DV(u, ud, Mx(i), xd(l
decy. x;: nd-1,nbdirs
! INTECER i, MAMX £di(nd} = tdimd} & = oscdPnd;
FEAL v
MANH -t 4+ x(l) *om o4+ 3K
< ¥ 0.0
+ & €
x + SUBZ DViu, ud, Mx(3), =d(l
= t) nd=1,nbdirs
u td(nd) — td(nd) + =z * xdtnd.,
A1), =z, v)
L g 3 W | | t=t +x(l) %z + 3 *Fu
¥ nd-1,nbdirs
el zdind) = 0.0 -
SURZ (11, A% (3), w, v) =
1 1 1 1 B
undeclared ewternal routine: m |
Return type of mawxx set by implicit rule to INIKUER
Argnment. Lype misme Gl 0 a1l of sobl, REAT(0:6) expecled, receives F
argument type mismatch in call of sub2, REAL(0:12) expected, receives
rool: Please provide a differentiated function for unit mazx For ArgL_
! j
= 7z | Document Dune (0,11 secs) | =

applied to industrial and academic codes:

Aeronautics, Hydrology, Chemistry, Biology, Agronomy...
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TAPENADE Architecture

o Use a general abstract Imperative Language (IL)

o Represent programs as Call Graphs of Flow Graphs

| User Interface  (Java/ XHTML) |

il

| Differentiation Engine (Java)
API
Imperative Language Analyzer  (Java)

! 1
1 other tool !

trees (IL) ‘.’ trees (IL)
8 K Fortran95 printer (Java)
C parser [ ! C printer
T Kparser T T XXX printer” "7 ,' )
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© Validation of AD results
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Validation methods

From a program P that evaluates
F: R — R
X — Y
tangent AD creates
P: XX — Y)Y
and reverse AD creates
P: XY — X
Wow can we validate these programs ?

e Tangent wrt Divided Differences
e Reverse wrt Tangent
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Validation of Tangent wrt Divided Differences

For a given X, set g(h € R) = F(X + h.Xd):

£(0) — lim F(X +exX)— F(X)

Also, from the chain rule:
g0)=FX)xX=Y

So we can approximate Y by running P twice, at points X
and X +e x X
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Validation of Reverse wrt Tangent

For a given X, tangent code returned Y

Initialize Y = Y and run the reverse code, yielding X.
We have :

(X-X) = (F{(X) x V- X)
—thF’(X)xX
=YixY
— (V)

Often called the “dot-product test”
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@ Conclusion
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(DERIVATIVES)

control

inaccur acy

programming

Overloading

flexibility et

efficiency

Source Transfo

-
LI
~a
-
~u

Multi-dir Tangent Reverse
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AD: To Bring Home

o If you want the derivatives of an implemented math
function, you should seriously consider AD.

o Divided Differences aren’t good for you (nor for
others...)

e Especially think of AD when you need higher order
(taylor coefficients) for simulation or gradients
(reverse mode) for sensitivity analysis or optimization.

e Reverse AD is a discrete equivalent of the adjoint
methods from control theory: gives a gradient at
remarkably low cost.
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AD tools: To Bring Home

e AD tools provide you with highly optimized derivative
programs in a matter of minutes.

e AD tools are making progress steadily, but the best
AD will always require end-user intervention.
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