Automatic Differentiation

by Program Transformation

Laurent Hascoet

INRIA Sophia-Antipolis, France
http://www-sop.inria.fr/tropics

Ecole d'été CEA-EDF-INRIA,
Juin 2006

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 1/54

http://www-sop.inria.fr/tropics

Outline

© Introduction

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

So you need derivatives ?...

Given a program P computing a function F

F: R™ — R"
X =Y

we want to build a program that computes the derivatives
of F.

Specifically, we want the derivatives of the dependent,
i.e. some variables in Y,

with respect to the independent,
i.e. some variables in X.

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 3 /54

Divided Differences

Given X, run P twice, and compute Y

g P(X+ eX) — P(X)

€

e Pros: immediate; no thinking required !
o Cons: approximation; what ¢ 7
= Not so cheap after all !
Most applications require inexpensive and accurate
derivatives.
= Let's go for exact, analytic derivatives !

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Automatic Differentiation

Augment program P to make it compute the analytic
derivatives
P: a = bxT(10) + c
The differentiated program must somehow compute:
P’: da = db*T(10) + b*dT(10) + dc

How can we achieve this?
e AD by Overloading

e AD by Program transformation

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 5 /54

AD by overloading

Tools: ADOL-C, ...
Few manipulations required:

e DOUBLE — ADOUBLE ;
e link with provided overloaded +,-,*,. ..

Easy extension to higher-order, Taylor series, intervals,
... but not so easy for gradients.

Anecdote?:
e real — complex

@ X = axb —
(x , dx) = (axb-daxdb , a*xdb+daxb)

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 6 /54

AD by Program transformation

Tools: ADIFOR, TAF, TAPENADE,...

Complex transformation required:

e Build a new program that computes the analytic
derivatives explicitly.
e Requires a compiler-like, sophisticated tool
@ PARSING,
@ ANALYSIS,

© DIFFERENTIATION,
© REGENERATION

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Overloading vs Transformation

Overloading is versatile,

Transformed programs are efficient:

o Global program analyses are possible
...and most welcome !

e The compiler can optimize the generated program.

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Example: Tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v, pl)

REAL v1,v2,v3,v4,pl

v3 = 2.0xvl + 5.0
v4d = v3 + pl*v2/v3
END

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Example: Tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v, pl)

REAL v1,v2,v3,v4,pl

v3d = 2.0*xvld
v3 = 2.0xvl + 5.0
v4d = v3d + plx(v2d*xv3-v2*v3d)/(v3*v3)
v4d = v3 + pl*v2/v3
END

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 9 /54

Example: Tangent differentiation

by Program transformation

[J
SUBROUTINE F0OO0(v1,v1d,v2,v2dyv4,v4d,pl)
REAL vi1d,v2d,v3d,v4d
REAL v1,v2,v3,v4,pl

v3d = 2.0*xvld
v3 = 2.0xvl + 5.0
v4d = v3d + plx(v2d*xv3-v2*v3d)/(v3*v3)
v4d = v3 + pl*v2/v3
END

Just inserts “differentiated instructions” into FOO

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 9 /54

Outline

© Formalization

Laurent Hascoét (INRIA) tomatic Differentiation CEA-EDF-INRIA 2006 10 / 54

Computer Programs as Functions

We see program P as:
f=fof,10---0f
We define for short:
Wo =X and W = fi(Wk_1)
The chain rule yields:
f'(X) = fp’(Wpfl).fI;_l(Wpfz) f(Wo)

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 11 / 54

Tangent mode and Reverse mode

Full f/(X) is expensive and often useless.
We'd better compute useful “projections”.

tangent AD :
Y =f(X)X = fp’(Wp_l).fp’_l(Wp_g) (W) X
reverse AD :
X = f’t(X).V = f{(Wp).... fp’t_l(Wp_z).fp’t(Wp_l).V

Evaluate both from right to left:
= always matrix X vector

Theoretical cost is about 4 times the cost of P

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 12 / 54

Costs of Tangent and Reverse AD

F: R" - R

m inputs

Gradient

n outputd

......D

:
Q
8

o f'(X) ~ costs (m + 17) % P using Divided Differences
o f'(X) costs m* 4 x P using the tangent mode

Good if m<=n
o f'(X) costs n x4 x P using the reverse mode

Good if m >> n (e.g n =1 in optimization

-
Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 13 / 54

Back to the Tangent Mode example

v3 = 2.0xvl + 5.0
v4 = v3 + pl*v2/v3

Elementary Jacobian matrices:

1 1
1 1
/ _
f'(X)=.. 1 5 0
P Prve
0 2 1252 g 1
V3 = 2*V1
vi = nx(l—pr*xwn/vi) + wnx*p/vs

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 14 / 54

Tangent Mode example continued

Tangent AD keeps the structure of P:

v3d = 2.0*xvld

v3 = 2.0%xvl + 5.0

v4dd = v3dx(1-pl*v2/(v3*v3)) + v2d*pl/v3
v4d = v3 + pl*v2/v3

Differentiated instructions
inserted into P's original control flow.,

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Outline

© Reverse AD

Laurent Hascoét (INRIA) tomatic Differentiation CEA-EDF-INRIA 2006 16 / 54

Focus on the Reverse mode

X = f{(X).Y = £1(Wp) ... FH(W, 1).Y

!p;l s
W=y, _
W= (W, 1) * W ;

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 17 / 54

Focus on the Reverse mode
X

— F4(X).Y = £1(W) ... FH(W,).Y

—_
i
= N

<]

)

W,_
L

It

— 5
N - e

stor

)*
efore |,_
* W

—_

(o)
-

7

SRS
==
%\3

]
‘c\'l ®
3

L

M
N—

- e

p—

17 / 54

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Focus on the Reverse mode

X = f{(X).Y = £1(Wp) ... FH(W, 1).Y

~
ey
-

A
A R

e woe

Y ; _
fp(Wp 1) *x W ;
store W,_, before I, » ;
f’t (Wp 2) * W ;

estore Wy before |
A (Wo) * W

)

<I=[D: %I? SIS

Instructions differentiated in the reverse order !

CEA-EDF-INRIA 2006 17 / 54

Laurent Hascoét (INRIA) Automatic Differentiation

Reverse mode: graphical interpretation

g_
_
v
1/
.

Bottleneck: memory usage (“Tape").

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Back to the example

v3 = 2.0xvl + 5.0
v4d = v3 + pl*xv2/v3
Transposed Jacobian matrices:

12 1 0

FH(X) = .. b ! 1 1_p;_
1 0

Vo = Vot Vakpi/vs

Vi = Vi42%Vs

vy = 0

Laurent Hascoét (INRIA)

Automatic Differentiation CEA-EDF-INRIA 2006 19 /

Reverse Mode example continued

Reverse AD inverses the structure of P:

= 2.0%vl + 5.0
v4d = v3 + p1*v2/v3

<
w
|

........................ /*restore previous statex/

v2b = v2b + pl*vdb/v3
v3b = v3b + (1-pl*xv2/(v3*v3))*vib

. V4b . O O /*restore previous statex/
vib = vlib + 2.0*v3b
v3b = 0.0

........... T/*restore previous statex*/

Differentiated instructions inserted
into the inverse of P’'s original control flow:

Laurent Hascoét (INRIA) Automatlc Differentiation CEA-EDF-INRIA 2006 20 / 54

Control Flow Inversion : conditionals

The control flow of the forward sweep
is mirrored in the backward sweep.

if (T(i).1t.0.0) then
T(1i) = S(1)*T(1)
endif

if (...) then
Sb(i) = Sb(i) + T(i)*Tb(i)
To(i) = S(i)*Tb(i)

endif

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 21 / 54

Control Flow Inversion : loops

Reversed loops run in the inverse order

Do i = 1,N

T(i) = 2.5%T(i-1) + 3.5
Enddo

Do i = N,1,-1
Tb(i-1) = Tb(i-1) + 2.5*%Tb(i)
Tb(i) = 0.0

Enddo

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 22 / 54

Outline

@ Memory issues in Reverse AD: Checkpointing

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 23 / 54

Time/Memory tradeoffs for reverse AD

From the definition of the gradient X

X = fF{(X).Y = £{(Wp) ... FI{(W, 1).Y

we get the general shape of reverse AD program:

ba by

I1 I2 I3
\:4_—
— |p
time LI Ipl
—
- |,
hy

= How can we restore previous values?

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

24 / 54

Restoration by recomputation

(RA: Recompute-All)

Restart execultion from a stored initial state:

I | | |

1 2 3 p-2 ‘pl

o >
S
O > I
time < T

I L] L] L] p_l

1
OoO—»

—
o_ 1
—

Memory use low, CPU use high = trade-off needed !

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 25/

Checkpointing (RA strategy)

On selected pieces of the program, possibly nested,
remember the output state to avoid recomputation.

I

o 7 p—

P

_>e
O
O

time

time | © ‘ é:_‘-

Memory and CPU grow like log(size(P))

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Restoration by storage

(SA: Store-All)

Progressively undo the assignments made by the forward
sweep

3 Ip-2 pl1 p

Memory use high, CPU use low = trade-off needed !

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 27 / 54

Checkpointing (SA strategy)

On selected pieces of the program, possibly nested, don't
store intermediate values and re-execute the piece when
values are required.

S
® >
OO OO O O

Memory and CPU grow like log(size(P))

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 28 / 54

Checkpointing on calls (SA)

A classical choice: checkpoint procedure calls !

: original formof X
D . forward sweep for X
@ backward sweep for X
‘ : take snapshot

Memory and CPU grow like log(size(P)) when call tree is
well balanced.

lll-balanced call trees require not checkpointing some calls

Careful analysis keeps the snapshots small.

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 29 / 54

Outline

e Reverse AD for minimization

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 30 / 54

Applications to Minimization

From a simulation program P :
P :(design parameters)y — (cost function)j(~y)

P :(parameters to estimate)y — (misfit function)j(~)

it takes a gradient j’(y) to obtain a minimization program.
Reverse mode AD builds program P that computes j'()

Minimization algorithms (Gradient descent, SQP, ...)
may also use 2nd derivatives. AD can provide them too.

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 31 /54

A color picture (at last !...)

AD-computed gradient of a scalar cost (sonic boom)
with respect to skin geometry:

GRAD

2.3

1.9781
1.6422
- 1.3083

- 097496
064057

0.30683
-0027169
-036108
069484

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

... and after a few optimization steps

Improvement of the sonic boom under the plane after 8
optimization cycles:

(P/ane geometry provided by Dassault Aviation)

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 33 /54

Data Assimilation (OPA 9.0/GYRE)

Influence of T at -300 metres
on heat flux 20 days later
across North section

Kelvin wave

Rossby wave

Vv
Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 34 / 54

Outline

@ Some AD Tools

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 35/ 54

Some AD tools

e NACWARE F95 Compiler: Overloading, tangent,
reverse

e ADOL-C : Overloading+Tape; tangent, reverse,
higher-order

e ADIFOR : Regeneration ; tangent, reverse?, Store-All
+ Checkpointing

e TAPENADE : Regeneration ; tangent, reverse,
Store-All + Checkpointing

e TAF : Regeneration ; tangent, reverse, Recompute-All
+ Checkpointing

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 36 / 54

Some Limitations of AD tools

Fundamental problems:
o Piecewise differentiability
e Convergence of derivatives

e Reverse AD of very large codes

Technical Difficulties:
e Pointers and memory allocation
e Objects

e Inversion or Duplication of random control
(communications, random,...)

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Outline

@ Static Analyses in AD tools

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 38 /54

Activity analysis

Finds out the variables that, at some location

@ do not depend on any independent,
@ or have no dependent depending on them.
Derivative either null or useless = simplifications

orig. prog tangent mode w/activity analysis
cd = a*bd + ad*b cd = a*bd + adx*b
c = axb c = axb c = axb
ad = 0.0
a=>5.0 a=>5.0 a=>5.0
dd = axcd + adxc dd = axcd
d = ax*c d = a*c d = axc
ed=ad/c-axcd/c*x*2
e = a/c e = a/c e = a/c
ed = 0.0 ed = 0.0
e=floor(e) e = floor(e) e = floor(e)

Laurent Hascoét (INRIA)

Automatic Differentiation

CEA-EDF-INRIA 2006

“To Be Recorded” analysis

In reverse AD, not all values must be restored during the backward
sweep.

Variables occurring only in linear expressions do not appear in the
differentiated instructions.
= not To Be Recorded.

CEA-EDF-INRIA 2006 40 / 54

Laurent Hascoét (INRIA) Automatic Differentiation

y =y + EXP(a)
y=y+ ax*x2
a

= 3%z
reverse mode: reverse mode:
naive backward sweep | backward sweep with TBR
CALL POP(a) CALL POP(a)
zb = zb + 3*ab zb = zb + 3%*ab
ab = 0.0 ab = 0.0
CALL POP(y)
ab = ab + 2*axyb ab = ab + 2*axyb
CALL POP(x)
ab = ab + EXP(a)*yb ab = ab + EXP(a)*xb

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Taking small snapshots saves a lot of memory:

C D

-— — ——

\ 4

@
timlq—oﬂ—oﬂ—oﬁ—oq—o‘—:o‘—

Snapshot(C) C Use(C) N (Write(C) U Write(D))

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

© The TAPENADE AD tool

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 43 / 54

A word on TAPENADE

a4 2

- Automatic Differentiation Tool

/. _ Name: TAPENADE version 2.1
= p
4 %‘ Date of birth: January 2002

Ancestors: Odyssée 1.7

Address: wuw.inria.fr/tropics/
tapenade.html

Specialties: AD Reverse, Tangent, Vector Tangent, Restructuration
Reverse mode Strategy: Store-All, Checkpointing on calls
Applicable on: FORTRAN95, FORTRANT7, and older
Implementation Languages: 90% javA, 10% c

Availability: Java classes for Linux and Windows, or Web server

Internal features: Type-Checking, Read-Written Analysis,

Fwd and Bwd Activity, Adjoint Liveness analysis, TBR, ...
\ J

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 44 / 54

TAPENADE on the web

http://www-sop.inria.fr/tropics

FasuICEmoZIIa: s
Flle Fdit Wiew Go Aookmarks Tools Window Help |
® . & @ W = T = e o
| chei e Fotaa [& Tttpiitape nade.inria fra060/tape nade/resulthtml ~| o= Search| iR
" <%Ilome | wkDookmarks # Internet 4Lookup C4New&Cool
Rotry with tho samo fi = Download difforentiated filo =
Original call graph Diffcrentiated call graph
= ady ® adj_dv
B aubh2 = maxs_dv
= subl = = subl_dv =
* maxzx =l = sub2_dv =
= ®(1) = v * u + © = |
ADJ (u, %, L) MAXX_DVI(z, zd, t, td, =z)
REAL t, u, = u - 0.0
FEAL x(14), y SUBL_DV(u, ud, Mx(i), xd(l
decy. x;: nd-1,nbdirs
! INTECER i, MAMX £di(nd} = tdimd} & = oscdPnd;
FEAL v
MANH -t 4+ x(l) *om o4+ 3K
< ¥ 0.0
+ & €
x + SUBZ DViu, ud, Mx(3), =d(l
= t) nd=1,nbdirs
u td(nd) — td(nd) + =z * xdtnd.,
A1), =z, v)
L g 3 W | | t=t +x(l) %z + 3 *Fu
¥ nd-1,nbdirs
el zdind) = 0.0 -
SURZ (11, A% (3), w, v) =
1 1 1 1 B
undeclared ewternal routine: m |
Return type of mawxx set by implicit rule to INIKUER
Argnment. Lype misme Gl 0 a1l of sobl, REAT(0:6) expecled, receives F
argument type mismatch in call of sub2, REAL(0:12) expected, receives
rool: Please provide a differentiated function for unit mazx For ArgL_
! j
= 7z | Document Dune (0,11 secs) | =

applied to industrial and academic codes:

Aeronautics, Hydrology, Chemistry, Biology, Agronomy...

Laurent Hascoét (INRIA)

CEA-EDF-INRIA 21

TAPENADE Architecture

o Use a general abstract Imperative Language (IL)

o Represent programs as Call Graphs of Flow Graphs

| User Interface (Java/ XHTML) |

il

| Differentiation Engine (Java)
API
Imperative Language Analyzer (Java)

! 1
1 other tool !

trees (IL) ‘.’ trees (IL)
8 K Fortran95 printer (Java)
C parser [! C printer
T Kparser T T XXX printer” "7 ,')

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Outline

© Validation of AD results

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Validation methods

From a program P that evaluates
F: R — R
X — Y
tangent AD creates
P: XX — Y)Y
and reverse AD creates
P: XY — X
Wow can we validate these programs ?

e Tangent wrt Divided Differences
e Reverse wrt Tangent

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006

Validation of Tangent wrt Divided Differences

For a given X, set g(h € R) = F(X + h.Xd):

£(0) — lim F(X +exX)— F(X)

Also, from the chain rule:
g0)=FX)xX=Y

So we can approximate Y by running P twice, at points X
and X +e x X

ascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 49 / 54

Validation of Reverse wrt Tangent

For a given X, tangent code returned Y

Initialize Y = Y and run the reverse code, yielding X.
We have :

(X-X) = (F{(X) x V- X)
—thF’(X)xX
=YixY
— (V)

Often called the “dot-product test”

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 50 / 54

Outline

@ Conclusion

Laurent Hascoét (INRIA) tomatic Differentiation CEA-EDF-INRIA 2006

(DERIVATIVES)

control

inaccur acy

programming

Overloading

flexibility et

efficiency

Source Transfo

-
LI
~a
-
~u

Multi-dir Tangent Reverse

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 52 / 54

AD: To Bring Home

o If you want the derivatives of an implemented math
function, you should seriously consider AD.

o Divided Differences aren’t good for you (nor for
others...)

e Especially think of AD when you need higher order
(taylor coefficients) for simulation or gradients
(reverse mode) for sensitivity analysis or optimization.

e Reverse AD is a discrete equivalent of the adjoint
methods from control theory: gives a gradient at
remarkably low cost.

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 53 / 54

AD tools: To Bring Home

e AD tools provide you with highly optimized derivative
programs in a matter of minutes.

e AD tools are making progress steadily, but the best
AD will always require end-user intervention.

Laurent Hascoét (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 54 / 54

	Introduction
	Formalization
	Reverse AD
	Memory issues in Reverse AD: Checkpointing
	Reverse AD for minimization
	Some AD Tools
	Static Analyses in AD tools
	The TAPENADE AD tool
	Validation of AD results
	Conclusion

