Derivative Evaluation by Automatic Differentiation of Programs

Laurent Hascoët
Laurent.Hascoet@sophia.inria.fr http://www-sop.inria.fr/tropics

Ecole d'été CEA-EDF-INRIA, Juillet 2005

Outline

(1) Introduction

(2) Formalization
(3) Reverse AD

4 Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

So you need derivatives ?...

Given a program P computing a function F

$$
\begin{aligned}
F: \quad \boldsymbol{R}^{m} & \rightarrow R^{n} \\
X & \mapsto
\end{aligned}
$$

we want to build a program that computes the derivatives of F.

Specifically, we want the derivatives of the dependent, i.e. some variables in Y, with respect to the independent, i.e. some variables in X.

Which derivatives do you want?

Derivatives come in various shapes and flavors:

- Jacobian Matrices: $J=\left(\frac{\partial y_{j}}{\partial x_{i}}\right)$
- Directional or tangent derivatives, differentials:

$$
d Y=\dot{Y}=J \times d X=J \times \dot{X}
$$

- Gradients:
- When $n=1$ output : gradient $=J=\left(\frac{\partial y}{\partial x_{i}}\right)$
- When $n>1$ outputs: gradient $=\bar{Y}^{t} \times J$
- Higher-order derivative tensors
- Taylor coefficients
- Intervals ?

Divided Differences

Given \dot{X}, run P twice, and compute \dot{Y}

$$
\dot{Y}=\frac{\mathrm{P}(X+\varepsilon \dot{X})-\mathrm{P}(X)}{\varepsilon}
$$

- Pros: immediate; no thinking required !
- Cons: approximation; what ε ?
\Rightarrow Not so cheap after all !
Most applications require inexpensive and accurate derivatives.
\Rightarrow Let's go for exact, analytic derivatives !

Automatic Differentiation

Augment program P to make it compute the analytic derivatives

$$
P: a=b * T(10)+c
$$

The differentiated program must somehow compute:

$$
P^{\prime}: d a=d b * T(10)+b * d T(10)+d c
$$

How can we achieve this?

- AD by Overloading
- AD by Program transformation

AD by overloading

Tools: ADOL-C, ADTAGEO,...
Few manipulations required:

- DOUBLE \rightarrow ADOUBLE ;
- link with provided overloaded $+,-, *, \ldots$

Easy extension to higher-order, Taylor series, intervals, ... but not so easy for gradients.

Anecdote?:

- real \rightarrow complex
- $\mathrm{x}=\mathrm{a} * \mathrm{~b} \rightarrow$

$$
(x, d x)=(a * b-d a * d b, a * d b+d a * b)
$$

AD by Program transformation

Tools: ADIFOR, TAF, TAPENADE,...

Complex transformation required:

- Build a new program that computes the analytic derivatives explicitly.
- Requires a compiler-like, sophisticated tool
(1) PARSING,
(2) ANALYSIS,
© DIFFERENTIATION,
- REGENERATION

Overloading vs Transformation

Overloading is versatile,

Transformed programs are efficient:

- Global program analyses are possible and most welcome!
- The compiler can optimize the generated program.

Example: Tangent differentiation by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1
$\mathrm{v} 3=2.0 * \mathrm{v} 1+5.0$
v4 = v3 + p1*v2/v3
END

Example: Tangent differentiation by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

$$
\begin{aligned}
& \mathrm{v} 3 \mathrm{~d}=2.0 * \mathrm{v} 1 \mathrm{~d} \\
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4 \mathrm{~d}=\mathrm{v} 3 \mathrm{~d}+\mathrm{p} 1 *(\mathrm{v} 2 \mathrm{~d} * \mathrm{v} 3-\mathrm{v} 2 * \mathrm{v} 3 \mathrm{~d}) /(\mathrm{v} 3 * \mathrm{v} 3) \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

END

Example: Tangent differentiation

 by Program transformationSUBROUTINE FOO(v1,v1d,v2,v2d,v4,v4d,p1)
REAL v1d,v2d,v3d,v4d
REAL v1,v2,v3,v4,p1

$$
\begin{aligned}
& \mathrm{v} 3 \mathrm{~d}=2.0 * \mathrm{v} 1 \mathrm{~d} \\
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4 \mathrm{~d}=\mathrm{v} 3 \mathrm{~d}+\mathrm{p} 1 *(\mathrm{v} 2 \mathrm{~d} * \mathrm{v} 3-\mathrm{v} 2 * \mathrm{v} 3 \mathrm{~d}) /(\mathrm{v} 3 * \mathrm{v} 3) \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

END

Just inserts "differentiated instructions" into FOO

Outline

(1) Introduction

(2) Formalization

(3) Reverse AD

4 Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of AD results
(13) Expert-level AD
(14) Conclusion

Dealing with the Programs' Control

Programs contain control: discrete \Rightarrow non-differentiable.

$$
\begin{aligned}
& \text { if }(\mathrm{x}<=1.0) \text { then } \\
& \text { printf ("x too small"); } \\
& \text { else }\{ \\
& \mathrm{y}=1.0 ; \\
& \text { while }(\mathrm{y}<=10.0)\{ \\
& \mathrm{y}=\mathrm{y} * \mathrm{x} ; \\
& \mathrm{x}=\mathrm{x}+0.5 ; \\
& \} \\
& \}
\end{aligned}
$$

Not differentiable for $\mathrm{x}=1.0$ Not differentiable for $\mathrm{x}=2.9221444$

Take control away!

We differentiate programs. But control \Rightarrow non-differentiability!
Freeze the current control:
For one given control, the program becomes a simple list of instructions \Rightarrow differentiable:

$$
\begin{aligned}
& \text { printf("x too small"); } \\
& \mathrm{y}=1.0 ; \mathrm{y}=\mathrm{y} * \mathrm{x} ; \mathrm{x}=\mathrm{x}+0.5 ;
\end{aligned}
$$

AD differentiates these lists of instructions:

Caution: the program is only piecewise differentiable !

Computer Programs as Functions

- Identify sequences of instructions

$$
\left\{I_{1} ; I_{2} ; \ldots I_{p-1} ; I_{p} ;\right\}
$$

with composition of functions.

- Each simple instruction

$$
I_{k}: \quad \mathrm{v} 4=\mathrm{v} 3+\mathrm{v} 2 / \mathrm{v} 3
$$

is a function $f_{k}: R^{q} \rightarrow R^{q}$ where

- The output v4 is built from the input v2 and v3
- All other variable are passed unchanged
- Thus we see P : $\left\{I_{1} ; I_{2} ; \ldots I_{p-1} ; I_{p} ;\right\}$ as

$$
f=f_{p} \circ f_{p-1} \circ \cdots \circ f_{1}
$$

Using the Chain Rule

We see program P as:

$$
f=f_{p} \circ f_{p-1} \circ \cdots \circ f_{1}
$$

We define for short:

$$
W_{0}=X \quad \text { and } \quad W_{k}=f_{k}\left(W_{k-1}\right)
$$

The chain rule yields:

$$
f^{\prime}(X)=f_{p}^{\prime}\left(W_{p-1}\right) \cdot f_{p-1}^{\prime}\left(W_{p-2}\right) \ldots . f_{1}^{\prime}\left(W_{0}\right)
$$

The Jacobian Program

$$
f^{\prime}(X)=f_{p}^{\prime}\left(W_{p-1}\right) \cdot f_{p-1}^{\prime}\left(W_{p-2}\right) \ldots . . f_{1}^{\prime}\left(W_{0}\right)
$$

translates immediately into a program that computes the Jacobian J:

$$
\begin{array}{ll}
I_{1} ; & / * W=f_{1}(W) * / \\
I_{2} ; & / * W=f_{2}(W) * / \\
\cdots & \\
I_{p} ; & / * W=f_{p}(W) * /
\end{array}
$$

The Jacobian Program

$$
f^{\prime}(X)=f_{p}^{\prime}\left(W_{p-1}\right) \cdot f_{p-1}^{\prime}\left(W_{p-2}\right) \ldots . . f_{1}^{\prime}\left(W_{0}\right)
$$

translates immediately into a program that computes the Jacobian J:

$$
\begin{array}{ll}
W=X ; & \\
J=f_{1}^{\prime}(W) ; & \\
I_{1} ; \\
J=f_{2}^{\prime}(W) * J ; & \\
I_{2} ; & \\
\cdots=f_{1}(W) * / \\
J=f_{p}^{\prime}(W) * J ; & \\
I_{p} ; & \\
V=W
\end{array}
$$

Tangent mode and Reverse mode

Full J is expensive and often useless.
We'd better compute useful projections of J.

$$
\begin{aligned}
& \quad \text { tangent AD: } \\
& \dot{Y}=f^{\prime}(X) \cdot \dot{X}=f_{p}^{\prime}\left(W_{p-1}\right) \cdot f_{p-1}^{\prime}\left(W_{p-2}\right) \ldots f_{1}^{\prime}\left(W_{0}\right) \cdot \dot{X} \\
& \quad \text { reverse } \mathrm{AD}: \\
& \bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
\end{aligned}
$$

Evaluate both from right to left:
\Rightarrow always matrix \times vector
Theoretical cost is about 4 times the cost of P

Costs of Tangent and Reverse AD

$F: \quad R^{m} \rightarrow R^{n}$
m inputs

- J costs $m * 4 * \mathrm{P}$ using the tangent mode Good if $m<=n$
- J costs $n * 4 * \mathrm{P}$ using the reverse mode Good if $m \gg n$ (e.g $n=1$ in optimization)

Back to the Tangent Mode example

$$
\begin{aligned}
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

Elementary Jacobian matrices:

$$
\begin{aligned}
f^{\prime}(X) & =\ldots\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
0 & \frac{p_{1}}{v_{3}} & 1-\frac{p_{1} * v_{2}}{v_{3}^{2}} & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
2 & & 0 & \\
& & & 1
\end{array}\right) \\
& \\
\dot{v}_{3} & =2 * \dot{v}_{1} \\
\dot{v}_{4} & =\dot{v}_{3} *\left(1-p_{1} * v_{2} / v_{3}^{2}\right)+\dot{v}_{2} * p_{1} / v_{3}
\end{aligned}
$$

Tangent Mode example continued

Tangent AD keeps the structure of P :

$$
\begin{aligned}
& \mathrm{v} 3 \mathrm{~d}=2.0 * \mathrm{v} 1 \mathrm{~d} \\
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4 \mathrm{~d}=\mathrm{v} 3 \mathrm{~d} *(1-\mathrm{p} 1 * \mathrm{v} 2 /(\mathrm{v} 3 * \mathrm{v} 3))+\mathrm{v} 2 \mathrm{~d} * \mathrm{p} 1 / \mathrm{v} 3 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

Differentiated instructions inserted into P's original control flow.

Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

Focus on the Reverse mode

$$
\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
$$

$$
\begin{aligned}
& \frac{I_{p-1}}{} ; \bar{Y} ; \\
& \frac{W}{W}=f_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ;
\end{aligned}
$$

Focus on the Reverse mode

$\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}$

$$
\begin{aligned}
& I_{p-2} ; \\
& \frac{I_{p-1}}{} ; \bar{Y} ; \\
& \frac{W}{W}=f_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ; \\
& \frac{\text { Restore }}{}+W_{p-2} \text { before } I_{p}=2 \\
& W=f_{p-1}^{\prime t}\left(W_{p-2}\right) * \bar{W}^{2} ;
\end{aligned}
$$

Focus on the Reverse mode

$$
\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
$$

$$
\begin{aligned}
& I_{1} ; \\
& i_{p-2} ; \\
& I_{p-1} ; \bar{Y} ; \\
& \frac{W}{W}=f_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Restore } W_{p-2} \text { before } I_{p-2} \text {; } \\
& W=f_{p-1}^{\prime t}\left(W_{p-2}\right) * W
\end{aligned}
$$

$$
\begin{aligned}
& \text { 民̈store } W_{0} \text { before } I_{1} ; \\
& \begin{array}{l}
W \\
\frac{W}{X}=\frac{f_{1}^{\prime t}}{W}\left(W_{0}\right) * \overleftarrow{W} ;
\end{array}
\end{aligned}
$$

Instructions differentiated in the reverse order !

Reverse mode: graphical interpretation

Bottleneck: memory usage ("Tape").

Back to the example

$$
\begin{aligned}
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

Transposed Jacobian matrices:

$$
\begin{aligned}
f^{\prime t}(X) & =\ldots\left(\begin{array}{cccc}
1 & & 2 & \\
& 1 & & \\
& & 0 & \\
& & & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & & & 0 \\
& 1 & & \frac{p_{1}}{v_{3}} \\
& & 1 & 1-\frac{p_{1} * v_{2}}{v_{3}} \\
& & &
\end{array}\right) \\
\bar{v}_{2} & =\bar{v}_{2}+\bar{v}_{4} * p_{1} / v_{3}
\end{aligned}
$$

$$
\underline{\bar{v}}_{1}=\overline{\bar{v}}_{1}+2 * \bar{v}_{3}
$$

$$
\bar{v}_{3}=0
$$

Reverse Mode example continued

Reverse AD inverses the structure of P :

$$
\begin{aligned}
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \text { v4 = v3 + p1*v2/v3 } \\
& \mathrm{v} 2 \mathrm{~b}=\mathrm{v} 2 \mathrm{~b}+\mathrm{p} 1 * \mathrm{v} 4 \mathrm{~b} / \mathrm{v} 3 \\
& \mathrm{v} 3 \mathrm{~b}=\mathrm{v} 3 \mathrm{~b}+(1-\mathrm{p} 1 * \mathrm{v} 2 /(\mathrm{v} 3 * v 3)) * \mathrm{v} 4 \mathrm{~b} \\
& \mathrm{v} 4 \mathrm{~b}=0.0 \ldots \ldots \ldots \text { restore previous state*/ } \\
& \mathrm{v} 1 \mathrm{~b}=\mathrm{v} 1 \mathrm{~b}+2.0 * \mathrm{v} 3 \mathrm{~b} \\
& \mathrm{v} 3 \mathrm{~b}=0.0 \ldots / * \text { restore previous state*/ }
\end{aligned}
$$

Differentiated instructions inserted into the inverse of P's original control flow.

Control Flow Inversion : conditionals

The control flow of the forward sweep is mirrored in the backward sweep.

$$
\begin{aligned}
& \text { if (T(i).lt.0.0) then } \\
& \mathrm{T}(\mathrm{i})=\mathrm{S}(\mathrm{i}) * \mathrm{~T}(\mathrm{i})
\end{aligned}
$$

endif
if (...) then

$$
\mathrm{Sb}(\mathrm{i})=\mathrm{Sb}(\mathrm{i})+\mathrm{T}(\mathrm{i}) * \mathrm{~Tb}(\mathrm{i})
$$

$\mathrm{Tb}(\mathrm{i})=\mathrm{S}(\mathrm{i}) * \mathrm{~Tb}(\mathrm{i})$

Control Flow Inversion: loops

Reversed loops run in the inverse order

Do i $=1, N$

$$
T(i)=2.5 * T(i-1)+3.5
$$

Enddo

Do $i=N, 1,-1$
$\mathrm{Tb}(\mathrm{i}-1)=\mathrm{Tb}(\mathrm{i}-1)+2.5 * \mathrm{~Tb}(\mathrm{i})$
$\mathrm{Tb}(\mathrm{i})=0.0$
Enddo

Control Flow Inversion : spaghetti

Remember original Control Flow when it merges

Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

Yet another formalization using computation graphs

A sequence of instructions corresponds to a computation graph
DO $\mathbf{i}=\mathbf{1}, \mathbf{n}$
IF $(\mathbf{B}(\mathbf{i})$. gt.0.0) THEN
$\mathbf{r}=\mathbf{A}(\mathbf{i}) * \mathbf{B}(\mathbf{i})+\mathbf{y}$
$\mathbf{X}(\mathbf{i})=\mathbf{3} * \mathbf{r}-\mathbf{B}(\mathbf{i}) * \mathbf{X}(\mathbf{i}-\mathbf{3})$
$\mathbf{y}=\operatorname{SIN}(\mathbf{X}(\mathbf{i}) * \mathbf{r})$
ENDIF
ENDDO

Source program

Computation Graph

Jacobians by Vertex Elimination

Jacobian Computation Graph

Bipartite Jacobian Graph

- Forward vertex elimination \Rightarrow tangent $A D$.
- Reverse vertex elimination \Rightarrow reverse AD.
- Other orders ("cross-country") may be optimal.

Yet another formalization: Lagrange multipliers

$$
\begin{aligned}
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

Can be viewed as constrains. We know that the Lagrangian $\mathcal{L}\left(v_{1}, v_{2}, v_{3}, v_{4}, \overline{v_{3}}, \overline{v_{4}}\right)=$
$v_{4}+\overline{v_{3}} \cdot\left(-v_{3}+2 \cdot v_{1}+5\right)+\overline{v_{4}} \cdot\left(-v_{4}+v_{3}+p_{1} * v_{2} / v_{3}\right)$ is such that:

$$
\overline{v_{1}}=\frac{\partial v_{4}}{\partial v_{1}}=\frac{\partial \mathcal{L}}{\partial v_{1}} \quad \text { and } \quad \overline{v_{2}}=\frac{\partial v_{4}}{\partial v_{2}}=\frac{\partial \mathcal{L}}{\partial v_{2}}
$$

provided

$$
\frac{\partial \mathcal{L}}{\partial v_{3}}=\frac{\partial \mathcal{L}}{\partial v_{4}}=\frac{\partial \mathcal{L}}{\partial \overline{v_{3}}}=\frac{\partial \mathcal{L}}{\partial \overline{v_{4}}}=0
$$

The $\overline{v_{i}}$ are the Lagrange multipliers associated to the instruction that sets v_{i}.

For instance, equation $\frac{\partial \mathcal{L}}{\partial v_{3}}=0$ gives us:

$$
\overline{v_{4}} \cdot\left(1-p_{1} \cdot v_{2} /\left(v_{3} \cdot v_{3}\right)\right)-\overline{v_{3}}=0
$$

To be compared with instruction $\mathrm{v} 3 \mathrm{~b}=\mathrm{v} 3 \mathrm{~b}+(1-\mathrm{p} 1 * \mathrm{v} 2 /(\mathrm{v} 3 * \mathrm{v} 3)) * \mathrm{v} 4 \mathrm{~b}$ (initial v3b is set to 0.0)

Outline

(1) Introduction
(2) Formalization
(3) Reverse AD

4 Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of AD results
(13) Expert-level AD
(14) Conclusion

Time/Memory tradeoffs for reverse AD

From the definition of the gradient \bar{X}

$$
\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
$$

we get the general shape of reverse AD program:

\Rightarrow How can we restore previous values?

Restoration by recomputation (RA: Recompute-All)

Restart execution from a stored initial state:

Memory use low, CPU use high \Rightarrow trade-off needed !

Checkpointing (RA strategy)

On selected pieces of the program, possibly nested, remember the output state to avoid recomputation.

Memory and CPU grow like $\log (\operatorname{size}(\mathrm{P}))$

Restoration by storage (SA: Store-All)

Progressively undo the assignments made by the forward sweep

Memory use high, CPU use low \Rightarrow trade-off needed !

Checkpointing (SA strategy)

On selected pieces of the program, possibly nested, don't store intermediate values and re-execute the piece when values are required.

Memory and CPU grow like $\log (\operatorname{size}(\mathrm{P}))$

Checkpointing on calls (SA)

A classical choice: checkpoint procedure calls !

Memory and CPU grow like $\log (\operatorname{size}(\mathrm{P}))$ when call tree is well balanced.

III-balanced call trees require not checkpointing some calls
Careful analysis keeps the snapshots small.

Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

Multi-directional mode and Jacobians

If you want $\dot{Y}=f^{\prime}(X) \cdot \dot{X}$ for the same X and several \dot{X}

- either run the tangent differentiated program several times, evaluating f several times.
- or run a "Multi-directional" tangent once, evaluating f once.

Same for $\bar{X}=f^{\prime t}(X) . \bar{Y}$ for several \bar{Y}.
In particular, multi-directional tangent or reverse is good to get the full Jacobian.

Sparse Jacobians with seed matrices

When Jacobian is sparse,
use "seed matrices" to propagate fewer \dot{X} or \bar{Y}

- Multi-directional tangent mode:

$$
\left(\begin{array}{llll}
a & & b & \\
& c & & \\
& & d & \\
e & f & & g
\end{array}\right) \times\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& 1 & \\
& & 1
\end{array}\right)=\left(\begin{array}{lll}
a & b & \\
& c & \\
& d & \\
e & f & g
\end{array}\right)
$$

- Multi-directional reverse mode:

$$
\left(\begin{array}{llll}
1 & 1 & & \\
& & 1 & 1
\end{array}\right) \times\left(\begin{array}{llll}
a & & b & \\
& c & & \\
& & d & \\
e & f & & g
\end{array}\right)=\left(\begin{array}{llll}
a & c & b & \\
e & f & d & g
\end{array}\right)
$$

Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

Applications to Optimization

From a simulation program P :

$$
\text { P :(design parameters) } \gamma \mapsto(\text { cost function }) J(\gamma)
$$

it takes a gradient $J^{\prime}(\gamma)$ to obtain an optimization program.

Reverse mode AD builds program $\overline{\mathrm{P}}$ that computes $J^{\prime}(\gamma)$
Optimization algorithms (Gradient descent, SQP, ...) may also use 2nd derivatives. AD can provide them too.

Special case: steady-state

If J is defined on a state W, and W results from an implicit steady state equation

$$
\Psi(W, \gamma)=0
$$

which is solved iteratively: $W_{0}, W_{1}, W_{2}, \ldots, W_{\infty}$
then pure reverse $A D$ of P may prove too expensive (memory...)

Solutions exist:

- reverse AD on the final steady state only.
- Andreas Griewank's"Piggy-backing"
- reverse AD on Ψ alone + hand-coding

A color picture (at last !...)

AD-computed gradient of a scalar cost (sonic boom) with respect to skin geometry:

... and after a few optimization steps

Improvement of the sonic boom under the plane after 8 optimization cycles:

(Plane geometry provided by Dassault Aviation)

Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of AD results
(13) Expert-level AD
(14) Conclusion

Studying Uncertainties

Assume a state W is defined as a function $W(c)$ of uncertain parameters c.
Assume a scalar cost function $J(W)$ is defined on W.

To model the influence of c on $J(W(c))$, numericians want

$$
\frac{d J}{d c} \text { and also } \frac{d^{2} J}{d c^{2}}
$$

Repeated application of AD, Tangent-on-Reverse

Given the program W that computes (solves?) $W(c)$ and the program J that computes the cost $j=J(W)$ we may very well apply AD to $\mathrm{Q}(c)=\mathrm{J}(\mathrm{W}(c))=j$!
Q : c
$\mapsto j$
time : t
$\bar{Q}: \quad c,(\bar{j} \doteqdot 1) \quad \mapsto \bar{c} \doteqdot\left(\frac{\partial j}{\partial c_{i}}\right)_{\forall i}$
time : $4 t$
$\dot{\bar{Q}}: \quad c, \dot{c} \doteqdot e_{k}$
$\mapsto \dot{\bar{c}}_{k} \doteqdot\left(\frac{\partial^{2} j}{\partial c_{i} \partial c_{k}}\right)_{\forall i}$
time :16t
$\dot{\bar{Q}}^{*}: c,(\dot{c}) \doteqdot\left(e_{k}\right)_{\forall k} \mapsto\left(\dot{\bar{c}}_{k}\right)_{\forall k} \doteqdot\left(\frac{\partial^{2} j}{\partial c_{i} \partial c_{k}}\right)_{\forall i, k}$
time :1 6mt

The problem of Implicit Formulations

The cost function $J(W)$ is explicit and relatively simple but the state W is often defined implicitely by

$$
\Psi(W, c)=0
$$

Program W includes an iterative solver!
\Rightarrow Do we really want to differentiate this? (No!...)
\Rightarrow Let's go back up to the math level!

First derivative

Differentiating the implicit state equation wrt c, we get:

$$
\frac{\partial \Psi}{\partial W} \cdot \frac{\partial W}{\partial c}+\frac{\partial \Psi}{\partial c}=0 \Rightarrow \frac{\partial W}{\partial c}=-\left[\frac{\partial \Psi}{\partial W}\right]^{-1} \cdot \frac{\partial \Psi}{\partial c}
$$

So we can write the gradient:

$$
\frac{d J}{d c}=\frac{\partial J}{\partial W} \cdot \frac{\partial W}{\partial c}=-\frac{\partial J}{\partial W} \cdot\left[\frac{\partial \Psi}{\partial W}\right]^{-1} \cdot \frac{\partial \Psi}{\partial c}
$$

For efficiency reasons, it's best to solve for Π first:

$$
\frac{\partial \Psi}{\partial W}^{*} \cdot \Pi=\frac{\partial J}{\partial W}^{*}
$$

How to solve an adjoint equation

Π is often called an adjoint state. Its adjoint equation is of the general shape:

$$
{\frac{\partial \Psi^{*}}{\partial W}}^{*} \cdot \Pi=Y
$$

We can solve it iteratively ("matrix-free resolution"), provided repeated computations, for various X 's, of

$$
{\frac{\partial \Psi^{*}}{\partial W} \cdot X}^{*}
$$

Calling Psi the procedure that computes $\Psi(W, c)$, $\overline{\text { Psi }}_{W}$, reverse AD of Psi wrt W, computes just that!

Second derivatives

Differentiating $\frac{d J}{d c}$ again, we get

$$
\frac{d^{2} J}{d c^{2}}=-\frac{d \Pi}{d c} \cdot \frac{\partial \Psi}{\partial c}-\Pi \cdot \frac{d}{d c}\left(\frac{\partial \Psi}{\partial W}\right)
$$

AD can help computing every term of this formula.
Let's focus for example on $\frac{d \Pi}{d c}$:
\Rightarrow we can play the adjoint trick again!

Solving for $\frac{d \Pi}{d c}$

Again we go back to an implicit equation, now for Π :

$$
{\frac{\partial \Psi^{*}}{\partial W} \cdot \Pi=\frac{\partial J}{\partial W}^{*}, ~}_{\text {and }}
$$

Differentiating it wrt c, we get:

$$
\left[\frac{d}{d c}\left(\frac{\partial \Psi^{*}}{\partial W}\right)\right] \cdot \Pi+{\frac{\partial \Psi^{*}}{\partial W}}^{*} \cdot \frac{d \Pi}{d c}=\frac{d}{d c}\left(\frac{\partial J}{\partial W}\right)
$$

which rewrites as

$$
{\frac{\partial \Psi^{*}}{\partial W}}^{*} \frac{d \Pi}{d c}=\frac{d}{d c}\left(\frac{\partial J}{\partial W}\right)-\frac{d}{d c}\left({\frac{\partial \Psi^{*}}{\partial W}}^{\partial} \cdot \Pi_{c_{0}}\right)
$$

Solving for $\frac{\partial \Pi}{\partial c}$ using AD

Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

Tools for overloading-based AD

If language supports overloading (F95, C++)
Tool provides:

- help for "re-typing" diff variables
- a library of overloaded operations

The reverse mode, or cross-country elimination, cannot be done on the fly. Tools use

- a tape recording of partial derivatives and execution trace
- a special program to compute the derivatives from the tape.

Tools for source-transformation AD

Source transformation requires complex tools, but offers more room for optimization.

parsing	\rightarrow analysis	\rightarrow differentiation
F77	type-checking	tangent
F9X	use/kill	reverse
C	dependencies	multi-directional
MATLAB	activity	\ldots
\ldots	\ldots	

Some AD tools

- NAGWARE F95 Compiler: Overloading, tangent, reverse
- ADOL-C : Overloading+Tape; tangent, reverse, higher-order
- ADIFOR: Regeneration ; tangent, reverse?, Store-All + Checkpointing
- TAPENADE : Regeneration ; tangent, reverse, Store-All + Checkpointing
- TAF : Regeneration ; tangent, reverse, Recompute-All + Checkpointing

Some Limitations of AD tools

Fundamental problems:

- Piecewise differentiability
- Convergence of derivatives
- Reverse AD of very large codes

Technical Difficulties:

- Pointers and memory allocation
- Objects
- Inversion or Duplication of random control (communications, random,...)

Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

Activity analysis

Finds out the variables that, at some location

- do not depend on any independent,
- or have no dependent depending on them.

Derivative either null or useless \Rightarrow simplifications

orig. prog	tangent mode	w/activity analysis
$\begin{aligned} & c=a * b \\ & a=5.0 \\ & d=a * c \\ & e=a / c \\ & e=f l o o r(e) \end{aligned}$	$\begin{aligned} & c d=a * b d+a d * b \\ & c=a * b \\ & a d=0.0 \\ & a=5.0 \\ & d d=a * c d+a d * c \\ & d=a * c \\ & e d=a d / c-a * c d / c * * 2 \\ & e=a / c \\ & e d=0.0 \\ & e=f l o o r(e) \end{aligned}$	$\begin{aligned} & c d=a * b d+a d * b \\ & c=a * b \\ & a=5.0 \\ & d d=a * c d \\ & d=a * c \\ & e=a / c \\ & e d=0.0 \\ & e=f l o o r(e) \end{aligned}$

Adjoint Liveness

The important result of the reverse mode is in \bar{X}. The original result Y is of no interest.

- The last instruction of the program P can be removed from $\overline{\mathrm{P}}$.
- Recursively, other instructions of P can be removed too.

"To Be Restored" analysis

In reverse AD, not all values must be restored during the backward sweep.

Variables occurring only in linear expressions do not appear in the differentiated instructions.
\Rightarrow not To Be Restored.

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}+\operatorname{EXP}(\mathrm{a}) \\
& \mathrm{y}=\mathrm{x}+\mathrm{a} * * 2 \\
& \mathrm{a}=3 * \mathrm{z}
\end{aligned}
$$

reverse mode: naive backward sweep	reverse mode: backward sweep with TBR
```CALL POP(a) zb = zb + 3*ab ab = 0.0 CALL POP (y) ab = ab + 2*a*yb xb}=xb+y yb = 0.0 CALL POP(x) ab}=\textrm{ab}+\operatorname{EXP}(\textrm{a})*\textrm{xb```	$\begin{aligned} & \text { CALL POP }(a) \\ & \mathrm{zb}=\mathrm{zb}+3 * \mathrm{ab} \\ & \mathrm{ab}=0.0 \\ & \mathrm{ab}=\mathrm{ab}+2 * \mathrm{a} * \mathrm{yb} \\ & \mathrm{xb}=\mathrm{xb}+\mathrm{yb} \\ & \mathrm{yb}=0.0 \\ & \mathrm{ab}=\mathrm{ab}+\operatorname{EXP}(\mathrm{a}) * \mathrm{xb} \end{aligned}$

## Aliasing

In reverse AD, it is important to know whether two variables in an instruction are the same.

$a[i]=3 * a[i+1]$	$a[i]=3 * a[i]$	$a[i]=3 * a[j]$
variables   certainly   different	variables   certainly equal	tmp $=3 * a[j]$   $a[i]=t m p$
$a b[i+1]=a b[i+1]$   $+3 * a b[i]$	$a b[i]=3 * a b[i]$	tmpb $=a b[i]$   $a b[i]=0.0$
$a b[i]=0.0$   $a b[j]=a b[j]$   $+3 * t m p b$		

## Snapshots

Taking small snapshots saves a lot of memory:


## Snapshot $(\mathrm{C})=\operatorname{Use}(\overline{\mathrm{C}}) \cap($ Write $(\mathrm{C}) \cup \operatorname{Write}(\overline{\mathrm{D}}))$

## Undecidability

- Analyses are static: operate on source, don't know run-time data.
- Undecidability: no static analysis can answer yes or no for every possible program : there will always be programs on which the analysis will answer "I can't tell"
- $\Rightarrow$ all tools must be ready to take conservative decisions when the analysis is in doubt.
- In practice, tool "laziness" is a far more common cause for undecided analyses and conservative transformations.


## Outline

(1) Introduction
(2) Formalization
(3) Reverse AD

4 Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of AD results
(13) Expert-level AD
(14) Conclusion

## A word on TAPENADE

## Automatic Differentiation Tool

Name: TAPENADE version 2.1
Date of birth: January 2002
Ancestors: Odyssée 1.7
Address: www.inria.fr/tropics/ tapenade.html
Specialties: AD Reverse, Tangent, Vector Tangent, Restructuration Reverse mode Strategy: Store-All, Checkpointing on calls Applicable on: FORTRAN95, FORTRAN77, and older Implementation Languages: $90 \%$ JAVA, $10 \%$ C
Availability: Java classes for Linux and Windows, or Web server
Internal features: Type-Checking, Read-Written Analysis, Fwd and Bwd Activity, Adjoint Liveness analysis, TBR, ...

## TAPENADE on the web

## http://www-sop.inria.fr/tropics


applied to industrial and academic codes: Aeronautics, Hydrology, Chemistry, Biology, Agronomy..

## TAPENADE Architecture

- Use a general abstract Imperative Language (IL)
- Represent programs as Call Graphs of Flow Graphs



## TAPENADE Program Internal Representation

## using Calls-Graphs and Flow-Graphs:



## Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

## Validation methods

From a program P that evaluates

$$
\begin{aligned}
F: \quad R^{m} & \rightarrow R^{n} \\
X & \mapsto
\end{aligned}
$$

tangent AD creates

$$
\dot{\mathrm{P}}: \quad X, \dot{X} \mapsto Y, \dot{Y}
$$

and reverse AD creates

$$
\overline{\mathrm{P}}: \quad X, \bar{Y} \mapsto \bar{X}
$$

Wow can we validate these programs ?

- Tangent wrt Divided Differences
- Reverse wrt Tangent


## Validation of Tangent wrt Divided Differences

For a given $\dot{X}$, set $g(h \in R)=F(X+h . X d)$ :

$$
g^{\prime}(0)=\lim _{\varepsilon \rightarrow 0} \frac{F(X+\varepsilon \times \dot{X})-F(X)}{\varepsilon}
$$

Also, from the chain rule:

$$
g^{\prime}(0)=F^{\prime}(X) \times \dot{X}=\dot{Y}
$$

So we can approximate $\dot{Y}$ by running P twice, at points $X$ and $X+\varepsilon \times \dot{X}$

## Validation of Reverse wrt Tangent

For a given $\dot{X}$, tangent code returned $\dot{Y}$
Initialize $\bar{Y}=\dot{Y}$ and run the reverse code, yielding $\bar{X}$. We have :

$$
\begin{aligned}
(\bar{X} \cdot \dot{X}) & =\left(F^{\prime t}(X) \times \dot{Y} \cdot \dot{X}\right) \\
& =\dot{Y}^{t} \times F^{\prime}(X) \times \dot{X} \\
& =\dot{Y}^{t} \times \dot{Y} \\
& =(\dot{Y} \cdot \dot{Y})
\end{aligned}
$$

Often called the "dot-product test"

## Outline

(1) Introduction
(2) Formalization
(3) Reverse AD

4 Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

## Black-box routines

If the tool permits, give dependency signature (sparsity pattern) of all external procedures $\Rightarrow$ better activity analysis $\Rightarrow$ better diff program.


After AD, provide required hand-coded derivative (FOO_D or FOO_B)

## Linear or auto-adjoint procedures

Make linear or auto-adjoint procedures "black-box".
Since they are their own tangent or reverse derivatives, provide their original form as hand-coded derivative.

In many cases, this is more efficient than pure $A D$ of these procedures

## Independent loops

If a loop has independent iterations, possibly terminated by a sum-reduction, then

Standard:
Improved:

$$
\begin{aligned}
& \begin{array}{c}
\text { doi }=1, \mathrm{~N} \\
\text { body }(i)
\end{array} \\
& \text { end } \\
& \text { doi }=\mathrm{N}, 1 \\
& \overleftarrow{\text { body }(i)} \\
& \text { end }
\end{aligned}
$$

In the Recompute-All context, this reduces the memory consumption by a factor N

## Outline

(1) Introduction
(2) Formalization
(3) Reverse AD
(4) Alternative formalizations
(5) Memory issues in Reverse AD: Checkpointing
(6) Multi-directional
(7) Reverse AD for Optimization
(8) AD for Sensitivity to Uncertainties
(9) Some AD Tools
(10) Static Analyses in AD tools
(11) The TAPENADE AD tool
(12) Validation of $A D$ results
(13) Expert-level AD
(14) Conclusion

## AD: Context



## AD: To Bring Home

- If you want the derivatives of an implemented math function, you should seriously consider AD.
- Divided Differences aren't good for you (nor for others...)
- Especially think of AD when you need higher order (taylor coefficients) for simulation or gradients (reverse mode) for sensitivity analysis or optimization.
- Reverse AD is a discrete equivalent of the adjoint methods from control theory: gives a gradient at remarkably low cost.


## AD tools: To Bring Home

- AD tools provide you with highly optimized derivative programs in a matter of minutes.
- AD tools are making progress steadily, but the best AD will always require end-user intervention.

