
The adjoint Data-Flow Analyses:
formalization, properties, and applications

Laurent Hascoët, Mauricio Araya-Polo

Tropics Project, INRIA Sophia-Antipolis

AD2004, Chicago, July 19-23, 2004

1

Reverse AD

I Please assume that there are plenty of advantages to reverse AD!

(you know, the one that computes gradients x = f ′∗(x) · y)

I but it implies a structure that has drawbacks too...

I so AD tools must implement many crucial Data-Flow-based

improvements, such as:

• (General:) dependency, activity (in both directions)

• (Memory:) TBR, Snapshot analysis

• (Time:) ERA, Adjoint dead code, Reverse snapshots

2

Specifying Improvements

I Unfortunately, improvements are generally specified or justified

informally (at best graphically). They sometimes conflict. Many

problems are found after implementation...

⇒ We want to define an “algebraic” specification of reverse

programs, that captures these improvements, so to get:

• derived data-flow analyses, specialized for reverse programs, and

taking profit of their particular structure,

• formal justifications,

• modelization of tradeoffs and conflicts,

• a firm ground for implementation.

3

Focus on TBR and Adjoint Liveness

The (too) simple reverse AD model . . .

I;D =
−→
I ;D;

←−
I = PUSH(W(I)); I;D;POP(W(I)); I ′

. . . should also include . . .

• TBR analysis: Only restore variables necessary in the sequel, i.e.

W(I) ∩ R(
←−
U).

• Adjoint Liveness: Execute I only if its output is needed in D, i.e.

W(I) ∩N(D) 6= ∅

. . . but be careful, the two are apparently coupled!

4

Complete model for reverse AD

Algebraic model for reverse AD, with TBR and Adjoint liveness:

U ` I;D = [PUSH(W(I) ∩ R(I ′;
←−
U)); I;] if adj-live(I, D)

[U ; I] ` D;
[POP(W(I) ∩ R(I ′;

←−
U));] if adj-live(I,D)

I ′

where adj-live(I, D) is defined as W(I) ∩N(D) 6= ∅
and W, R, N are the written, read, and needed sets.

From this complete model, we are able to derive/prove formally the

following 4 properties.

5

(1) Deriving rules for TBR

The general rule for the R analysis is classical:

R(A;B) = R(A) ∪ (R(B) \K(A))

We can specialize it on our complete model:

R(
←−−
U ; I) =


R(POP(W(I) ∩ R(I ′;

←−
U)); I ′;

←−
U)

= (R(I ′) ∪ R(
←−
U)) \K(I) if adj-live(I,D)

R(I ′;
←−
U) = R(I ′) ∪ R(

←−
U) otherwise

We thus re-discover formally the intuitive rules for TBR,

but they depend on adj-live!

6

(2) Adequacy of PUSH/POP lemma

The PUSH/POP mechanism in the complete model is adequate:

it ensures that all pairs of instructions I and I ′ are executed in an

equivalent context.

Formally, for any split U ;X of P, we can prove that

W(U ` X) ∩ R(
←−
U) = ∅

by induction on the length of X, and exploring all possible cases.

7

(3) Deriving rules for Adjoint Liveness

We specialize the general rule for liveness analysis:

N(A;B) = N(B)⊗Dep(A)

for the complete model of reverse AD, computing

N(U ` I;D)

This gives (using adequacy lemma):

N([]) = ∅
N(I;D) = N(I ′) ∪ (N(D)⊗Dep(I))

which turns out to be independent from U and adj-live!
So there is no circularity after all: Adjoint Liveness −→ TBR.

8

(4) Deriving rules for Adjoint Write

Definition of a very concise snapshot for checkpointing piece C in

code U ;C;D:

snapshot = N(C) ∩ (W(C) ∪W([U ;C] ` D))

Therefore we need specialized rules for W([U ;C] ` D). Again we

specialize the general rule for W on the complete model of reverse

AD. We obtain:

W(U ` I;D) =


(W(I) ∪W([U ; I] ` D))\(K(I) ∩ R(I ′;

←−
U))

if adj-live(I, D)

W([U ; I] ` D) otherwise

9

A Tradeoff to explore

We chose to build D in the context [U ;C], therefore:

snapshot = N(C) ∩ (W(C) ∪W([U ;C] ` D))

Alternatively, we could add an extra requirement to D’s context,

asking TBR to also preserve N(C) \W(C) during D. Then we

would build:

(R(
←−
U) ∪N(C)) \W(C) ` D

10

that may PUSH/POP more, but the snapshot

snapshot = N(C) ∩W(C)

gets smaller. ⇒ needs further study!...

11

Applications

• Formalization makes us confident in the data-flow analyses.

• Implementation follows the data-flow equations closely.

⇒ illustration on a piece of code.

⇒ speedup measurements.

12

subroutine FLW2D(...,g3,g3,g4,g4,rh3,rh3,rh4,rh4,...)
...

do iseg=nsg1,nsg2
is1 = nubo(1,iseg)
...
qs = t3(is2)*vnocl(2,iseg)
dplim = qsor*g4(is1) + qs*g4(is2)
rh4(is2) = rh4(is2) - dplim
pm = pres(is1) + pres(is2)
dplim = qsor*g3(is1)+qs*g3(is2)+pm*vnocl(2,iseg)
rh3(is1) = rh3(is1) + dplim
call PUSH(pm, sq)
call LSTCHK(pm, sq)
call POP(pm, sq)
call LSTCHK(pm, pm, sq, sq)
dplim = rh3(is1) - rh3(is2)
...
vnocl(2,iseg) = vnocl(2,iseg)+t3(is2)*qs+t3(is1)*qsor
t3(is1) = t3(is1) + vnocl(2,iseg)*qsor

enddo
end

13

Experimental Results

Adjoint Liveness and Adjoint Write implemented in TAPENADE.

application: ALYA UNS2D THYC LIDAR
(CFD) (CFD) (Thermo) (Optics)

t(P): 0.85 2.39 2.67 11.22

t(P): 5.65 29.70 11.91 23.17

new t: 4.62 24.78 10.99 22.99

gain: 18% 16% 8% 7%

M(P): 10.9 260 3614 16.5

new M: 9.4 259 3334 16.5

gain: 14% 0% 8% 0%

14

Conclusion

I Algebraic formulation of adjoint programs.

I Formally derived Data-Flow analyses.

I Compilers’ general Data-Flow analyses can’t perform as well,

because they can’t use the adjoint structure.

⇒ More tradeoffs to explore

(e.g. sequences of checkpoints)

⇒ New analyses to incorporate

(e.g. reverse checkpoints).

15

i.e. if adj-live(C,D):

U ` C;D = PUSH(W(C) ∩ R(
←−
U));

PUSH(SNP(U,C,D));
C;
[U ;C] ` D;
POP(SNP(U,C,D));
[] ` C;
POP(W(C) ∩ R(

←−
U));

SNP(U,C,D) = N(C) ∩ (W(C) ∪W([U ;C] ` D))

16

and otherwise:

U ` C;D = PUSH(SNP(U,C,D));
[U] ` D;
POP(SNP(U,C,D));
[U] ` C;

SNP(U,C,D) = N(C) ∩W(U ` D)

