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Abstract

New theory, methods, and tools for optimization in a finite dimension space has
known much evolution in the last 20 years. Quadratic convergence is the rule, thanks,
for example, to Sequential Quadratic Programming algorithms equipped with quasi-
Newton mechanisms such as the BFGS one. However, some new applications, generally
coming from the discretisation of PDE’s, involve a very large number of parameters.
It is then necessary to design some PDE-inspired preconditioners. Several theories
can help us in this direction, such as the Bramble-Pasciak-Xu one, or its wavelets
analogs. We discuss the building of a multi-level preconditioner on an unstructured
mesh connected with these ideas. As an application, the optimal shape design of a
supersonic jet is considered. We have started a prospective investigation of the shapes
that would produce a very low level of sonic boom. Instead of parameterizing the
shape with a small macroscopical quantities, we consider as parameters the whole set
of wing and body skin mesh (up to 12000 parameters for this particular case).

Key words : Computational fluid dynamics - Compressible flows - Shape
optimal design - Sonic boom optimization

1  Functional optimization

The progress of optimization in the last two decades has completely renewed
the panoply of optimisers. To restrict to differentiable optimization, SQP algo-
rithms have replaced gradient ones, thanks to the integration of very efficient
quasi-Newton strategies. But as the whole new theory is built in R", it will
miss important informations when applied to large scale problems coming from
Partial Differential Equations.

To illustrate our affirmation, we consider the best-seller problem of the cal-
culus of variation:

mgn 1/2 /|Vu|2dx—/u fdz. (1)



In most quasi-Newton optimization methods, the basic brick for the corrections
applied to the unknown will be the gradient of the functional:

g = Au-—f.

This correction has the important disadvantage to be a function much less reg-
ular that the previous iterate w. Indeed, if u has continuous derivatives up to
k-th order, it is true only up to k — 2-th for g. To pursue the functional analysis,
the iterative process of an algorithm relying on g would produce a new u with
only k — 2-th continuous derivatives, then k — 4-th ones and so on. Ultimately,
it will be impossible to compute the functional to minimize.

It is well known that, after discretization, using g for building corrections is
equivalent to apply a Jacobi iteration. This will amplify many high frequency
modes, unless the step length is reduced in order to satisfy a Courant-like sta-
bility condition. In this case, if discretization is fine and high frequency mode
very numerous, the quasi-Newton process cannot compensate the difficulties in
converging. This is why quasi-Newton solvers for PDE are generally associated
with preconditioners.

We note in passing the strong relation between preconditioners and smoothers
in this context. In the R™ theory, a preconditioner is used basically to improve
the condition number of a linear system, that is to reduce the ratio between the
largest and the smallest eigenvalue. In the discrete PDE case, ill-conditioning
comes from mesh dependent high frequency eigenvalues, that increases with
mesh fineness and with the degree of differential operator. Then two ways to
reduce this is either to use a coarse mesh, not an acceptable solution, or to apply
special devices for filtering high frequencies. In the functional context, it seems
necessary (and somewhat equivalent to the above strategies) to work with an
equation in which regularity is not lost, for example by multiplying it by an
inverse Laplace operator, when the order of derivatives should be recover.

The functional context can then be iterated in a smooth manner, and will
converge with its own convergence speed. An important consequence is that a
good discretization of this iteration should ideally have a convergence rate close
to the functional one, that is a mesh-size independent rate. Then building a pre-
conditioner that renders the functional iteration regular increases the potential
qualities of the discretized iteration.

Further, in the case of quasi-Newton iterations, an additional functional
mechanism has to be taken into account. By recovering all necessary smooth-
ness, we can obtain that the underlying operator is compact, which means that
its spectrum has only zero as an accumulation point. In the discrete case, highest
eigenvalues correspond to low frequencies and are solved by the quasi-Newton
process, which results in a condition number approaching progressively unity
(superlinear convergence).

To sum up, the principle we shall follow is to introduce a preconditioner or
smoother inspired by functional properties in order to improve the optimization
iteration of our optimal shape design problem.



The paper is organized as follows: a first section presents the additive multi-
level method. A second section introduces the features of the flow optimization
problem under study. The next section presents numerical examples and the
last one is the conclusion.

2 Additive multilevel preconditioner

2.1 Theoretical background

We focus first on the solution of a generic elliptic problem written:
(Au,v) = (f,v)Vu,v € V} , f given in V', (2)

According to the work of Bramble, Pasciak and Xu (BPX from now on), good
smoothers or preconditioners can be derived from a sequence of discretization
spaces:

Let (Vk)i1<k<n be a hierarchy of subspaces of V :

iwe---cWeC---CcVoCV

In the BPX theory, V,, = V but it will be useful for us not to assume this and
to consider that V is the continuous functional space. For each k = 1,..,n we
introduce the operators Q : V — Vj, defined for all u € V,v € V}, by

(Qru,v) = (u,v)
and the operators Ay : V, — Vj, defined by

(Agu,v) = A(u,v)Vu,v € Vj

The BPX preconditioner writes:

C = AT'Qi + DA Qw

k=2

where A\, = p(Ay), is the spectral radius of Ay.
The knowledge of A or even of A] ' is in fact not necessary and the above
preconditioner can be replaced by a wavelet-type preconditioner:

Cow =Y 1" (Qr—Qr1) (3)
k=1

with Q9 = 0. The coefficients p; are then choosen in order to damp high
frequencies.

In [11] , the above method is reconsidered from the standpoint of a general
non-quadratic optimization problem to be solved with a gradient method in an
unstructured fine mesh. A crucial relation between the coarse and fine discrete



problems and the continuous one was expressed and presented as an “approxi-
mation condition” (according to the multi-grid theory). It can be expressed in
short as follows:

“Minimum problems on coarse subspace are consistent approximations of the
continous minimum problem”.

For this, assuming that the functional J is continuous from V to R, the main
assumption is that for any k the union of Vi, when the fine mesh step h is
converged to zero are dense into V.

This condition takes into account the continuity property of the cost func-
tional, but not its differentiability ones, which can be experssed in a different
functional space in the case of complex application such as variations of a flow
variable when the geometric domain of it is modified.

We shall then go further by analysis of the functional properties of the pre-
conditioner (3). To do this we need first to replace it by its functional limit,
obtained by taking the sum of the infinite series.

oo

P = Z,LL,:I(QIC - Qk-1) (4)

k=1

In the case where V is the Sobolev space H' and under adequate design assump-
tions, our preconditioner will be a functional smoother, satisfying typically the
following:

Lemma: P maps H~! into H— 12,

Since P will multiply the gradient of the cost functional, we can imagine
that,as soon as « is chosen large enough, it will allow a smooth enough correction
of the control variable and favourize a better convergence of the optimization
process. We refer to [4] for the details of this analysis.

2.2 The multidimensional case

We consider the minimization problem :

Find @ € V such that @ = arg umei‘r/lj(u) (5)
where V is a Hilbert space (think of a Sobolev space) and where the cost func-
tional j is continuously differentiable in the Hilbert space V. We investigate
the application of the multilevel optimization to Problem (5) in order to put in
evidence the basic options that will allow to obtain a multilevel solution in an
efficient way. Let us write a coarse level correction as follows:

ulitt = uly, — popt LPP*L* j'(ugy,). (6)



In the above expression, the linear operators £ and P are projections to a
smaller space that are defined below; usgp is the discretized value of u on the
coarse mesh. A key condition for efficiency is that the fixed point u}, of (6) do
satisfy LPP*L* j'(u3,) =0, 1.e. it is a convergent approzimation of “arg min j”
when the mesh size is increased; in other words:

uy, — @inV as h—0 (7

In (6), P is a prolongation operator from coarse level to fine level and its
transpose P* is a restriction operator from fine level to coarse level. L is an
average smoothing operator (L£* is its transpose) defined by :

Z Area(j) u;
JEV()U{i} (8)

Z Area(y)

jev(m)u{i}

(Lu); =(1—0)u; +0

where j runs over the V(i) cells neighboring i and Area(y) is the area of each
of them built around vertices with the triangle medians.

2.3 Parametrization of 3D surfaces

We now consider the parametrization for optimizing an aircraft in a 3D Euler
flow. The parametrized shape is then a 3D surface and flow calculations are per-
formed on an unstructured 3D mesh. The building of a multilevel parametriza-
tion [1] of this shape will rely on a node-agglomeration principle (see [10]).
The surface is assimilated to a manifold X, that is smooth enough. A defor-
mation produced on its discretization Xj, is noted 6X; ; the new manifold
Y+ LPP*L*6%, is built by a projection P* to a coarser level, a prolongation
P, transpose of P*, to the initial level, combined with an operator £ (details
are given in [10]). The smoothing operator £ is an average weighted by a scalar
product of normals :

Z wija'c'j
(L 2) = (1—0)F, + 0 12020 (9)
> wy

FEV(i)U{i}
where w;; are the weights defined by :

w;; = max (Area(i) - Area(j) -7 -7@; , 0) ||A:||=1 Vi (10)
where 6 is the smoothing parameter. Again V(i) represents the neighbors of cell
- The above geometry is the surfacic boundary of a 3D unstructured tetra-
hedrization.



With the above transfer and smoothing operators from any level m — 1 to

level m as elementary bricks, we can derive a projection operator related to level
k:

P = [ £nPnPit (11)

1<m<k
2.4 Multilevel preconditioner and optimization

In a way analog to [2], we introduce the multilevel preconditioner as follows:

n—1

. 1
Pg = P,g — Z o (Pr+19 — Prg) (12)
k

where n is the coarsest level. The multilevel gradient approaches considered
here rely on the following algorithm:

Multilevel Preconditioned Algorithm:

Do nc

— Compute state W and adjoint II and compute the
gradient g(Ync, W,1I)

— Compute the preconditioner P*

Compute p (internal cycle)

Update the shape correction:
= " = p PY (e, W)

Next nc

Here, g(vne, W,II) is a function of variables v,W and II , that is identical
to j'(y) only if W = W (~) (solution of state equation) and II = TI(«y) (solution
of adjoint state equation). The parameter p is either fixed or defined by a 1D
search (steepest version). This algorithm results in a gradient method when g
is exactly 7'(y), which is a descent one in a weak sense since the preconditioner
is symmetric. Conversely, when W and II are obtained by applying only a few
iterations of state equation and adjoint state equation iterative solution, the g
is not the gradient of j, but aims to converge towards j'(y) when the whole loop
is converging; we refer to this algorithm as a one-shot method (according
to [8]) for solving the optimality system of the optimization problem. The
performances of this approach for 2D applications are discussed in [5]

We have seen that an additional smoothing, applied on P* g(yn., W,II) can
indeed improve the solution, specially when the skin mesh that covers the shape
to discretize is rather coarse or have acute edges. It is enough a single iteration
of a Least Squares Smoothing [7] or simply the average smoothing operator
defined in (8) with 6 = 1.



3 Adaptation to shape design: sonic boom re-
duction

The shape optimization strategy described above can be applied to sonic boom
reduction [14]. Briefly, the idea is to reduce as much as possible the shock
signature on the ground produced by a supersonic aircraft on cruise flight. The
optimization strategy comprises then two main nested blocks: the inner flow
solver and the outer optimization loop. The former is based on the numerical
solution of the Euler compressible flow equations. The latter follows the lines
described above. Both of them are addressed in the sections above.

3.1 The model problem

The flow problem is physically modeled by the compressible Euler equations, for
under the present conditions, viscous effects are negligeable. In its conservation
form, the stationary Euler equations can be written as follows:

0
Bxi

(Fi(W)) =0, (13)

where the system state is described by the solution W = (p, pus, pus, pus, pe)
and the flows are F;(W) = (pu;, pujus —pdi1, pusus—pbia, puiuz—pdi3z, u;(pe+p)).
Volume forces and thermal sources are absent. The equations are written in
terms of density p, velocity u; and total energy e = C,T + %uiui‘ Pressure p
is related to temperature 7" and density through the ideal gas state equation.
Summation convention on repeated indices is here used and §;; is the identity
tensor.

The weak form of (13) is: for all ¢ = (¢1, @2, P3, P4, ¢5) belonging to an
appropriate test function space, find W such as

- / % pwyav + [ ¢ F(W)nids=o, (14)
o Oz; a0

whith some boundary conditions. (2 is the domain where the problem is defined
and its boundary is 992.

In order to find an approximate flow solution, (14) is numerically solved
using a mixed finite volume/elements method, whith a second order Van Leer
flux vector splitting scheme. In order to speed up flow convergence, the station-
ary solution is obtained through an iterative transient-like process, which uses
implicit time advancing combined with local time steps.

The boundary 912 is formed by inflows and outflows, non-slip condition con-
tours and transpiration condition contours. This last kind of boundary corre-
sponds to the part of 9 that is to be optimized. The next two sections describes
this concept deeper.



3.2 Aplication to shape design

Unlike many previous attempts in 3D (for instance [3]), where a parametric
optimization is envisaged, we follow a so-called CAD-Free [12] approach. In
a parametric optimization, the cost functional is minimized by changing a set of
shape parameters (a set usually determined by the aircraft designer) like wing
sweep or dihedral angles, wing position and so on. In this case, the appendages’
shapes remain unchanged. On the other hand, in CAD-free approaches, the
parameters space is given by the discretized geometry itself, through the nodes
placed in the skin to be optimized, leading to a much more flexible optimization
process (very flexible indeed: in [14] this is applied not only to wings but also
to a generic airplane nose). Another important difference is that in [3] the min-
imization process takes into account the far-field signature, which relies in the
Witham’s linearized theory (see [9] for a complete review of the problem). On
the other hand, we minimize what we call the sonic boom downwards emis-
sion, represented by the pressure gradient in the near field below the aircraft
(see 1).

Sonic Boom Downwards Emission
Control Box (near field)

\ S
\ = Tail Wave

Bow Wave

Sonic Boom N-Wave
(far field)

} \I

Figure 1: The sonic boom. Sketch of near and far field shock wave patterns of
a supersonic aircraft.

Our objective is to seek for new wing forms, independently of the presence
of additional appendages (like canards). These forms must have the following
properties:

e “Silent” regarding sonic boom emission,

o Aerodynamically performant, and

e Feasible, from the constructive point of view.



3.3 Cost functional specification: transpiration and sonic
boom emission

The application of a shape design loop should involve the repeated rezoning of
the mesh to account for the modification of the shape of the aircraft. In this
work, inspired by the approach used by Young et al. ([6]), we are considering
in a first phase the option of representing the shape modification by applying
a transpiration condition; this means that the current shape is defined with
respect to the mesh skin as a perturbation simulated by transpiration (see for
example [13]), refered in the sequel as the “transpired perturbation”. Let us
denote by v the perturbation function; it is the algebraic length of the displace-
ment of the boundary along its normal. We recall the transpiration condition
for Euler flows: Let us denote by shell the shape to be emulated by transpira-
tion and by 7spen; the normal of the shell. The slip boundary term of the flux
U(W) is defined as follows: for each component of the Euler flow equations set,

lI’(V‘/)slip boundary — (0 9 p(W) TLZ ) p(W) nz ) p(W) "Z ) p(W) q) (]‘5)

where
q= V. (ﬁ"’ _ﬁshell)~

Here V is the velocity of the fluid and 7 is the (fixed) normal defined on the
surface to optimize. This approximation has proved to be enough accurate for
rather large perturbations of the boundary and very robust. The sensitivity
analysis has been exactly derived, but only for the first-order accurate upwind
scheme.

For each step of the optimization process, a cost functional j(vy) is evaluated.
As said above, this functional depends both on the aerodynamic properties and
the sonic boom downwards emission. The former is typically represented by
lift and/or drag coefficients and their differences respect to target values. The
latter is measured by the pressure gradient in the near field control box in figure
1. Then, a suitable cost functional is

50) = an(Cp = CP 4 aalCr = C7* | |VpPaV (16)
OB

where a1, as and a are constants that allow to vary the relative weight between
the three constraints in j(v) that we want to consider.

Figure 2 shows the kind of result we are looking for. It corresponds to an M6
ONERA wing inmersed in a Mach 1.8 flow, where the incidence angle is 3°. The
skin mesh is very coarse, for this is only a motivation example. On top, 2 shows
both the original and the optimized shapes. After the optimization process,
the wing’s downards face becomes flattened, with a small “flap-like” trailing
edge. The sonic boom emission reduction can be clearly seen in along a line just
below the wing. It is worth to mention that it has changed not only the peak
pressure value but the form of the pressure distribution. The typical Witham’s
F-function of the original wing, that produces a N-like ground signature has
become a plateau-like distribution, with no shock at all. Additionally to the



dramatic boom reduction, the optimized aerodynamic properties of the wing
are good: the lift has diminished only 3% from the target value (that of the
original). In this particular case, the original wing volume was not preserved by
optimization process. However, we included this possibility [14]: the use or not
of a Volume Preserving Gradient Projection (VPGP).

No o'ptimization'
014 F Optimization, VPGP —»— |
. Optimization, no VPGP —&—

0.12
0.1

0.08 -

0.04

-0.02

0.04 L L L L L L
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

X-coordinate

Figure 2: ONERA M6 wing. Optimized wing and original shape (top) and
pressure along a line below the wing (bottom). VPGP means Volume Preserving
Gradient Projection

4 Numerical example:
Dassault’s Supersonic Business Jet

The proposed optimization procedure is applied to a projected supersonic busi-
ness jet. The geometry (provided by Dassault Aviation) corresponds to half
of the aircraft, as seen in fig. 3. The spatial grid has 173526 nodes in 981822
tetrahedra and corresponds to half of the aircraft, with a vertical symetry plane
The inflow Mach number is 1.8 and the incidence angle is 3°. Figure 4 shows
the Mach number and pressure distribution over the surface of the aircraft,
symetrized now for postprocessing purposes.
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Figure 3: Dassault’s Supersonic Business Jet. Top, spatial grid close-up. Bot-
tom, aircraft and plane below.

As described in [14], the tuning of the scheme derived from simpler examples,
allows us to set @13 = 0 and as = 1, being ag = 10. The aircraft wings are the
targets of the optimization. The simplified wings provided by the constructor
for this generic geometry are horizontally symetrical, with two different sweep
angles of 17° and 38° respectively, and a rather smooth transition between them.
The Mach angle for M = 1.8 is around 34°. Therefore, while the first part of
the wings falls within the Mach cone with no shock wave ahead and a lower
wave drag, the second part cut through the Mach cone. As a consequence,
the shocks will be produced ahead of the 38° sweep angle portion of the wing.
This can be clearly seen in fig. 5, top, where the pressure distribution below
the aircraft for the original shape is shown. This fact renders the problem of
optimizing a double-sweep angle wing more complex than a single-sweep angle
one, like the M6. The reason that not all of the wing surface will produce a
shock of comparable strength will result in an optimized shape that is different

11
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Figure 4: Dassault’s Supersonic Business Jet. Contour levels. Top, Mach num-
ber. Bottom, pressure.

whether it is into or out of the Mach cone. This will also motivate the necessity
of further refinement of the cost functional that is discussed in the conclusions
section.

The outcome of 10 optimization cycles is shown in 5, right. In this figure
it can be seen that the main peak has indeed diminished as in the M6 wing
example.
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Figure 5: SBJ. Pressure distribution in a plane below the aircraft. Top, original
geometry. Bottom, optimized geometry.

5 Conclusion and future lines

Unpreconditioned gradient methods or conjugate gradient methods are known as
inefficient methods for large scale elliptic problems. They should not be applied
to optimal control as far as the number of parameters is rather large. This paper
has given some arguments in this direction and has proposed the adaptation of
a modern multilevel preconditioner to a large class of optimization problems. In
the design of this preconditioner, we get rid of any linear approximation of the
system to solve, but, instead, we propose a criterion related on differentiation
order, derived from Functional Analysis.

This principle is extended to unstructured meshes and applied to a non-trivial
Optimal Control problem. Preliminary numerical results are presented. A more
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Figure 6: Dassault’s Supersonic Business Jet. Cost functional gradient distri-
bution for the complete aircraft’s surface.

complete evaluation of the impact of the preconditioner will be presented in a
forthcoming paper.
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