The adjoint Data-Flow Analyses: formalization, properties, and applications

Laurent Hascoët, Mauricio Araya-Polo

 $T{\rm ROPICS} \ {\rm Project}, \ {\rm INRIA} \ {\rm Sophia-Antipolis}$

AD2004, Chicago, July 19-23, 2004

Reverse AD

▶ Please assume that there are plenty of advantages to reverse AD! (you know, the one that computes gradients $\overline{x} = f'^*(x) \cdot \overline{y}$)

but it implies a structure that has drawbacks too...

so AD tools must implement many crucial Data-Flow-based improvements, such as:

- (General:) dependency, activity (in both directions)
- (*Memory:*) TBR, Snapshot analysis
- (*Time:*) ERA, Adjoint dead code, Reverse snapshots

Specifying Improvements

Unfortunately, improvements are generally specified or justified informally (at best graphically). They sometimes conflict. Many problems are found after implementation...

 \Rightarrow We want to define an "algebraic" specification of reverse programs, that captures these improvements, so to get:

- derived data-flow analyses, specialized for reverse programs, and taking profit of their particular structure,
- formal justifications,
- modelization of tradeoffs and conflicts,
- a firm ground for implementation.

Focus on TBR and Adjoint Liveness

The (too) simple reverse AD model . . .

 $\overline{I;D} = \overrightarrow{I}; \overline{D}; \overleftarrow{I} = \mathsf{PUSH}(\mathbf{W}(I)); I; \overline{D}; \mathsf{POP}(\mathbf{W}(I)); I'$

- ... should also include ...
- **TBR analysis:** Only restore variables necessary in the sequel, i.e. $W(I) \cap R(U)$.
- Adjoint Liveness: Execute I only if its output is needed in \overline{D} , i.e. $W(I) \cap N(\overline{D}) \neq \emptyset$

. . . but be careful, the two are apparently coupled!

Complete model for reverse AD

Algebraic model for reverse AD, with TBR and Adjoint liveness:

$$U \vdash \overline{I; D} = [\mathsf{PUSH}(\mathbf{W}(I) \cap \mathbf{R}(I'; \overleftarrow{U})); I;] \text{ if adj-live}(I, D)$$

$$[U; I] \vdash \overline{D};$$

$$[\mathsf{POP}(\mathbf{W}(I) \cap \mathbf{R}(I'; \overleftarrow{U}));] \text{ if adj-live}(I, D)$$

$$I'$$

where adj-live(I, D) is defined as $W(I) \cap N(\overline{D}) \neq \emptyset$ and W, R, N are the written, read, and needed sets.

From this complete model, we are able to derive/prove formally the following 4 properties.

(1) Deriving rules for TBR

The general rule for the **R** analysis is classical:

$$\mathbf{R}(A;B) = \mathbf{R}(A) \cup (\mathbf{R}(B) \setminus \mathbf{K}(A))$$

We can specialize it on our complete model:

$$\mathbf{R}(\overleftarrow{U;I}) = \begin{cases} \mathbf{R}(\mathsf{POP}(\mathbf{W}(I) \cap \mathbf{R}(I';\overleftarrow{U})); I';\overleftarrow{U}) \\ = (\mathbf{R}(I') \cup \mathbf{R}(\overleftarrow{U})) \setminus \mathbf{K}(I) & \text{if adj-live}(I,D) \\ \mathbf{R}(I';\overleftarrow{U}) = \mathbf{R}(I') \cup \mathbf{R}(\overleftarrow{U}) & \text{otherwise} \end{cases}$$

We thus re-discover formally the intuitive rules for TBR, but they depend on *adj-live*!

(2) Adequacy of PUSH/POP lemma

The PUSH/POP mechanism in the complete model is adequate: it ensures that all pairs of instructions I and I' are executed in an equivalent context.

Formally, for any split U; X of P, we can prove that

$$\mathbf{W}(U\vdash\overline{X})\cap\mathbf{R}(\overleftarrow{U})=\emptyset$$

by induction on the length of X, and exploring all possible cases.

(3) Deriving rules for Adjoint Liveness

We specialize the general rule for liveness analysis:

 $\mathsf{N}(A;B)=\mathsf{N}(B)\otimes Dep(A)$

for the complete model of reverse AD, computing

 $\mathsf{N}(U \vdash \overline{I;D})$

This gives (using adequacy lemma):

$$\begin{array}{rcl} \mathsf{N}([\]) &=& \emptyset \\ \mathsf{N}(\overline{I;D}) &=& \mathsf{N}(I') \cup (\mathsf{N}(\overline{D}) \otimes Dep(I)) \end{array}$$

which turns out to be independent from U and adj-live! So there is no circularity after all: Adjoint Liveness \longrightarrow TBR.

(4) Deriving rules for Adjoint Write

Definition of a very concise snapshot for checkpointing piece C in code U; C; D:

snapshot = $N(\overline{C}) \cap (W(C) \cup W([U;C] \vdash \overline{D}))$

Therefore we need specialized rules for $W([U; C] \vdash \overline{D})$. Again we specialize the general rule for W on the complete model of reverse AD. We obtain:

$$\mathbf{W}(U \vdash \overline{I; D}) = \begin{cases} (\mathbf{W}(I) \cup \mathbf{W}([U; I] \vdash \overline{D})) \backslash (\mathbf{K}(I) \cap \mathbf{R}(I'; \overleftarrow{U})) & \text{if adj-live}(I, D) \\ \mathbf{W}([U; I] \vdash \overline{D}) & \text{otherwise} \end{cases}$$

A Tradeoff to explore

We chose to build \overline{D} in the context [U; C], therefore:

$$\mathsf{snapshot} = \mathsf{N}(\overline{C}) \cap (\mathsf{W}(C) \cup \mathsf{W}([U;C] \vdash \overline{D}))$$

Alternatively, we could add an extra requirement to \overline{D} 's context, asking TBR to also preserve $\mathbf{N}(\overline{C}) \setminus \mathbf{W}(C)$ during \overline{D} . Then we would build:

$$(\mathsf{R}(\overleftarrow{U}) \cup \mathsf{N}(\overline{C})) \setminus \mathsf{W}(C) \vdash \overline{D}$$

that may PUSH/POP more, but the snapshot

```
\mathsf{snapshot} = \mathsf{N}(\overline{C}) \cap \mathsf{W}(C)
```

gets smaller. \Rightarrow needs further study!...

Applications

• Formalization makes us confident in the data-flow analyses.

• Implementation follows the data-flow equations closely.

- \Rightarrow illustration on a piece of code.
- \Rightarrow speedup measurements.

subroutine $\overline{FLW2D}(\ldots,g3,\overline{g3},g4,\overline{g4},rh3,\overline{rh3},rh4,\overline{rh4},\ldots)$

```
do iseg=nsg1,nsg2
 is1 = nubo(1,iseg)
  . . .
 qs = t3(is2)*vnocl(2,iseg)
 dplim = qsor*g4(is1) + qs*g4(is2)
 rh4(is2) = rh4(is2) - dplim
 pm = pres(is1) + pres(is2)
 dplim = qsor*g3(is1)+qs*g3(is2)+pm*vnocl(2,iseg)
 rh3(is1) = rh3(is1) + dplim
 call PUSH(pm, sq)
 call LSTCHK(pm, sq)
 call POP(pm, sq)
 call LSTCHK (pm, pm, sq, sq)
 \overline{\text{dplim}} = \overline{\text{rh3}}(\text{is1}) - \overline{\text{rh3}}(\text{is2})
 \overline{\text{vnocl}}(2, \text{iseg}) = \overline{\text{vnocl}}(2, \text{iseg}) + t3(\text{is}2) * \overline{qs} + t3(\text{is}1) * \overline{qsor}
 \overline{t3}(is1) = \overline{t3}(is1) + vnocl(2, iseg) * \overline{qsor}
enddo
end
```

Experimental Results

Adjoint Liveness and Adjoint Write implemented in TAPENADE.

application:	ALYA	UNS2D	THYC	LIDAR
	(<i>CFD</i>)	(CFD)	(Thermo)	(Optics)
t(P):	0.85	2.39	2.67	11.22
$t(\overline{P})$:	5.65	29.70	11.91	23.17
new t:	4.62	24.78	10.99	22.99
gain:	18%	16%	8%	7%
$M(\overline{P})$:	10.9	260	3614	16.5
new M:	9.4	259	3334	16.5
gain:	14%	0%	8%	0%

Conclusion

- Algebraic formulation of adjoint programs.
- ► Formally derived Data-Flow analyses.
- Compilers' general Data-Flow analyses can't perform as well, because they can't use the adjoint structure.
- ⇒ More tradeoffs to explore (e.g. sequences of checkpoints)
- \Rightarrow New analyses to incorporate (*e.g. reverse checkpoints*).

i.e. if adj-live(C, D):

 $U \vdash \overline{C}; \overline{D} = \mathsf{PUSH}(\mathbf{W}(C) \cap \mathbf{R}(\overleftarrow{U}));$ $\mathsf{PUSH}(\mathbf{SNP}(U, C, D));$ C; $[U; C] \vdash \overline{D};$ $\mathsf{POP}(\mathbf{SNP}(U, C, D));$ $[] \vdash \overline{C};$ $\mathsf{POP}(\mathbf{W}(C) \cap \mathbf{R}(\overleftarrow{U}));$ $\mathsf{SNP}(U, C, D) = \mathbf{N}(\overline{C}) \cap (\mathbf{W}(C) \cup \mathbf{W}([U; C] \vdash \overline{D}))$ and otherwise:

$$U \vdash \overline{C}; \overline{D} = \mathsf{PUSH}(\mathsf{SNP}(U, C, D));$$

$$[U] \vdash \overline{D};$$

$$\mathsf{POP}(\mathsf{SNP}(U, C, D));$$

$$[U] \vdash \overline{C};$$

$$\mathsf{SNP}(U, C, D) = \mathsf{N}(\overline{C}) \cap \mathsf{W}(U \vdash \overline{D})$$