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Laurent Hascoët (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 1 / 54

http://www-sop.inria.fr/tropics


Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Memory issues in Reverse AD: Checkpointing

5 Reverse AD for minimization

6 Some AD Tools

7 Static Analyses in AD tools

8 The TAPENADE AD tool

9 Validation of AD results

10 Conclusion
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So you need derivatives ?...

Given a program P computing a function F

F : IRm → IRn

X 7→ Y

we want to build a program that computes the derivatives
of F .

Specifically, we want the derivatives of the dependent,
i.e. some variables in Y ,
with respect to the independent,
i.e. some variables in X .
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Divided Differences

Given Ẋ , run P twice, and compute Ẏ

Ẏ =
P(X + εẊ )− P(X )

ε

Pros: immediate; no thinking required !

Cons: approximation; what ε ?
⇒ Not so cheap after all !

Most applications require inexpensive and accurate
derivatives.

⇒ Let’s go for exact, analytic derivatives !
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Automatic Differentiation

Augment program P to make it compute the analytic
derivatives

P: a = b*T(10) + c

The differentiated program must somehow compute:
P’: da = db*T(10) + b*dT(10) + dc

How can we achieve this?

AD by Overloading

AD by Program transformation
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AD by overloading

Tools: adol-c, ...
Few manipulations required:

DOUBLE → ADOUBLE ;

link with provided overloaded +,-,*,. . .

Easy extension to higher-order, Taylor series, intervals,
. . . but not so easy for gradients.

Anecdote?:

real → complex

x = a*b →
(x , dx) = (a*b-da*db , a*db+da*b)
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AD by Program transformation

Tools: adifor, taf, tapenade,...

Complex transformation required:

Build a new program that computes the analytic
derivatives explicitly.
Requires a compiler-like, sophisticated tool

1 PARSING,
2 ANALYSIS,
3 DIFFERENTIATION,
4 REGENERATION
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Overloading vs Transformation

Overloading is versatile,

Transformed programs are efficient:

Global program analyses are possible
. . . and most welcome !

The compiler can optimize the generated program.
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Example: Tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0*v1 + 5.0

v4 = v3 + p1*v2/v3

END

v3d = 2.0*v1d

v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)

REAL v1d,v2d,v3d,v4d

v1d, v2d, v4d,
•

Just inserts “differentiated instructions” into FOO
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Computer Programs as Functions

We see program P as:

f = fp ◦ fp−1 ◦ · · · ◦ f1

We define for short:

W0 = X and Wk = fk(Wk−1)

The chain rule yields:

f ′(X ) = f ′p(Wp−1).f
′
p−1(Wp−2). . . . .f

′
1(W0)
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Tangent mode and Reverse mode

Full f ′(X ) is expensive and often useless.
We’d better compute useful “projections”.

tangent AD :

Ẏ = f ′(X ).Ẋ = f ′p(Wp−1).f
′
p−1(Wp−2) . . . f ′1(W0).Ẋ

reverse AD :

X = f ′t(X ).Y = f ′t1 (W0). . . . f
′t
p−1(Wp−2).f

′t
p (Wp−1).Y

Evaluate both from right to left:
⇒ always matrix × vector

Theoretical cost is about 4 times the cost of P
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Costs of Tangent and Reverse AD

F : IRm → IRn

( )[
]m inputs

n outputs

Gradient

Tangent

f ′(X ) ∼ costs (m + 1?) ∗ P using Divided Differences
f ′(X ) costs m ∗ 4 ∗ P using the tangent mode
Good if m <= n
f ′(X ) costs n ∗ 4 ∗ P using the reverse mode
Good if m >> n (e.g n = 1 in optimization)
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Back to the Tangent Mode example

v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

Elementary Jacobian matrices:

f ′(X ) = ...


1

1
1

0 p1

v3
1− p1∗v2

v2
3

0




1
1

2 0
1

 ...

v̇3 = 2 ∗ v̇1

v̇4 = v̇3 ∗ (1− p1 ∗ v2/v
2
3 ) + v̇2 ∗ p1/v3
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Tangent Mode example continued

Tangent AD keeps the structure of P :
...

v3d = 2.0*v1d
v3 = 2.0*v1 + 5.0
v4d = v3d*(1-p1*v2/(v3*v3)) + v2d*p1/v3
v4 = v3 + p1*v2/v3

...
Differentiated instructions
inserted into P’s original control flow.
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Focus on the Reverse mode

X = f ′t(X ).Y = f ′t1 (W0) . . . f ′tp (Wp−1).Y

Ip−1 ;
W = Y ;
W = f ′tp (Wp−1) * W ;

Ip−2 ;

Restore Wp−2 before Ip−2 ;
W = f ′tp−1(Wp−2) * W ;

I1 ;
...

...
Restore W0 before I1 ;
W = f ′t1 (W0) * W ;
X = W ;

Instructions differentiated in the reverse order !
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Reverse mode: graphical interpretation

time

I I I I I

I
I

I
I

1 2 3 p-2 p-1

p
p-1

2
1

Bottleneck: memory usage (“Tape”).
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Back to the example

v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

Transposed Jacobian matrices:

f ′t(X ) = ...


1 2

1
0

1




1 0
1 p1

v3

1 1− p1∗v2

v2
3

0

 ...

v 2 = v 2 + v 4 ∗ p1/v3

...
v 1 = v 1 + 2 ∗ v 3

v 3 = 0
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Reverse Mode example continued

Reverse AD inverses the structure of P :

...
v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

...

.........................../*restore previous state*/
v2b = v2b + p1*v4b/v3
v3b = v3b + (1-p1*v2/(v3*v3))*v4b
v4b = 0.0......................../*restore previous state*/
v1b = v1b + 2.0*v3b
v3b = 0.0......................../*restore previous state*/

...

Differentiated instructions inserted
into the inverse of P’s original control flow.
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Control Flow Inversion : conditionals

The control flow of the forward sweep
is mirrored in the backward sweep.

...

if (T(i).lt.0.0) then

T(i) = S(i)*T(i)

endif

...

if (...) then

Sb(i) = Sb(i) + T(i)*Tb(i)

Tb(i) = S(i)*Tb(i)

endif

...
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Control Flow Inversion : loops

Reversed loops run in the inverse order

...

Do i = 1,N

T(i) = 2.5*T(i-1) + 3.5

Enddo

...

Do i = N,1,-1

Tb(i-1) = Tb(i-1) + 2.5*Tb(i)

Tb(i) = 0.0

Enddo
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Time/Memory tradeoffs for reverse AD

From the definition of the gradient X

X = f ′t(X ).Y = f ′t1 (W0) . . . f ′tp (Wp−1).Y

we get the general shape of reverse AD program:

time

I I I I I

I
I

I
I

1 2 3 p-2 p-1

p
p-1

2
1

⇒ How can we restore previous values?

Laurent Hascoët (INRIA) Automatic Differentiation CEA-EDF-INRIA 2006 24 / 54



Restoration by recomputation

(RA: Recompute-All)

Restart execution from a stored initial state:

time

I I I I I

I

I

I

I

I

1 2 3 p-2 p-1

p

p-1

2

1

1

Memory use low, CPU use high ⇒ trade-off needed !
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Checkpointing (RA strategy)

On selected pieces of the program, possibly nested,
remember the output state to avoid recomputation.

time

p{
time

Memory and CPU grow like log(size(P))
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Restoration by storage

(SA: Store-All)

Progressively undo the assignments made by the forward
sweep

time

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

Memory use high, CPU use low ⇒ trade-off needed !
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Checkpointing (SA strategy)

On selected pieces of the program, possibly nested, don’t
store intermediate values and re-execute the piece when
values are required.

time

C{
time

Memory and CPU grow like log(size(P))
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Checkpointing on calls (SA)

A classical choice: checkpoint procedure calls !

A

B

C

D

A A

B

C

D D D B B

C C C

x : original form of x

x : forward sweep for x

x : backward sweep for x

: take snapshot

: use snapshot

Memory and CPU grow like log(size(P)) when call tree is
well balanced.

Ill-balanced call trees require not checkpointing some calls

Careful analysis keeps the snapshots small.
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Applications to Minimization

From a simulation program P :

P :(design parameters)γ 7→ (cost function)j(γ)

P :(parameters to estimate)γ 7→ (misfit function)j(γ)

it takes a gradient j ′(γ) to obtain a minimization program.

Reverse mode AD builds program P that computes j ′(γ)

Minimization algorithms (Gradient descent, SQP, . . . )
may also use 2nd derivatives. AD can provide them too.
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A color picture (at last !...)

AD-computed gradient of a scalar cost (sonic boom)
with respect to skin geometry:
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... and after a few optimization steps

Improvement of the sonic boom under the plane after 8
optimization cycles:

(Plane geometry provided by Dassault Aviation)
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Data Assimilation (OPA 9.0/GYRE)

Influence of T at -300 metres

on heat flux 20 days later

across North section

30o North

15o North

@@@@
-

H
HHHHY

Kelvin wave

HH
HHH

HHY

Rossby wave
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Some AD tools

nagware f95 Compiler: Overloading, tangent,
reverse

adol-c : Overloading+Tape; tangent, reverse,
higher-order

adifor : Regeneration ; tangent, reverse?, Store-All
+ Checkpointing

tapenade : Regeneration ; tangent, reverse,
Store-All + Checkpointing

taf : Regeneration ; tangent, reverse, Recompute-All
+ Checkpointing
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Some Limitations of AD tools

Fundamental problems:

Piecewise differentiability

Convergence of derivatives

Reverse AD of very large codes

Technical Difficulties:

Pointers and memory allocation

Objects

Inversion or Duplication of random control
(communications, random,...)
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Activity analysis

Finds out the variables that, at some location

do not depend on any independent,

or have no dependent depending on them.
Derivative either null or useless ⇒ simplifications

orig. prog tangent mode w/activity analysis

c = a*b

a = 5.0

d = a*c

e = a/c

e=floor(e)

cd = a*bd + ad*b
c = a*b
ad = 0.0
a = 5.0
dd = a*cd + ad*c
d = a*c
ed=ad/c-a*cd/c**2
e = a/c
ed = 0.0
e = floor(e)

cd = a*bd + ad*b
c = a*b

a = 5.0
dd = a*cd
d = a*c

e = a/c
ed = 0.0
e = floor(e)
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“To Be Recorded” analysis

In reverse AD, not all values must be restored during the backward
sweep.

Variables occurring only in linear expressions do not appear in the
differentiated instructions.
⇒ not To Be Recorded.
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y = y + EXP(a)
y = y + a**2
a = 3*z

reverse mode: reverse mode:
naive backward sweep backward sweep with TBR
CALL POP(a)
zb = zb + 3*ab
ab = 0.0
CALL POP(y)
ab = ab + 2*a*yb
CALL POP(x)
ab = ab + EXP(a)*yb

CALL POP(a)
zb = zb + 3*ab
ab = 0.0

ab = ab + 2*a*yb

ab = ab + EXP(a)*xb
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Snapshots

Taking small snapshots saves a lot of memory:

time

C{ D{
Snapshot(C) ⊆ Use(C) ∩ (Write(C) ∪Write(D))
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A word on TAPENADE

Automatic Differentiation Tool

Name: tapenade version 2.1
Date of birth: January 2002
Ancestors: Odyssée 1.7
Address: www.inria.fr/tropics/

tapenade.html

Specialties: AD Reverse, Tangent, Vector Tangent, Restructuration
Reverse mode Strategy: Store-All, Checkpointing on calls
Applicable on: fortran95, fortran77, and older
Implementation Languages: 90% java, 10% c

Availability: Java classes for Linux and Windows, or Web server

Internal features: Type-Checking, Read-Written Analysis,
Fwd and Bwd Activity, Adjoint Liveness analysis, TBR, . . .
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TAPENADE on the web

http://www-sop.inria.fr/tropics

applied to industrial and academic codes:
Aeronautics, Hydrology, Chemistry, Biology, Agronomy...
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TAPENADE Architecture

Use a general abstract Imperative Language (IL)

Represent programs as Call Graphs of Flow Graphs

trees  (IL) trees  (IL)

XXX parser

C parser (C)

Fortran95 parser (C)

Fortran77 parser (C)
Black-box signatures

XXX printer

C printer

Fortran95 printer (Java)

Fortran77 printer (Java)

other tool

Imperative Language Analyzer (Java)

Differentiation Engine (Java)

User Interface (Java / XHTML)

API
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Validation methods

From a program P that evaluates

F : IRm → IRn

X 7→ Y

tangent AD creates

Ṗ : X , Ẋ 7→ Y , Ẏ

and reverse AD creates

P : X , Y 7→ X

Wow can we validate these programs ?

Tangent wrt Divided Differences

Reverse wrt Tangent
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Validation of Tangent wrt Divided Differences

For a given Ẋ , set g(h ∈ IR) = F (X + h.Xd):

g ′(0) = lim
ε→0

F (X + ε×Ẋ )− F (X )

ε

Also, from the chain rule:

g ′(0) = F ′(X )× Ẋ = Ẏ

So we can approximate Ẏ by running P twice, at points X
and X + ε× Ẋ
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Validation of Reverse wrt Tangent

For a given Ẋ , tangent code returned Ẏ

Initialize Y = Ẏ and run the reverse code, yielding X .
We have :

(X · Ẋ ) = (F ′t(X )× Ẏ · Ẋ )

= Ẏ t × F ′(X )× Ẋ

= Ẏ t × Ẏ

= (Ẏ · Ẏ )

Often called the “dot-product test”
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AD: Context

DERIVATIVES

Div. Diff Analytic Diff

Maths AD

Overloading Source Transfo

Multi-dir Tangent Reverse

inaccuracy

programming

control

flexibility

efficiency
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AD: To Bring Home

If you want the derivatives of an implemented math
function, you should seriously consider AD.

Divided Differences aren’t good for you (nor for
others...)

Especially think of AD when you need higher order
(taylor coefficients) for simulation or gradients
(reverse mode) for sensitivity analysis or optimization.

Reverse AD is a discrete equivalent of the adjoint
methods from control theory: gives a gradient at
remarkably low cost.
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AD tools: To Bring Home

AD tools provide you with highly optimized derivative
programs in a matter of minutes.

AD tools are making progress steadily, but the best
AD will always require end-user intervention.
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