
Derivative Evaluation by

Automatic Differentiation of Programs

Laurent Hascoët
Laurent.Hascoet@sophia.inria.fr
http://www-sop.inria.fr/tropics

Ecole d’été CEA-EDF-INRIA,
Juillet 2005

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 1 / 88

http://www-sop.inria.fr/tropics

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 2 / 88

So you need derivatives ?...

Given a program P computing a function F

F : IRm → IRn

X 7→ Y

we want to build a program that computes the derivatives
of F .

Specifically, we want the derivatives of the dependent,
i.e. some variables in Y ,
with respect to the independent,
i.e. some variables in X .

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 3 / 88

Which derivatives do you want?

Derivatives come in various shapes and flavors:

Jacobian Matrices: J =
(

∂yj

∂xi

)
Directional or tangent derivatives, differentials:
dY = Ẏ = J × dX = J × Ẋ
Gradients:

When n = 1 output : gradient = J =
(

∂y
∂xi

)
When n > 1 outputs: gradient = Y

t × J

Higher-order derivative tensors

Taylor coefficients

Intervals ?

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 4 / 88

Divided Differences

Given Ẋ , run P twice, and compute Ẏ

Ẏ =
P(X + εẊ)− P(X)

ε

Pros: immediate; no thinking required !

Cons: approximation; what ε ?
⇒ Not so cheap after all !

Most applications require inexpensive and accurate
derivatives.

⇒ Let’s go for exact, analytic derivatives !

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 5 / 88

Automatic Differentiation

Augment program P to make it compute the analytic
derivatives

P: a = b*T(10) + c

The differentiated program must somehow compute:
P’: da = db*T(10) + b*dT(10) + dc

How can we achieve this?

AD by Overloading

AD by Program transformation

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 6 / 88

AD by overloading

Tools: adol-c, adtageo,...
Few manipulations required:

DOUBLE → ADOUBLE ;

link with provided overloaded +,-,*,. . .

Easy extension to higher-order, Taylor series, intervals,
. . . but not so easy for gradients.

Anecdote?:

real → complex

x = a*b →
(x , dx) = (a*b-da*db , a*db+da*b)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 7 / 88

AD by Program transformation

Tools: adifor, taf, tapenade,...

Complex transformation required:

Build a new program that computes the analytic
derivatives explicitly.
Requires a compiler-like, sophisticated tool

1 PARSING,
2 ANALYSIS,
3 DIFFERENTIATION,
4 REGENERATION

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 8 / 88

Overloading vs Transformation

Overloading is versatile,

Transformed programs are efficient:

Global program analyses are possible and most
welcome !

The compiler can optimize the generated program.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 9 / 88

Example: Tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0*v1 + 5.0

v4 = v3 + p1*v2/v3

END

v3d = 2.0*v1d

v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)

REAL v1d,v2d,v3d,v4d

v1d, v2d, v4d,
•

Just inserts “differentiated instructions” into FOO

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 10 / 88

Example: Tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0*v1 + 5.0

v4 = v3 + p1*v2/v3

END

v3d = 2.0*v1d

v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)

REAL v1d,v2d,v3d,v4d

v1d, v2d, v4d,
•

Just inserts “differentiated instructions” into FOO

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 10 / 88

Example: Tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0*v1 + 5.0

v4 = v3 + p1*v2/v3

END

v3d = 2.0*v1d

v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)

REAL v1d,v2d,v3d,v4d

v1d, v2d, v4d,
•

Just inserts “differentiated instructions” into FOO
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 10 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 11 / 88

Dealing with the Programs’ Control

Programs contain control:
discrete ⇒ non-differentiable.

if (x <= 1.0) then
printf("x too small");

else {
y = 1.0;
while (y <= 10.0) {

y = y*x;
x = x+0.5;

}
}

Not differentiable for x=1.0
Not differentiable for x=2.9221444

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 12 / 88

Take control away!

We differentiate programs. But control ⇒ non-differentiability!

Freeze the current control:
For one given control, the program becomes a simple list of
instructions ⇒ differentiable:

printf("x too small");

y = 1.0; y = y*x; x = x+0.5;

AD differentiates these lists of instructions:

Program

CodeList 1

CodeList 2

CodeList N

Diff(CodeList 1)

Diff(CodeList 2)

Diff(CodeList N)

Diff(Program)

Control 1:

Control N:

Control 1

Control N

Caution: the program is only piecewise differentiable !
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 13 / 88

Computer Programs as Functions

Identify sequences of instructions

{I1; I2; . . . Ip−1; Ip; }

with composition of functions.

Each simple instruction

Ik : v4 = v3 + v2/v3

is a function fk : IRq → IRq where
The output v4 is built from the input v2 and v3
All other variable are passed unchanged

Thus we see P : {I1; I2; . . . Ip−1; Ip; } as

f = fp ◦ fp−1 ◦ · · · ◦ f1

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 14 / 88

Using the Chain Rule

We see program P as:

f = fp ◦ fp−1 ◦ · · · ◦ f1

We define for short:

W0 = X and Wk = fk(Wk−1)

The chain rule yields:

f ′(X) = f ′p(Wp−1).f
′
p−1(Wp−2).f

′
1(W0)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 15 / 88

The Jacobian Program

f ′(X) = f ′p(Wp−1).f
′
p−1(Wp−2).f

′
1(W0)

translates immediately into a program that computes the
Jacobian J:

I1 ; /* W = f1(W) */

I2 ; /* W = f2(W) */
...

Ip ; /* W = fp(W) */

W = X ;
J = f ′1(W) ;

J = f ′2(W) ∗ J ;

J = f ′p(W) ∗ J ;

Y = W ;

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 16 / 88

The Jacobian Program

f ′(X) = f ′p(Wp−1).f
′
p−1(Wp−2).f

′
1(W0)

translates immediately into a program that computes the
Jacobian J:

I1 ; /* W = f1(W) */

I2 ; /* W = f2(W) */
...

Ip ; /* W = fp(W) */

W = X ;
J = f ′1(W) ;

J = f ′2(W) ∗ J ;

J = f ′p(W) ∗ J ;

Y = W ;

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 16 / 88

Tangent mode and Reverse mode

Full J is expensive and often useless.
We’d better compute useful projections of J.

tangent AD :

Ẏ = f ′(X).Ẋ = f ′p(Wp−1).f
′
p−1(Wp−2) . . . f ′1(W0).Ẋ

reverse AD :

X = f ′t(X).Y = f ′t1 (W0). . . . f
′t
p−1(Wp−2).f

′t
p (Wp−1).Y

Evaluate both from right to left:
⇒ always matrix × vector

Theoretical cost is about 4 times the cost of P

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 17 / 88

Costs of Tangent and Reverse AD

F : IRm → IRn

()[
]m inputs

n outputs

Gradient

Tangent

J costs m ∗ 4 ∗ P using the tangent mode
Good if m <= n
J costs n ∗ 4 ∗ P using the reverse mode
Good if m >> n (e.g n = 1 in optimization)
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 18 / 88

Back to the Tangent Mode example

v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

Elementary Jacobian matrices:

f ′(X) = ...

1

1
1

0 p1

v3
1− p1∗v2

v2
3

0

1
1

2 0
1

 ...

v̇3 = 2 ∗ v̇1

v̇4 = v̇3 ∗ (1− p1 ∗ v2/v
2
3) + v̇2 ∗ p1/v3

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 19 / 88

Tangent Mode example continued

Tangent AD keeps the structure of P :
...

v3d = 2.0*v1d
v3 = 2.0*v1 + 5.0
v4d = v3d*(1-p1*v2/(v3*v3)) + v2d*p1/v3
v4 = v3 + p1*v2/v3

...
Differentiated instructions inserted
into P’s original control flow.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 20 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 21 / 88

Focus on the Reverse mode

X = f ′t(X).Y = f ′t1 (W0) . . . f ′tp (Wp−1).Y

Ip−1 ;
W = Y ;
W = f ′tp (Wp−1) * W ;

Ip−2 ;

Restore Wp−2 before Ip−2 ;
W = f ′tp−1(Wp−2) * W ;

I1 ;
...

...
Restore W0 before I1 ;
W = f ′t1 (W0) * W ;
X = W ;

Instructions differentiated in the reverse order !

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 22 / 88

Focus on the Reverse mode

X = f ′t(X).Y = f ′t1 (W0) . . . f ′tp (Wp−1).Y

Ip−1 ;
W = Y ;
W = f ′tp (Wp−1) * W ;

Ip−2 ;

Restore Wp−2 before Ip−2 ;
W = f ′tp−1(Wp−2) * W ;

I1 ;
...

...
Restore W0 before I1 ;
W = f ′t1 (W0) * W ;
X = W ;

Instructions differentiated in the reverse order !

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 22 / 88

Focus on the Reverse mode

X = f ′t(X).Y = f ′t1 (W0) . . . f ′tp (Wp−1).Y

Ip−1 ;
W = Y ;
W = f ′tp (Wp−1) * W ;

Ip−2 ;

Restore Wp−2 before Ip−2 ;
W = f ′tp−1(Wp−2) * W ;

I1 ;
...

...
Restore W0 before I1 ;
W = f ′t1 (W0) * W ;
X = W ;

Instructions differentiated in the reverse order !
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 22 / 88

Reverse mode: graphical interpretation

time

I I I I I

I
I

I
I

1 2 3 p-2 p-1

p
p-1

2
1

Bottleneck: memory usage (“Tape”).

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 23 / 88

Back to the example

v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

Transposed Jacobian matrices:

f ′t(X) = ...

1 2

1
0

1

1 0
1 p1

v3

1 1− p1∗v2

v2
3

0

 ...

v 2 = v 2 + v 4 ∗ p1/v3

...
v 1 = v 1 + 2 ∗ v 3

v 3 = 0
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 24 / 88

Reverse Mode example continued

Reverse AD inverses the structure of P :

...
v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

...

.........................../*restore previous state*/
v2b = v2b + p1*v4b/v3
v3b = v3b + (1-p1*v2/(v3*v3))*v4b
v4b = 0.0......................../*restore previous state*/
v1b = v1b + 2.0*v3b
v3b = 0.0......................../*restore previous state*/

...

Differentiated instructions inserted
into the inverse of P’s original control flow.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 25 / 88

Control Flow Inversion : conditionals

The control flow of the forward sweep
is mirrored in the backward sweep.

...

if (T(i).lt.0.0) then

T(i) = S(i)*T(i)

endif

...

if (...) then

Sb(i) = Sb(i) + T(i)*Tb(i)

Tb(i) = S(i)*Tb(i)

endif

...

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 26 / 88

Control Flow Inversion : loops

Reversed loops run in the inverse order

...

Do i = 1,N

T(i) = 2.5*T(i-1) + 3.5

Enddo

...

Do i = N,1,-1

Tb(i-1) = Tb(i-1) + 2.5*Tb(i)

Tb(i) = 0.0

Enddo
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 27 / 88

Control Flow Inversion : spaghetti

Remember original Control Flow when it merges
B1
t1

B2 B3

B4

B5

PUSH(0) PUSH(1)

PUSH(0) PUSH(1)

B5

B4

B2 B3

B1

POP(test)

POP(test)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 28 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 29 / 88

Yet another formalization using computation

graphs

A sequence of instructions corresponds to a computation
graph

DO i=1,n

IF (B(i).gt.0.0) THEN

r = A(i)*B(i) + y

X(i) = 3*r - B(i)*X(i-3)

y = SIN(X(i)*r)

ENDIF

ENDDO

y A(i) B(i) X(i-3)

*

+ *
3

*

-

*

SIN

r y X(i)

Source program Computation Graph

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 30 / 88

Jacobians by Vertex Elimination

1
B(i)

A(i) X(i-3)
B(i)

1

3

1
-1

X(i)
r

1

1
COS(X(i)*r)

1

y A(i) B(i) X(i-3)

r y X(i)

COS(X(i)*r) *
(X(i)*A(i) + r*(3*A(i) - X(i-3)))

y A(i) B(i) X(i-3)

r y X(i)

Jacobian Computation Graph Bipartite Jacobian Graph

Forward vertex elimination ⇒ tangent AD.

Reverse vertex elimination ⇒ reverse AD.

Other orders (“cross-country”) may be optimal.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 31 / 88

Yet another formalization: Lagrange multipliers

v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

Can be viewed as constrains. We know that the
Lagrangian L(v1, v2, v3, v4, v3, v4) =
v4 + v3.(−v3 + 2.v1 + 5) + v4.(−v4 + v3 + p1 ∗ v2/v3)
is such that:

v1 =
∂v4

∂v1
=

∂L
∂v1

and v2 =
∂v4

∂v2
=

∂L
∂v2

provided
∂L
∂v3

=
∂L
∂v4

=
∂L
∂v3

=
∂L
∂v4

= 0

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 32 / 88

The vi are the Lagrange multipliers associated to the
instruction that sets vi .

For instance, equation ∂L
∂v3

= 0 gives us:

v4.(1− p1.v2/(v3.v3))− v3 = 0

To be compared with instruction
v3b = v3b + (1-p1*v2/(v3*v3))*v4b
(initial v3b is set to 0.0)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 33 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 34 / 88

Time/Memory tradeoffs for reverse AD

From the definition of the gradient X

X = f ′t(X).Y = f ′t1 (W0) . . . f ′tp (Wp−1).Y

we get the general shape of reverse AD program:

time

I I I I I

I
I

I
I

1 2 3 p-2 p-1

p
p-1

2
1

⇒ How can we restore previous values?

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 35 / 88

Restoration by recomputation

(RA: Recompute-All)

Restart execution from a stored initial state:

time

I I I I I

I

I

I

I

I

1 2 3 p-2 p-1

p

p-1

2

1

1

Memory use low, CPU use high ⇒ trade-off needed !

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 36 / 88

Checkpointing (RA strategy)

On selected pieces of the program, possibly nested,
remember the output state to avoid recomputation.

time

p{
time

Memory and CPU grow like log(size(P))
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 37 / 88

Restoration by storage

(SA: Store-All)

Progressively undo the assignments made by the forward
sweep

time

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

Memory use high, CPU use low ⇒ trade-off needed !

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 38 / 88

Checkpointing (SA strategy)

On selected pieces of the program, possibly nested, don’t
store intermediate values and re-execute the piece when
values are required.

time

C{
time

Memory and CPU grow like log(size(P))

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 39 / 88

Checkpointing on calls (SA)

A classical choice: checkpoint procedure calls !

A

B

C

D

A A

B

C

D D D B B

C C C

x : original form of x

x : forward sweep for x

x : backward sweep for x

: take snapshot

: use snapshot

Memory and CPU grow like log(size(P)) when call tree is
well balanced.

Ill-balanced call trees require not checkpointing some calls

Careful analysis keeps the snapshots small.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 40 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 41 / 88

Multi-directional mode and Jacobians

If you want Ẏ = f ′(X).Ẋ for the same X and several Ẋ

either run the tangent differentiated program several
times, evaluating f several times.

or run a “Multi-directional” tangent once, evaluating
f once.

Same for X = f ′t(X).Y for several Y .

In particular, multi-directional tangent or reverse is good
to get the full Jacobian.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 42 / 88

Sparse Jacobians with seed matrices

When Jacobian is sparse,
use “seed matrices” to propagate fewer Ẋ or Y

Multi-directional tangent mode:
a b

c
d

e f g

×

1
1
1

1

 =

a b

c
d

e f g

Multi-directional reverse mode:

(
1 1

1 1

)
×

a b

c
d

e f g

 =

(
a c b
e f d g

)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 43 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 44 / 88

Applications to Optimization

From a simulation program P :

P :(design parameters)γ 7→ (cost function)J(γ)

it takes a gradient J ′(γ) to obtain an optimization
program.

Reverse mode AD builds program P that computes J ′(γ)

Optimization algorithms (Gradient descent, SQP, . . .)
may also use 2nd derivatives. AD can provide them too.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 45 / 88

Special case: steady-state

If J is defined on a state W , and W results from an
implicit steady state equation

Ψ(W , γ) = 0

which is solved iteratively: W0, W1, W2, ..., W∞

then pure reverse AD of P may prove too expensive
(memory...)

Solutions exist:

reverse AD on the final steady state only.
Andreas Griewank’s“Piggy-backing”
reverse AD on Ψ alone + hand-coding
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 46 / 88

A color picture (at last !...)

AD-computed gradient of a scalar cost (sonic boom)
with respect to skin geometry:

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 47 / 88

... and after a few optimization steps

Improvement of the sonic boom under the plane after 8
optimization cycles:

(Plane geometry provided by Dassault Aviation)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 48 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 49 / 88

Studying Uncertainties

Assume a state W is defined as a function W (c)
of uncertain parameters c .
Assume a scalar cost function J(W) is defined on W .

To model the influence of c on J(W (c)), numericians
want

dJ

dc
and also

d2J

dc2

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 50 / 88

Repeated application of AD, Tangent-on-Reverse

Given the program W that computes (solves?) W (c)
and the program J that computes the cost j = J(W)
we may very well apply AD to Q(c) = J(W(c)) = j !

Q : c 7→ j time :t

Q : c , (j + 1) 7→ c +
(

∂j
∂ci

)
∀i

time :4t

Q̇ : c , ċ + ek 7→ ċk +
(

∂2j
∂ci∂ck

)
∀i

time :16t

Q̇
∗

: c , (ċ) + (ek)∀k 7→ (ċk)∀k +
(

∂2j
∂ci∂ck

)
∀i ,k

time :16mt

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 51 / 88

The problem of Implicit Formulations

The cost function J(W) is explicit and relatively simple
but the state W is often defined implicitely by

Ψ(W , c) = 0

Program W includes an iterative solver !

⇒ Do we really want to differentiate this? (No!. . .)

⇒ Let’s go back up to the math level !

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 52 / 88

First derivative

Differentiating the implicit state equation wrt c , we get:

∂Ψ

∂W
· ∂W

∂c
+

∂Ψ

∂c
= 0 ⇒ ∂W

∂c
= −

[
∂Ψ

∂W

]−1

· ∂Ψ

∂c

So we can write the gradient:

dJ

dc
=

∂J

∂W
· ∂W

∂c
= − ∂J

∂W
·
[

∂Ψ

∂W

]−1

· ∂Ψ

∂c

For efficiency reasons, it’s best to solve for Π first:

∂Ψ

∂W

∗
· Π =

∂J

∂W

∗

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 53 / 88

How to solve an adjoint equation

Π is often called an adjoint state. Its adjoint equation is
of the general shape:

∂Ψ

∂W

∗
· Π = Y

We can solve it iteratively (“matrix-free resolution”),
provided repeated computations, for various X ’s, of

∂Ψ

∂W

∗
· X

Calling Psi the procedure that computes Ψ(W , c),
PsiW , reverse AD of Psi wrt W , computes just that !

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 54 / 88

Second derivatives

Differentiating dJ
dc again, we get

d2J

dc2
= −dΠ

dc
· ∂Ψ

∂c
− Π · d

dc

(
∂Ψ

∂W

)
AD can help computing every term of this formula.
Let’s focus for example on dΠ

dc :
⇒ we can play the adjoint trick again!

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 55 / 88

Solving for dΠ
dc

Again we go back to an implicit equation, now for Π:

∂Ψ

∂W

∗
· Π =

∂J

∂W

∗

Differentiating it wrt c , we get:[
d

dc
(
∂Ψ

∂W

∗
)

]
· Π +

∂Ψ

∂W

∗
· dΠ

dc
=

d

dc
(

∂J

∂W

∗
)

which rewrites as

∂Ψ

∂W

∗
· dΠ

dc
=

d

dc

(
∂J

∂W

)
− d

dc

(
∂Ψ

∂W

∗
· Πc0

)
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 56 / 88

Solving for ∂Π
∂c using AD

∂Ψ
∂W

∗ · dΠ
dc = d

dc

(
∂J
∂W

)
− d

dc

(
∂Ψ
∂W

∗ · Πc0

)
PsiW

on Ψ + Πc0

˙PsiW

matrix-free
resolution,

using PsiW

JW

J̇W

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 57 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 58 / 88

Tools for overloading-based AD

If language supports overloading (f95, c++)
Tool provides:

help for “re-typing” diff variables

a library of overloaded operations

The reverse mode, or cross-country elimination, cannot
be done on the fly. Tools use

a tape recording of partial derivatives and execution
trace

a special program to compute the derivatives from
the tape.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 59 / 88

Tools for source-transformation AD

Source transformation requires complex tools, but offers
more room for optimization.

parsing →analysis →differentiation
f77 type-checking tangent
f9x use/kill reverse
c dependencies multi-directional
matlab activity . . .
.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 60 / 88

Some AD tools

nagware f95 Compiler: Overloading, tangent,
reverse

adol-c : Overloading+Tape; tangent, reverse,
higher-order

adifor : Regeneration ; tangent, reverse?, Store-All
+ Checkpointing

tapenade : Regeneration ; tangent, reverse,
Store-All + Checkpointing

taf : Regeneration ; tangent, reverse, Recompute-All
+ Checkpointing

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 61 / 88

Some Limitations of AD tools

Fundamental problems:

Piecewise differentiability

Convergence of derivatives

Reverse AD of very large codes

Technical Difficulties:

Pointers and memory allocation

Objects

Inversion or Duplication of random control
(communications, random,...)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 62 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 63 / 88

Activity analysis

Finds out the variables that, at some location
do not depend on any independent,
or have no dependent depending on them.

Derivative either null or useless ⇒ simplifications

orig. prog tangent mode w/activity analysis

c = a*b

a = 5.0

d = a*c

e = a/c

e=floor(e)

cd = a*bd + ad*b
c = a*b
ad = 0.0
a = 5.0
dd = a*cd + ad*c
d = a*c
ed=ad/c-a*cd/c**2
e = a/c
ed = 0.0
e = floor(e)

cd = a*bd + ad*b
c = a*b

a = 5.0
dd = a*cd
d = a*c

e = a/c
ed = 0.0
e = floor(e)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 64 / 88

Adjoint Liveness

The important result of the reverse mode is in X . The original result
Y is of no interest.

The last instruction of the program P can be removed from P.

Recursively, other instructions of P can be removed too.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 65 / 88

orig. program reverse mode Adjoint Live code

IF(a.GT.0.)THEN

a = LOG(a)

ELSE
a = LOG(c)
CALL SUB(a)

ENDIF
END

IF(a.GT.0.)THEN
CALL PUSH(a)
a = LOG(a)
CALL POP(a)
ab = ab/a
ELSE
a = LOG(c)
CALL PUSH(a)
CALL SUB(a)
CALL POP(a)
CALL SUB_B(a,ab)
cb = cb + ab/c
ab = 0.0
END IF

IF (a.GT.0.) THEN

ab = ab/a
ELSE
a = LOG(c)

CALL SUB_B(a,ab)
cb = cb + ab/c
ab = 0.0
END IF

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 66 / 88

“To Be Restored” analysis

In reverse AD, not all values must be restored during the backward
sweep.

Variables occurring only in linear expressions do not appear in the
differentiated instructions.
⇒ not To Be Restored.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 67 / 88

x = x + EXP(a)
y = x + a**2
a = 3*z

reverse mode: reverse mode:
naive backward sweep backward sweep with TBR

CALL POP(a)
zb = zb + 3*ab
ab = 0.0
CALL POP(y)
ab = ab + 2*a*yb
xb = xb + yb
yb = 0.0
CALL POP(x)
ab = ab + EXP(a)*xb

CALL POP(a)
zb = zb + 3*ab
ab = 0.0
ab = ab + 2*a*yb
xb = xb + yb
yb = 0.0
ab = ab + EXP(a)*xb

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 68 / 88

Aliasing

In reverse AD, it is important to know whether two variables in an
instruction are the same.

a[i] = 3*a[i+1] a[i] = 3*a[i] a[i] = 3*a[j]

variables
certainly
different

variables
certainly equal

? ⇒
tmp = 3*a[j]

a[i] = tmp

ab[i+1]= ab[i+1]
+ 3*ab[i]

ab[i] = 0.0

ab[i] = 3* ab[i] tmpb = ab[i]
ab[i] = 0.0
ab[j] = ab[j]

+ 3*tmpb

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 69 / 88

Snapshots

Taking small snapshots saves a lot of memory:

time

C{ D{
Snapshot(C) = Use(C) ∩ (Write(C) ∪Write(D))

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 70 / 88

Undecidability

Analyses are static: operate on source, don’t know
run-time data.

Undecidability: no static analysis can answer yes or
no for every possible program : there will always be
programs on which the analysis will answer “I can’t
tell”

⇒ all tools must be ready to take conservative
decisions when the analysis is in doubt.

In practice, tool “laziness” is a far more common
cause for undecided analyses and conservative
transformations.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 71 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 72 / 88

A word on TAPENADE

Automatic Differentiation Tool

Name: tapenade version 2.1
Date of birth: January 2002
Ancestors: Odyssée 1.7
Address: www.inria.fr/tropics/

tapenade.html

Specialties: AD Reverse, Tangent, Vector Tangent, Restructuration
Reverse mode Strategy: Store-All, Checkpointing on calls
Applicable on: fortran95, fortran77, and older
Implementation Languages: 90% java, 10% c

Availability: Java classes for Linux and Windows, or Web server

Internal features: Type-Checking, Read-Written Analysis,
Fwd and Bwd Activity, Adjoint Liveness analysis, TBR, . . .

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 73 / 88

TAPENADE on the web

http://www-sop.inria.fr/tropics

applied to industrial and academic codes:
Aeronautics, Hydrology, Chemistry, Biology, Agronomy...

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 74 / 88

TAPENADE Architecture

Use a general abstract Imperative Language (IL)

Represent programs as Call Graphs of Flow Graphs

trees (IL) trees (IL)

XXX parser

C parser (C)

Fortran95 parser (C)

Fortran77 parser (C)
Black-box signatures

XXX printer

C printer

Fortran95 printer (Java)

Fortran77 printer (Java)

other tool

Imperative Language Analyzer (Java)

Differentiation Engine (Java)

User Interface (Java / XHTML)

API

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 75 / 88

TAPENADE Program Internal Representation

using Calls-Graphs and Flow-Graphs:

trees (IL) trees (IL)

XXX parser

C parser (C)

Fortran95 parser (C)

Fortran77 parser (C)

Signatures
of externals

XXX printer

C printer

Fortran95 printer (Java)

Fortran77 printer (Java)

other tool

Imperative Language Analyzer (Java)

Differentiation Engine (Java)

API

Top

A B

C

push

pop

pop

cycle

do exit

do loop

if true if false

Entry

small(A,B)

n = 0
1,100

Header

DO 100 i=1,100

IF (A(i).ge.0)

A(i) = n
n = n + 1
B(i) = 0

A(i) = B(i)

print *,n

Exit

end

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 76 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 77 / 88

Validation methods

From a program P that evaluates

F : IRm → IRn

X 7→ Y

tangent AD creates

Ṗ : X , Ẋ 7→ Y , Ẏ

and reverse AD creates

P : X , Y 7→ X

Wow can we validate these programs ?

Tangent wrt Divided Differences

Reverse wrt Tangent
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 78 / 88

Validation of Tangent wrt Divided Differences

For a given Ẋ , set g(h ∈ IR) = F (X + h.Xd):

g ′(0) = lim
ε→0

F (X + ε×Ẋ)− F (X)

ε

Also, from the chain rule:

g ′(0) = F ′(X)× Ẋ = Ẏ

So we can approximate Ẏ by running P twice, at points X
and X + ε× Ẋ

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 79 / 88

Validation of Reverse wrt Tangent

For a given Ẋ , tangent code returned Ẏ

Initialize Y = Ẏ and run the reverse code, yielding X .
We have :

(X · Ẋ) = (F ′t(X)× Ẏ · Ẋ)

= Ẏ t × F ′(X)× Ẋ

= Ẏ t × Ẏ

= (Ẏ · Ẏ)

Often called the “dot-product test”

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 80 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 81 / 88

Black-box routines

If the tool permits, give dependency signature (sparsity
pattern) of all external procedures ⇒ better activity
analysis ⇒ better diff program.

FOO: ()
Inputs

Outputs

Id

Id

After AD, provide required hand-coded derivative (FOO D
or FOO B)

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 82 / 88

Linear or auto-adjoint procedures

Make linear or auto-adjoint procedures “black-box”.

Since they are their own tangent or reverse derivatives,
provide their original form as hand-coded derivative.

In many cases, this is more efficient than pure AD of
these procedures

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 83 / 88

Independent loops

If a loop has independent iterations, possibly terminated
by a sum-reduction, then

Standard: Improved:

doi = 1,N

body(i)
end

doi = N,1
←−−−−
body(i)

end

⇐⇒
doi = 1,N

body(i)
←−−−−
body(i)

end

In the Recompute-All context, this reduces the memory
consumption by a factor N

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 84 / 88

Outline

1 Introduction

2 Formalization

3 Reverse AD

4 Alternative formalizations

5 Memory issues in Reverse AD: Checkpointing

6 Multi-directional

7 Reverse AD for Optimization

8 AD for Sensitivity to Uncertainties

9 Some AD Tools

10 Static Analyses in AD tools

11 The TAPENADE AD tool

12 Validation of AD results

13 Expert-level AD

14 Conclusion
Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 85 / 88

AD: Context

DERIVATIVES

Div. Diff Analytic Diff

Maths AD

Overloading Source Transfo

Multi-dir Tangent Reverse

inaccuracy

programming

control

flexibility

efficiency

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 86 / 88

AD: To Bring Home

If you want the derivatives of an implemented math
function, you should seriously consider AD.

Divided Differences aren’t good for you (nor for
others...)

Especially think of AD when you need higher order
(taylor coefficients) for simulation or gradients
(reverse mode) for sensitivity analysis or optimization.

Reverse AD is a discrete equivalent of the adjoint
methods from control theory: gives a gradient at
remarkably low cost.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 87 / 88

AD tools: To Bring Home

AD tools provide you with highly optimized derivative
programs in a matter of minutes.

AD tools are making progress steadily, but the best
AD will always require end-user intervention.

Laurent Hascoët () Automatic Differentiation CEA-EDF-INRIA 2005 88 / 88

	Introduction
	Formalization
	Reverse AD
	Alternative formalizations
	Memory issues in Reverse AD: Checkpointing
	Multi-directional
	Reverse AD for Optimization
	AD for Sensitivity to Uncertainties
	Some AD Tools
	Static Analyses in AD tools
	The TAPENADE AD tool
	Validation of AD results
	Expert-level AD
	Conclusion

