Derivative Evaluation by Automatic Differentiation of Programs

Laurent Hascoët Laurent.Hascoet@sophia.inria.fr http://www-sop.inria.fr/tropics

Ecole d'été CEA-EDF-INRIA, Juillet 2005

Outline

Introduction

- Formalization
- 3 Reverse AD
- 4 Alternative formalizations
- 5 Memory issues in Reverse AD: Checkpointing
- Multi-directional
- 7 Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- In Static Analyses in AD tools
- The TAPENADE AD tool
- 2 Validation of AD results
- Expert-level AD
 - Conclusion

Given a program P computing a function F

$$egin{array}{rccccccc} F & : & I\!\!R^m & o & I\!\!R^n \ & X & \mapsto & Y \end{array}$$

we want to build a program that computes the derivatives of F.

Specifically, we want the derivatives of the dependent, i.e. *some* variables in Y, with respect to the independent, i.e. *some* variables in X. Derivatives come in various shapes and flavors:

- Jacobian Matrices: $J = \left(\frac{\partial y_j}{\partial x_i}\right)$
- Directional or tangent derivatives, differentials: $dY = \dot{Y} = J \times dX = J \times \dot{X}$
- Gradients:
 - When n = 1 output : gradient $= J = \left(\frac{\partial y}{\partial x_i}\right)$
 - When n > 1 outputs: gradient = $\overline{Y}^t \times J$
- Higher-order derivative tensors
- Taylor coefficients
- Intervals ?

Given \dot{X} , run P twice, and compute \dot{Y}

$$\dot{Y} = rac{{ extsf{P}}(X + arepsilon\dot{X}) - { extsf{P}}(X)}{arepsilon}$$

- Pros: immediate; no thinking required !
- Cons: approximation; what ε ?
 - \Rightarrow Not so cheap after all !

Most applications require inexpensive and accurate derivatives.

 \Rightarrow Let's go for exact, analytic derivatives !

Augment program P to make it compute the analytic derivatives

$$P: a = b*T(10) + c$$

The differentiated program must somehow compute:

P': da = db*T(10) + b*dT(10) + dc

How can we achieve this?

- AD by Overloading
- AD by Program transformation

Tools: ADOL-C, ADTAGEO,... Few manipulations required:

- \bullet DOUBLE \rightarrow ADOUBLE ;
- link with provided overloaded +,-,*,...
- Easy extension to higher-order, Taylor series, intervals, ... but not so easy for gradients.

Anecdote?:

 $\bullet \ real \to complex$

•
$$x = a * b \rightarrow$$

(x , dx) = (a*b-da*db , a*db+da*b)

Tools: ADIFOR, TAF, TAPENADE,...

Complex transformation required:

- Build a new program that computes the analytic derivatives explicitly.
- Requires a compiler-like, sophisticated tool
 - PARSING,
 - 2 ANALYSIS,
 - OIFFERENTIATION,
 - REGENERATION

Overloading is versatile,

Transformed programs are efficient:

- Global program analyses are possible and most welcome !
- The compiler can optimize the generated program.

Example: Tangent differentiation by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0 * v1 + 5.0

v4 = v3 + p1*v2/v3 END

Example: Tangent differentiation by Program transformation

- SUBROUTINE FOO(v1, v2, v4, p1)
 - REAL v1,v2,v3,v4,p1
 - v3d = 2.0*v1d
 - v3 = 2.0 * v1 + 5.0
 - v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)
 - v4 = v3 + p1*v2/v3

END

▲ ■ ▶ ▲ ■ ▶ ▲ ■

Example: Tangent differentiation by Program transformation

SUBROUTINE FOO(v1, v1d, v2, v2d, v4, v4d, p1)REAL v1d, v2d, v3d, v4d REAL v1,v2,v3,v4,p1 v3d = 2.0*v1d $v_3 = 2.0 * v_1 + 5.0$ v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)v4 = v3 + p1*v2/v3END

Just inserts "differentiated instructions" into FOO => = ->~

Outline

ntroduction

- Formalization
- Reverse AD
- 4 Alternative formalizations
- 5 Memory issues in Reverse AD: Checkpointing
- Multi-directional
- 7 Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- Static Analyses in AD tools
- The TAPENADE AD tool
- Validation of AD results
- 13 Expert-level AD
 - Conclusion

Dealing with the Programs' Control

```
Programs contain control:
discrete \Rightarrow non-differentiable.
      if (x \le 1.0) then
         printf("x too small");
      else {
         y = 1.0;
         while (y <= 10.0) {
             y = y * x;
             x = x+0.5;
```

Not differentiable for x=1.0 Not differentiable for x=2.9221444

Take control away!

We differentiate programs. But control \Rightarrow non-differentiability!

Freeze the current control:

For one given control, the program becomes a simple list of instructions \Rightarrow differentiable:

printf("x too small"); y = 1.0; y = y*x; x = x+0.5;

AD differentiates these lists of instructions:

Caution: the program is only piecewise differentiable !

Computer Programs as Functions

• Identify sequences of instructions

$$\{I_1; I_2; \dots I_{p-1}; I_p; \}$$

with composition of functions.

• Each simple instruction

$$I_k$$
: v4 = v3 + v2/v3

is a function $f_k : \mathbf{R}^q \to \mathbf{R}^q$ where

- The output v4 is built from the input v2 and v3
- All other variable are passed unchanged
- Thus we see $P : \{I_1; I_2; ..., I_{p-1}; I_p; \}$ as

$$f = f_p \circ f_{p-1} \circ \cdots \circ f_1$$

We see program P as:

$$f = f_p \circ f_{p-1} \circ \cdots \circ f_1$$

We define for short:

$$W_0 = X$$
 and $W_k = f_k(W_{k-1})$

The chain rule yields:

$$f'(X) = f'_{\rho}(W_{\rho-1}).f'_{\rho-1}(W_{\rho-2})....f'_1(W_0)$$

$$f'(X) = f'_{p}(W_{p-1}).f'_{p-1}(W_{p-2})....f'_{1}(W_{0})$$

translates immediately into a program that computes the Jacobian J:

$$I_
ho$$
 ; /* $W=f_
ho(W)$ */

$$f'(X) = f'_{p}(W_{p-1}).f'_{p-1}(W_{p-2})....f'_{1}(W_{0})$$

translates immediately into a program that computes the Jacobian J:

Full J is expensive and often useless. We'd better compute useful projections of J.

tangent AD : $\dot{Y} = f'(X).\dot{X} = f'_{p}(W_{p-1}).f'_{p-1}(W_{p-2})...f'_{1}(W_{0}).\dot{X}$ reverse AD : $\overline{X} = f'^{t}(X).\overline{Y} = f'^{t}_{1}(W_{0})...f'^{t}_{p-1}(W_{p-2}).f'^{t}_{p}(W_{p-1}).\overline{Y}$

Evaluate both from right to left: \Rightarrow always matrix \times vector

Theoretical cost is about 4 times the cost of P

Costs of Tangent and Reverse AD

- J costs m * 4 * P using the tangent mode
 Good if m <= n
- J costs n * 4 * P using the reverse mode
 Good if m >> n (e.g n = 1 in optimization)

Laurent Hascoët ()

Automatic Differentiation

Back to the Tangent Mode example

$$v3 = 2.0*v1 + 5.0$$

 $v4 = v3 + p1*v2/v3$

Elementary Jacobian matrices:

$$f'(X) = \dots \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \\ 0 & \frac{p_1}{v_3} & 1 - \frac{p_1 * v_2}{v_3^2} & 0 \end{pmatrix} \begin{pmatrix} 1 & & \\ & 1 & \\ 2 & 0 & \\ & & 1 \end{pmatrix} \dots$$
$$\dot{v}_3 = 2 * \dot{v}_1$$
$$\dot{v}_4 = \dot{v}_3 * (1 - p_1 * v_2/v_3^2) + \dot{v}_2 * p_1/v_3$$

Tangent AD keeps the structure of P:

v3d = 2.0*v1d v3 = 2.0*v1 + 5.0 v4d = v3d*(1-p1*v2/(v3*v3)) + v2d*p1/v3 v4 = v3 + p1*v2/v3

Differentiated instructions inserted into P's original control flow.

Outline

- Introduction
- Formalization
- 3 Reverse AD
- Alternative formalizations
- 5 Memory issues in Reverse AD: Checkpointing
- Multi-directional
- 7 Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- Static Analyses in AD tools
- The TAPENADE AD tool
- Validation of AD results
- 13 Expert-level AD
 - Conclusion

Focus on the Reverse mode

$$\overline{X} = f'^{t}(X).\overline{Y} = f_{1}'^{t}(W_{0})...f_{p}'^{t}(W_{p-1}).\overline{Y}$$

$$\begin{array}{l} \frac{I_{p-1}}{W} \ ;\\ \overline{W} \ = \ \overline{Y} \ ;\\ \overline{W} \ = \ f_p^{\prime t} (W_{p-1}) \ * \ \overline{W} \ ; \end{array}$$

4

Focus on the Reverse mode

$$\overline{X} = f'^{t}(X).\overline{Y} = f_{1}'^{t}(W_{0})...f_{p}'^{t}(W_{p-1}).\overline{Y}$$

Laurent Hascoët ()

CEA-EDF-INRIA 2005 22 / 88

-2

Focus on the Reverse mode

$$\overline{X} = f'^{t}(X).\overline{Y} = f_{1}'^{t}(W_{0})...f_{p}'^{t}(W_{p-1}).\overline{Y}$$

$$I_{1};$$

$$I_{p-2};$$

$$I_{p-1};$$

$$\overline{W} = \overline{Y};$$

$$W = f_{p}'^{t}(W_{p-1}) * \overline{W};$$

$$Restore W_{p-2} before I_{p-2};$$

$$W = f_{p-1}'^{t}(W_{p-2}) * W;$$

$$\vdots$$

$$\frac{Restore W_{0} before I_{1};}{W} = f_{1}'^{t}(W_{0}) * W;$$

$$\overline{X} = W;$$

Instructions differentiated in the reverse order !

Laurent Hascoët ()

22 / 88

Reverse mode: graphical interpretation

Bottleneck: memory usage ("Tape").

Back to the example

v3 = 2.0*v1 + 5.0v4 = v3 + p1*v2/v3Transposed Jacobian matrices:

$$f'^{t}(X) = \dots \begin{pmatrix} 1 & 2 \\ 1 \\ & 0 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ & 1 & \frac{p_{1}}{v_{3}} \\ & & 1 & 1 - \frac{p_{1} * v_{2}}{v_{3}^{2}} \\ & & & 0 \end{pmatrix} \cdots$$

$$\overline{v}_{2} = \overline{v}_{2} + \overline{v}_{4} * p_{1}/v_{3}$$

$$\overline{v}_{1} = \overline{v}_{1} + 2 * \overline{v}_{3}$$

$$\overline{v}_{3} = 0$$

$$(1 - 1)^{t} = \frac{p_{1}}{v_{3}} + \frac{p_{1}}{v_{3}} = 0$$

$$(24 - 26)^{t} = 1 + 2 + \frac{p_{1}}{v_{3}} = 0$$

Reverse Mode example continued

Reverse AD inverses the structure of *P*:

```
v3 = 2.0 * v1 + 5.0
v4 = v3 + p1*v2/v3
v2b = v2b + p1*v4b/v3
 v3b = v3b + (1-p1*v2/(v3*v3))*v4b
v4b = 0.0
v1b = v1b + 2.0*v3b
v3b = 0.0 /*restore previous state*/
```

Differentiated instructions inserted into the inverse of P's original control flow

Laurent Hascoët ()

Automatic Differentiation

CEA-EDF-INRIA 2005

25 / 88

Control Flow Inversion : conditionals

The control flow of the forward sweep is mirrored in the backward sweep.

```
if (T(i).lt.0.0) then
  T(i) = S(i)*T(i)
endif
```

```
...
if (...) then
    Sb(i) = Sb(i) + T(i)*Tb(i)
    Tb(i) = S(i)*Tb(i)
```

Control Flow Inversion : loops

Reversed loops run in the inverse order

```
Do i = 1, N
  T(i) = 2.5 * T(i-1) + 3.5
Enddo
Do i = N, 1, -1
  Tb(i-1) = Tb(i-1) + 2.5*Tb(i)
  Tb(i) = 0.0
```

Laurent Hascoët ()

Enddo

CEA-EDF-INRIA 2005 27 / 88

Control Flow Inversion : spaghetti

Remember original Control Flow when it merges

Outline

- 1 In
 - Introduction
 - Formalization
- 3 Reverse AD

Alternative formalizations

- Memory issues in Reverse AD: Checkpointing
- Multi-directional
- 7 Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- Static Analyses in AD tools
- The TAPENADE AD tool
- Validation of AD results
- Expert-level AD
 - Conclusion

Yet another formalization using computation graphs

A sequence of instructions corresponds to a computation graph

DO i=1,n IF (B(i).gt.0.0) THEN r = A(i)*B(i) + yX(i) = 3*r - B(i)*X(i-3)y = SIN(X(i)*r)ENDIF ENDDO

Computation Graph

Source program

Jacobians by Vertex Elimination

Jacobian Computation Graph

Bipartite Jacobian Graph

- Forward vertex elimination \Rightarrow tangent AD.
- Reverse vertex elimination \Rightarrow reverse AD.
- Other orders ("cross-country") may be optimal.
Yet another formalization: Lagrange multipliers

$$\begin{array}{l} v3 = 2.0*v1 + 5.0\\ v4 = v3 + p1*v2/v3\\ \end{array}$$
Can be viewed as constrains. We know that the
Lagrangian $\mathcal{L}(v_1, v_2, v_3, v_4, \overline{v_3}, \overline{v_4}) =\\ v_4 + \overline{v_3}.(-v_3 + 2.v_1 + 5) + \overline{v_4}.(-v_4 + v_3 + p_1 * v_2/v_3)\\ \mathrm{is \ such \ that:} \end{array}$

$$\overline{v_1} = \frac{\partial v_4}{\partial v_1} = \frac{\partial \mathcal{L}}{\partial v_1}$$
 and $\overline{v_2} = \frac{\partial v_4}{\partial v_2} = \frac{\partial \mathcal{L}}{\partial v_2}$

provided

$$\frac{\partial \mathcal{L}}{\partial v_3} = \frac{\partial \mathcal{L}}{\partial v_4} = \frac{\partial \mathcal{L}}{\partial \overline{v_3}} = \frac{\partial \mathcal{L}}{\partial \overline{v_4}} = 0$$

32 / 88

The $\overline{v_i}$ are the Lagrange multipliers associated to the instruction that sets v_i .

For instance, equation $\frac{\partial \mathcal{L}}{\partial v_3} = 0$ gives us: $\overline{v_4} \cdot (1 - p_1 \cdot v_2 / (v_3 \cdot v_3)) - \overline{v_3} = 0$

To be compared with instruction v3b = v3b + (1-p1*v2/(v3*v3))*v4b (initial v3b is set to 0.0)

Outline

- 1 Introduct
 - Formalization
- 3 Reverse AD
- 4 Alternative formalizations
- Memory issues in Reverse AD: Checkpointing
- Multi-directional
- 7 Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- Static Analyses in AD tools
- The TAPENADE AD tool
- 2 Validation of AD results
- Expert-level AD
 - Conclusion

From the definition of the gradient \overline{X}

$$\overline{X} = f'^t(X).\overline{Y} = f_1'^t(W_0)\dots f_p'^t(W_{p-1}).\overline{Y}$$

 \Rightarrow How can we restore previous values?

Restoration by recomputation (RA: Recompute-All)

Memory use low, CPU use high \Rightarrow trade-off needed !

Checkpointing (RA strategy)

On selected pieces of the program, possibly nested, remember the output state to avoid recomputation.

Memory and CPU grow like log(size(P))

Restoration by storage (SA: Store-All)

Progressively undo the assignments made by the forward sweep

Memory use high, CPU use low \Rightarrow trade-off needed !

On selected pieces of the program, possibly nested, don't store intermediate values and re-execute the piece when values are required.

Memory and CPU grow like *log(size(P))*

Checkpointing on calls (SA)

A classical choice: checkpoint procedure calls !

Memory and CPU grow like *log(size(P))* when call tree is well balanced.

Ill-balanced call trees require not checkpointing some calls

Careful analysis keeps the snapshots small.

Outline

- 1 Introdu
 - Formalization
- 3 Reverse AD
- 4 Alternative formalizations
- 5 Memory issues in Reverse AD: Checkpointing
- Multi-directional
- Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- In Static Analyses in AD tools
- The TAPENADE AD tool
- 2 Validation of AD results
- Expert-level AD
 - Conclusion

Multi-directional mode and Jacobians

If you want $\dot{Y} = f'(X).\dot{X}$ for the same X and several \dot{X}

- either run the tangent differentiated program several times, evaluating *f* several times.
- or run a "Multi-directional" tangent once, evaluating *f* once.

Same for
$$\overline{X} = f'^t(X).\overline{Y}$$
 for several \overline{Y} .

In particular, multi-directional tangent or reverse is good to get the full Jacobian.

Sparse Jacobians with seed matrices

When Jacobian is sparse,

use "seed matrices" to propagate fewer X or \overline{Y}

• Multi-directional tangent mode:

$$\left(\begin{array}{ccc}a&b\\c&\\&d\\e&f&g\end{array}\right)\times\left(\begin{array}{ccc}1&\\&1\\&1\\&&1\end{array}\right)=\left(\begin{array}{ccc}a&b\\c&\\&d\\e&f&g\end{array}\right)$$

• Multi-directional reverse mode:

$$\left(\begin{array}{rrrr}1&1\\&&1&1\end{array}\right)\times\left(\begin{array}{rrrr}a&&b\\&c&\\&&d\\&&d\\e&f&g\end{array}\right)=\left(\begin{array}{rrrr}a&c&b\\e&f&d&g\end{array}\right)$$

Outline

- Formalization
- 3 Reverse AD
- 4 Alternative formalizations
- 5 Memory issues in Reverse AD: Checkpointing
- Multi-directional
- Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- Static Analyses in AD tools
- The TAPENADE AD tool
- 2 Validation of AD results
- Expert-level AD
 - Conclusion

From a simulation program P :

P : (design parameters) $\gamma \mapsto (cost \ function)J(\gamma)$

it takes a gradient $J'(\gamma)$ to obtain an optimization program.

Reverse mode AD builds program \overline{P} that computes $J'(\gamma)$

Optimization algorithms (Gradient descent, SQP, ...) may also use 2nd derivatives. AD can provide them too.

Special case: steady-state

If J is defined on a state W, and W results from an implicit steady state equation

$$\Psi(W,\gamma)=0$$

which is solved iteratively: $W_0, W_1, W_2, ..., W_\infty$

then pure reverse AD of P may prove too expensive (memory...)

Solutions exist:

- reverse AD on the final steady state only.
- Andreas Griewank's" Piggy-backing"

• reverse AD on Ψ alone + hand-coding

Laurent Hascoët ()

46 / 88

A color picture (at last !...)

AD-computed gradient of a scalar cost (sonic boom) with respect to skin geometry:

Improvement of the sonic boom under the plane after 8 optimization cycles:

(Plane geometry provided by Dassault Aviation)

48 / 88

Outline

- 1 Introd
 - Farmalization
- 3 Reverse AD
- 4 Alternative formalizations
- 5 Memory issues in Reverse AD: Checkpointing
- Multi-directional
- 7 Reverse AD for Optimization
- 8 AD for Sensitivity to Uncertainties
- Some AD Tools
- Static Analyses in AD tools
- The TAPENADE AD tool
- 2 Validation of AD results
- 13 Expert-level AD
 - Conclusion

Assume a state W is defined as a function W(c)of uncertain parameters c. Assume a scalar cost function J(W) is defined on W.

To model the influence of c on J(W(c)), numericians want

$$\frac{dJ}{dc}$$
 and also $\frac{d^2J}{dc^2}$

Repeated application of AD, Tangent-on-Reverse

Given the program W that computes (solves?) W(c)and the program J that computes the cost j = J(W)we may very well apply AD to Q(c) = J(W(c)) = j!

$$\mathbf{Q}: \quad c \qquad \qquad \mapsto \quad j \qquad \qquad time: t$$

$$\overline{\mathsf{Q}}: \quad c, (\overline{j} \doteq 1) \qquad \mapsto \ \overline{c} \doteq \left(\frac{\partial j}{\partial c_i}\right)_{\forall i} \qquad time : 4t$$

$$\frac{\dot{\overline{\mathsf{Q}}}}{\ddot{\mathsf{Q}}}: \quad c, \dot{c} \doteq e_k \qquad \mapsto \quad \dot{\overline{c}}_k \doteq \left(\frac{\partial^2 j}{\partial c_i \partial c_k}\right)_{\forall j} \qquad time :16t$$

$$\dot{\overline{\mathsf{Q}}}^*: c, (\dot{c}) \doteqdot (e_k)_{\forall k} \mapsto (\dot{\overline{c}}_k)_{\forall k} \doteqdot \left(\frac{\partial^2 j}{\partial c_i \partial c_k}\right)_{\forall i, k}$$
 time :16m

51 / 88

The cost function J(W) is explicit and relatively simple but the state W is often defined implicitly by

 $\Psi(W,c)=0$

Program W includes an iterative solver !

 \Rightarrow Do we really want to differentiate this? (*No!...*)

 \Rightarrow Let's go back up to the math level !

First derivative

Differentiating the implicit state equation wrt c, we get:

$$\frac{\partial \Psi}{\partial W} \cdot \frac{\partial W}{\partial c} + \frac{\partial \Psi}{\partial c} = 0 \implies \frac{\partial W}{\partial c} = -\left[\frac{\partial \Psi}{\partial W}\right]^{-1} \cdot \frac{\partial \Psi}{\partial c}$$

So we can write the gradient:

$$\frac{dJ}{dc} = \frac{\partial J}{\partial W} \cdot \frac{\partial W}{\partial c} = -\frac{\partial J}{\partial W} \cdot \left[\frac{\partial \Psi}{\partial W}\right]^{-1} \cdot \frac{\partial \Psi}{\partial c}$$

For efficiency reasons, it's best to solve for Π first:

$$\frac{\partial \Psi}{\partial W}^* \cdot \Pi = \frac{\partial J}{\partial W}^*$$

 Π is often called an adjoint state. Its adjoint equation is of the general shape:

$$\frac{\partial \Psi}{\partial W}^* \cdot \Pi = Y$$

We can solve it iteratively ("matrix-free resolution"), provided repeated computations, for various X's, of

$$\frac{\partial \Psi}{\partial W}^* \cdot X$$

Calling Psi the procedure that computes $\Psi(W, c)$, \overline{Psi}_W , reverse AD of Psi wrt W, computes just that !

Differentiating $\frac{dJ}{dc}$ again, we get

$$\frac{d^2 J}{dc^2} = -\frac{d\Pi}{dc} \cdot \frac{\partial \Psi}{\partial c} - \Pi \cdot \frac{d}{dc} \left(\frac{\partial \Psi}{\partial W} \right)$$

AD can help computing every term of this formula. Let's focus for example on $\frac{d\Pi}{dc}$: \Rightarrow we can play the adjoint trick again!

Solving for $\frac{d\Pi}{dc}$

Again we go back to an implicit equation, now for Π :

$$\frac{\partial \Psi}{\partial W}^* \cdot \Pi = \frac{\partial J}{\partial W}^*$$

Differentiating it wrt c, we get:

$$\left[\frac{d}{dc}\left(\frac{\partial\Psi}{\partial W}^*\right)\right]\cdot\Pi+\frac{\partial\Psi}{\partial W}^*\cdot\frac{d\Pi}{dc}=\frac{d}{dc}\left(\frac{\partial J}{\partial W}^*\right)$$

which rewrites as

$$\frac{\partial \Psi}{\partial W}^* \cdot \frac{d\Pi}{dc} = \frac{d}{dc} \left(\frac{\partial J}{\partial W} \right) - \frac{d}{dc} \left(\frac{\partial \Psi}{\partial W}^* \cdot \Pi_{c_0} \right)$$

Solving for $\frac{\partial \Pi}{\partial c}$ using AD

Outline

- Introduction
- Formalization
- 3 Reverse AD
- 4 Alternative formalizations
- 5 Memory issues in Reverse AD: Checkpointing
- Multi-directional
- 7 Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- O Static Analyses in AD tools
- 1 The TAPENADE AD tool
- Validation of AD results
- Expert-level AD
 - Conclusior

Tools for overloading-based AD

If language supports overloading (F95, C++) Tool provides:

- help for "re-typing" diff variables
- a library of overloaded operations

The reverse mode, or cross-country elimination, cannot be done on the fly. Tools use

- a tape recording of partial derivatives and execution trace
- a special program to compute the derivatives from the tape.

Source transformation requires complex tools, but offers more room for optimization.

parsing -	→analysis -	\rightarrow differentiation
F77	type-checking	tangent
F9x	use/kill	reverse
С	dependencies	multi-directional
MATLAB	activity	

- NAGWARE F95 Compiler: Overloading, tangent, reverse
- ADOL-C : Overloading+Tape; tangent, reverse, higher-order
- ADIFOR : Regeneration ; tangent, reverse?, Store-All + Checkpointing
- TAPENADE : Regeneration ; tangent, reverse, Store-All + Checkpointing
- TAF : Regeneration ; tangent, reverse, Recompute-All + Checkpointing

Fundamental problems:

- Piecewise differentiability
- Convergence of derivatives
- Reverse AD of very large codes

Technical Difficulties:

- Pointers and memory allocation
- Objects
- Inversion or Duplication of random control (communications, random,...)

Outline

- Introduction
- Formalization
- 3 Reverse AD
- 4 Alternative formalizations
- 5 Memory issues in Reverse AD: Checkpointing
- Multi-directional
- 7 Reverse AD for Optimization
- AD for Sensitivity to Uncertainties
- Some AD Tools
- 10 Static Analyses in AD tools
 - The TAPENADE AD tool
 - 2 Validation of AD results
 - Expert-level AD
 - Conclusion

Activity analysis

Finds out the variables that, at some location

- do not depend on any independent,
- or have no dependent depending on them.
- Derivative either null or useless \Rightarrow simplifications

orig. prog	tangent mode	w/activity analysis
	cd = a*bd + ad*b	cd = a*bd + ad*b
c = a*b	c = a*b	c = a*b
	ad = 0.0	
a = 5.0	a = 5.0	a = 5.0
	dd = a*cd + ad*c	dd = a*cd
d = a*c	d = a*c	d = a*c
	ed=ad/c-a*cd/c**2	
e = a/c	e = a/c	e = a/c
	ed = 0.0	ed = 0.0
e=floor(e)	e = floor(e)	e)=afloor(e)=) =

Laurent Hascoët (

The important result of the reverse mode is in \overline{X} . The original result Y is of no interest.

- The last instruction of the program P can be removed from \overline{P} .
- Recursively, other instructions of P can be removed too.

orig. program	reverse mode	Adjoint Live code
IF(a.GT.0.)THEN	IF(a.GT.O.)THEN	IF (a.GT.O.) THEN
	CALL PUSH(a)	
a = LOG(a)	a = LOG(a)	
	CALL POP(a)	
	ab = ab/a	ab = ab/a
ELSE	ELSE	ELSE
a = LOG(c)	a = LOG(c)	a = LOG(c)
CALL SUB(a)	CALL PUSH(a)	
ENDIF	CALL SUB(a)	
END	CALL POP(a)	
	CALL SUB_B(a,ab)	CALL SUB_B(a,ab)
	cb = cb + ab/c	cb = cb + ab/c
	ab = 0.0	ab = 0.0
	END IF	END IF

三 のへで

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

In reverse AD, not all values must be restored during the backward sweep.

Variables occurring only in linear expressions do not appear in the differentiated instructions.

 \Rightarrow not To Be Restored.
$$x = x + EXP(a)$$

y = x + a**2
a = 3*z

reverse mode:	reverse mode:
naive backward sweep	backward sweep with TBR
CALL POP(a)	CALL POP(a)
zb = zb + 3*ab	zb = zb + 3*ab
ab = 0.0	ab = 0.0
CALL POP(y)	ab = ab + 2*a*yb
ab = ab + 2*a*yb	xb = xb + yb
xb = xb + yb	yb = 0.0
yb = 0.0	ab = ab + EXP(a)*xb
CALL POP(x)	
ab = ab + EXP(a)*xb	

-2

▲□▶ ▲圖▶ ▲国▶ ▲国≯

In reverse AD, it is important to know whether two variables in an instruction are the same.

a[i] = 3*a[i+1]	a[i] = 3*a[i]	a[i] = 3*a[j]
variables certainly different	variables certainly equal	? ⇒ tmp = 3*a[j] a[i] = tmp
ab[i+1]= ab[i+1] + 3*ab[i] ab[i] = 0.0	ab[i] = 3* ab[i]	<pre>tmpb = ab[i] ab[i] = 0.0 ab[j] = ab[j] + 3*tmpb</pre>

Taking small snapshots saves a lot of memory:

 $\textit{Snapshot}(C) = \textit{Use}(\overline{C}) \cap (\textit{Write}(C) \cup \textit{Write}(\overline{D}))$

- Analyses are static: operate on source, don't know run-time data.
- Undecidability: no static analysis can answer yes or no for every possible program : there will always be programs on which the analysis will answer "I can't tell"
- ⇒ all tools must be ready to take *conservative* decisions when the analysis is in doubt.
- In practice, tool "laziness" is a far more common cause for undecided analyses and conservative transformations.

- Memory issues in Reverse AD: Checkpointing
- Multi-directional
- AD for Sensitivity to Uncertainties
- - The TAPENADE AD tool
- Expert-level AD

A word on TAPENADE

Automatic Differentiation Tool

Name: TAPENADE version 2.1 Date of birth: January 2002 Ancestors: Odyssée 1.7 Address: www.inria.fr/tropics/

tapenade.html

Specialties: AD Reverse, Tangent, Vector Tangent, Restructuration
Reverse mode Strategy: Store-All, Checkpointing on calls
Applicable on: FORTRAN95, FORTRAN77, and older
Implementation Languages: 90% JAVA, 10% c
Availability: Java classes for Linux and Windows, or Web server

Internal features: Type-Checking, Read-Written Analysis, Fwd and Bwd Activity, Adjoint Liveness analysis, TBR, ...

TAPENADE on the web

http://www-sop.inria.fr/tropics

Elle Edit View Go Bookmarks Tots Window Heip Back Forward Reload Stap A http://tapenada.infai/r:8080/tapenade/result.html Search Print Image: Search Home Bookmarks Internet Lookup New&Cool Download differentiated file Original call graph Differentiated file Differentiated call graph
Back Powerd Reload Stop (Internet Call graph Download differentiated tile Home Booknarks Internet Lookup NewsCool Retry vett the care files Original call graph Differentiated call graph
Back Forward Reload Stop To the manufacture and
Alone Bookmarks Zinternet Clookup New&Cool Retry with the same files Original call graph Differentiated call graph
Retry with the same files Download differentiated file Original call graph Differentiated call graph
Original call graph Differentiated call graph
* adj * adj_dv
* sub2 * maxx_dv
sub1 sub1_dv
* maxx sub2_dv
x(1) = y * u + t
CALL MAXX DV(2, 2d, t, td, 2)
$\frac{1}{2} \frac{1}{2} \frac{1}$
COMMON (CC/ X V
INTEGER 1. MAXX
REAL V
EXTERNAL MAXX $t = t + x(1) + 2 + 3 + y$
C Y = 0.0
1 = 5
x(1) = y + u + t CALL SUB2 DV(u, ud, $Ax(3)$, xd)
z = MAXX(z, t) Do nd=1.nbdirs
u = 0.0 $td(nd) = td(nd) + z * xd(nd)$
CALL SUB1(u, Ax(i), z, v) ENDDO
t = t + x(1) + z + 3 + v t = t + x(1) + z + 3 + u
y = 0.0 DO nd=1,nbdirs
i = 6 $zd(nd) = 0.0$
CALL SUB2(u, (3), 2, V) ENDDO
2 adj: Undeclared external routine: maxx
A die neuwent twee miestak in sell of subl DEAL(0.6) eurostad possive
5 add, argument type mismatch in call of sub2, REAL(0:6) expected, receives
6 maxy: Tool: Please provide a differentiated function for unit maxy for any
a manner total, thouse provide a differentiated function for ante maxy for all
🔆 🕮 🏑 🗃 all Document: Done (0.11 secs)

applied to industrial and academic codes: Aeronautics, Hydrology, Chemistry, Biology, Agronomy...

Laurent Hascoët ()

74 / 88

- Use a general abstract *Imperative Language (IL)*
- Represent programs as Call Graphs of Flow Graphs

B ▶ < B ▶

TAPENADE Program Internal Representation

using Calls-Graphs and Flow-Graphs:

Laurent Hascoët ()

CEA-EDF-INRIA 2005

76 / 88

- Memory issues in Reverse AD: Checkpointing
- Multi-directional
- AD for Sensitivity to Uncertainties
- - The TAPENADE AD tool
 - Validation of AD results
- Expert-level AD

Validation methods

From a program P that evaluates $F : \mathbb{R}^m \rightarrow \mathbb{R}^n$ $X \mapsto Y$

tangent AD creates

$$\dot{P}$$
 : $X, \dot{X} \mapsto Y, \dot{Y}$

and reverse AD creates

$$\overline{P}$$
 : $X, \overline{Y} \mapsto \overline{X}$

Wow can we validate these programs ?

- Tangent wrt Divided Differences
- Reverse wrt Tangent

For a given
$$X$$
, set $g(h \in \mathbf{R}) = F(X + h.Xd)$:

$$g'(0) = \lim_{\varepsilon \to 0} \frac{F(X + \varepsilon \times \dot{X}) - F(X)}{\varepsilon}$$

Also, from the chain rule:

$$g'(0)=F'(X) imes \dot{X}=\dot{Y}$$

So we can approximate Y by running P twice, at points X and $X + \varepsilon \times X$

For a given X, tangent code returned Y

Initialize $\overline{Y} = \dot{Y}$ and run the reverse code, yielding \overline{X} . We have :

$$\begin{aligned} (\overline{X} \cdot \dot{X}) &= (F'^t(X) \times \dot{Y} \cdot \dot{X}) \\ &= \dot{Y}^t \times F'(X) \times \dot{X} \\ &= \dot{Y}^t \times \dot{Y} \\ &= (\dot{Y} \cdot \dot{Y}) \end{aligned}$$

Often called the "dot-product test"

- Memory issues in Reverse AD: Checkpointing
- Multi-directional
- AD for Sensitivity to Uncertainties

- The TAPENADE AD tool

Expert-level AD

Black-box routines

If the tool permits, give dependency signature (sparsity pattern) of all external procedures \Rightarrow better activity analysis \Rightarrow better diff program.

After AD, provide required hand-coded derivative (FOO_D or FOO_B)

82 / 88

Make linear or auto-adjoint procedures "black-box".

Since they are their own tangent or reverse derivatives, provide their original form as hand-coded derivative.

In many cases, this is more efficient than pure AD of these procedures

Independent loops

If a loop has independent iterations, possibly terminated by a sum-reduction, then

Standard[.] Improved: doi = 1, Ndoi = 1, Nbody(i) body(i)body(i)end doi = N, 1end body(i) end

In the Recompute-All context, this reduces the memory consumption by a factor \mathbb{N}

Laurent Hascoët ()

- Memory issues in Reverse AD: Checkpointing
- Multi-directional
- AD for Sensitivity to Uncertainties

- The TAPENADE AD tool
- Expert-level AD

AD: Context

3

(日) (同) (三) (三)

- If you want the derivatives of an implemented math function, you should seriously consider AD.
- Divided Differences aren't good for you (nor for others...)
- Especially think of AD when you need higher order (taylor coefficients) for simulation or gradients (reverse mode) for sensitivity analysis or optimization.
- Reverse AD is a discrete equivalent of the adjoint methods from control theory: gives a gradient at remarkably low cost.

- AD tools provide you with highly optimized derivative programs in a matter of minutes.
- AD tools are making progress steadily, but the best AD will always require end-user intervention.