
Adjoint Data-Flow analyses applied to checkpointing

Benjamin Dauvergne

Tropics Project, INRIA Sophia-Antipolis

Adjoint Data-Flow analyses applied to checkpointing – p.1/13

Why checkpoints?

� Instead of recording the tape of the executions, you want to
reexecute some part of your code.

� To do this you need to restore the variables used by this part
to the value they carried at the time of the first execution.

� Used here means read before written, it’s a classical data
flow definition, like Def

Adjoint Data-Flow analyses applied to checkpointing – p.2/13

How can we do it?

� By hand :
we know the code, we know that there is something called
the state and this state is read and written at each iteration.
We just save it on the stack.

� Automatically: when you write a source to source AD tool
you don’t know what the input code is doing, so you need
data flow analysis to find out those used variables and if you
really need to save them.

Problem: We don’t have so good data flow informations es-

pecially concerning arrays.

Adjoint Data-Flow analyses applied to checkpointing – p.3/13

What should we save?

Data flow notation from a previous paper of L. Hascoet and M.
Araya.

P := [I1, ..., In]

P := /0 ` P

TBR ` I;D = PUSH(Def(I)∩ (TBR∪Use(I ′)))

I

(TBR∪Use(I′))\Def(I) ` D

POP(Def(I)∩ (TBR∪Use(I′)))

I′

� P is the program, Ii are its instructions, I′ is the adjoint code associated

with a simple intruction and TBR ` P is the generated adjoint for a

program P given a contextual save set TBR.

� No dead code removal like in this previous paper because this is not the

point.
Adjoint Data-Flow analyses applied to checkpointing – p.4/13

What should we save?

Data flow notation from a previous paper of L. Hascoet and M.
Araya.

P := [I1, ..., In]

P := /0 ` P

TBR ` I;D = PUSH(Def(I)∩ (TBR∪Use(I ′)))

I

(TBR∪Use(I′))\Def(I) ` D

POP(Def(I)∩ (TBR∪Use(I′)))

I′

� This definition is recursive on the rest of the instruction list of P, and

could be applied without much modification to checkpoints.

� Checkpoints are juste big instructions

Adjoint Data-Flow analyses applied to checkpointing – p.4/13

The checkpointing case

My goal is to extend this scheme to checkpoints.

Take some big part C and checkpoint it:
I′ now becomes TBR `C.

TBR `C;D = PUSH
(

Def(C)∩ (TBR∪Use
(

C
)

)
)

C

(TBR∪Use
(

C
)

)\Def(C) ` D

POP
(

Def(C)∩ (TBR∪Use
(

C
)

)
)

TBR `C

Adjoint Data-Flow analyses applied to checkpointing – p.5/13

The checkpointing case

My goal is to extend this scheme to checkpoints.

Take some big part C and checkpoint it:
I′ now becomes TBR `C.

TBR `C;D = PUSH
(

Def(C)∩ (TBR∪Use
(

C
)

)
)

C

(TBR∪Use
(

C
)

)\Def(C) ` D

POP
(

Def(C)∩ (TBR∪Use
(

C
)

)
)

TBR `C

We’ll call this scheme «store later» because it postpones the save

of Use
(

C
)

in the downstream.

Adjoint Data-Flow analyses applied to checkpointing – p.5/13

The checkpointing case 2

But you could also do this

TBR ` I;D = PUSH(Def(C)∩TBR))

PUSH
(

Def(C)∩Use
(

/0 `C
)

)
)

C

(TBR∪Use
(

C
)

)\Def(C) ` D

POP
(

Def(C)∩Use
(

/0 `C
)

)
)

/0 `C

POP(Def(C)∩TBR))

Adjoint Data-Flow analyses applied to checkpointing – p.6/13

Current tapenade checkpointing scheme

Here is another scheme: «store early».
We store all variables in Use

(

C
)

that may be killed later.

TBR ` I;D = PUSH(Def(C)∩TBR))set1

PUSH
(

Def(C;D)∩Use
(

C
)

)
)set2

C

(TBR∪Use
(

C
)

)\(set1∪ set2) ` D

POP(set2)

/0 `C

POP(set1)

Adjoint Data-Flow analyses applied to checkpointing – p.7/13

A code where store early is bad

Loop proc1(Use state,Def A)

proc2(Use state,Def B)

proc3(Use state,Def C)

proc4(Use ABC,Def state)

Let’s try to differentiate it checkpointing each proc.

Adjoint Data-Flow analyses applied to checkpointing – p.8/13

A code where store early is bad

Loop PUSH(state)

proc1(Use state,Def A)

PUSH(state)

proc2(Use state,Def B)

PUSH(state)

proc3(Use state,Def C)

PUSH(A,B,C)

proc4(Use ABC,Def state)

It’s not really good, each time we save state, we save the same

values. Let’s try to use the «store later» checkpointing scheme.

Adjoint Data-Flow analyses applied to checkpointing – p.8/13

A code where store early is bad

Loop PUSH(A)

f unction1(Use() = state,Def() = A)

PUSH(B)

f unction2(Use() = state,Def() = B)

PUSH(C)

f unction3(Use() = state,Def() = C)

PUSH(state)

f unction4(Use() = A,B,C,Def() = state = state)

Yeah, it’s better.

Adjoint Data-Flow analyses applied to checkpointing – p.8/13

A code where store later is bad

Look at this code:

Loop f unction1(use = arrayA)

doi = 1,nA(i) = 0.0# Re-init A

dok = 1,mA(indir(k)) = A(indir(k))+ ...# Gather loop

Suppose m >> n if we apply a «store later» scheme to A we’ll store too much cells of A.

Loop f unction1(use = arrayA)

doi = 1,nPUSH(A(i))A(i) = 0.0# Re-init A

dok = 1,mPUSH(A(indir(k)))A(indir(k)) = A(indir(k))+ ...# Gather loop

If instead we used «store early»:

Loop PUSH(A)

f unction1(use = arrayA)

doi = 1,nA(i) = 0.0# Re-init A

dok = 1,mA(indir(k)) = A(indir(k))+ ...# Gather loop

Adjoint Data-Flow analyses applied to checkpointing – p.9/13

So there is a choice to make...

� We need rules or heuristics for choosing one of the scheme
for each variable at each checkpoint site (in Tapenade they
are call site).

� The «store later» seems the more natural scheme.

� The «store early» scheme should be used if we can infer an
array is going to be completely written once or more.

Adjoint Data-Flow analyses applied to checkpointing – p.10/13

Numerical results

On one of our test code using the current Tapenade scheme i was getting those resources utilisation:

VALIDATION TESTS FOR selmin-uns2d:

Time of original function: 2.269999962300062

Time of tangent AD function: 7.000000000000000

Time of reverse AD function: 25.48999786376953

Max Stack size: 15876 blocks of 16384 bytes

with a always «store later» scheme, i got those results:

VALIDATION TESTS FOR selmin-uns2d:

Time of original function: 2.289999943226576

Time of tangent AD function: 7.090000152587891

Time of reverse AD function: 22.73000049591064

Max Stack size: 11815 blocks of 16384 bytes

It’s a 26% gain in terms of memory and a 11% gain on cpu, without even knowing the code.

Adjoint Data-Flow analyses applied to checkpointing – p.11/13

Conclusion

� We still need better data flow information on our codes.

� We must use this information to choose the good structure
for our adjoint codes, like where to put checkpoints and how
to do them.

Adjoint Data-Flow analyses applied to checkpointing – p.12/13

Other kind of work i’m working on..

� Reversing the data flow instructions:

� Easy if the new value is a stricly affine function of the old value:

Forward Reverse

a[i] += b*c+d... a[i] -= b*c+d...

� Harder:

Forward Reverse

do i = 1,m
v1 = face(1)(i)
v2 = face(1)(i)
v3 = face(1)(i)
x(1) = vertex(1)(v1)
y(1) = vertex(2)(v1)
z(1) = vertex(3)(v1)
|...|
z(3) = vertex(3)(v3)
function1(x,y,z,...)

enddo

do i = m, 2
function1_bar()
v1 = face(1)(i-1)
v2 = face(1)(i-1)
v3 = face(1)(i-1)
x(1) = vertex(1)(v1)
y(1) = vertex(2)(v1)
z(1) = vertex(3)(v1)
|...|
z(3) = vertex(3)(v3)

enddo
if (m > 0)

function1_bar()
endif

for doing something like this you

need iteration aware data flow analysis, you find them in parallelizing compiler like Open64 or next

version of gcc.

Adjoint Data-Flow analyses applied to checkpointing – p.13/13

	Why checkpoints?
	How can we do it?
	What should we save?
	The checkpointing case
	The checkpointing case 2
	Current tapenade checkpointing scheme
	A code where store early is bad
	A code where store later is bad
	So there is a choice to make...
	Numerical results
	Conclusion
	Other kind of work i'm working on..

