
.

Automatic Differentiation

by Program Transformation

Laurent Hascoët

INRIA Sophia-Antipolis, TROPICS team

http://www-sop.inria.fr/tropics/

(version: april 2007)

1

Contents

1 Introduction 4

2 Automatic Differentiation of Programs 4
2.1 Computer Programs and Mathematical Functions 6
2.2 The Tangent Mode of Automatic Differentiation 9
2.3 The Reverse Mode of Automatic Differentiation 11

3 Motivating Applications of Reverse AD 17
3.1 Inverse Problems and Data Assimilation 17
3.2 Optimization in Aerodynamics 22

4 Static Data Flow Analyses for a better AD 25
4.1 Activity Analysis and reinitializations of derivatives 28
4.2 TBR Analysis . 30
4.3 Detection of Aliasing . 30
4.4 Dead Adjoint Code . 31
4.5 Undecidability . 32

5 AD Tools and TAPENADE 33
5.1 TAPENADE . 35

6 Validation of Differentiated Programs 44

7 Conclusion 45

2

List of Figures

1 AD in tangent mode . 10
2 Comparison of Tangent and Reverse AD modes 11
3 The “Recompute-All” tactic 13
4 The “Store-All” tactic . 13
5 AD in reverse mode, Store-All tactic 14
6 Checkpointing on the “Recompute-All” tactic 15
7 Checkpointing on the “Store-All” tactic 16
8 Oceanography gradient by reverse AD on OPA 9.0 21
9 Shock wave patterns on the near and far fields. 22
10 Gradient of the Cost Functional on the skin of a jet 24
11 Pressure distribution in a plane below the aircraft 25
12 Names of differentiated symbols 26
13 Differentiation of a simple assignment 27
14 Instructions simplifications due to Activity Analysis 29
15 Removing unnecessary storage through To Be Recorded analysis 30
16 Detection and correction of aliasing in the reverse mode 31
17 Removing useless dead adjoint code 32
18 tapenade’s ID card . 36
19 Overall Architecture of tapenade 38
20 Ordering of generic static data flow analyses in tapenade . . 39
21 Ordering of AD static data flow analyses in tapenade 40
22 HTML interface for tapenade input 41
23 HTML interface for tapenade output 42
24 Checkpointing on calls in tapenade reverse AD 43
25 AD and other ways to compute derivatives 45

3

1 Introduction

We present Automatic Differentiation (AD), an innovative program transfor-
mation technique to obtain derivatives of functions implemented as programs.
Unlike parallelization, AD does not only preserve the semantics of program,
but rather augments it. AD adds new program outputs which are mathe-
matical derivatives of the original results. Efficient AD relies on a range of
program static analysis, some of them specific to AD.

This paper has three main goals:

• to present AD and its theoretical background (section 2)

• to present uses of AD in Scientific Computation (section 3)

• to present the compiler algorithms inside AD tools (section 4)

Section 5 does a general presentation of existing AD tools, with some
emphasis on the tapenade tool developed by our team. Section 6 gives in-
dications on the most popular validation methods for AD-differentiaed codes.
Section 7 concludes with a general picture of AD compared to alternative ap-
proaches, and the current limitations and challenges of AD tools.

2 Automatic Differentiation of Programs

Automatic Differentiation (AD) is a technique to evaluate derivatives of a
function f : X ∈ IRm 7→ Y ∈ IRn defined by a computer program P. In
AD, the original program is automatically transformed into a new program
P’ that computes the derivatives analytically. For reference, we recommend
the monograph [15], selected articles of recent conferences [6, 4], or the AD
community website at www.autodiff.org.

The goal of AD is to compute derivatives without going back to the under-
lying mathematical equations, considering only the source program P. This
will spare a tedious extra discretization and implementation phase. More-
over, sometimes the mathematical equations are not available. How can we
reach this goal? Naturally, one can do divided differences. For a given set
of program’s inputs X, program P computes a result Y . Given now some
normalized direction dX in the space of the inputs, one can run program P

4

again on the new set of inputs X + ε.dX, where ε is some very small positive
number. Divided Differences return an approximation of the derivative by
the formula:

P(X + ε.dX)− P(X)

ε
.

The centered divided differences give a better approximation, at the cost of
an extra run of P by the formula:

P(X + ε.dX)− P(X − ε.dX)

2ε
.

In any case, these are just approximations of the derivatives. Ideally, the
exact derivative is the limit of these formulas when ε tends to zero. But
this makes no sense on a real computer, since very small values of ε lead to
truncation errors, and therefore to erroneous derivatives. This is the main
drawback of divided differences: some trade-off must be found between trun-
cation errors and approximation errors. Finding the best ε requires numerous
executions of the program, and even then the computed derivatives are just
approximations.

To get rid of approximation errors, AD computes derivatives analyti-
cally. Each time the original program holds some variable v, the differenti-
ated program holds an additional variable with the same shape, that we call
the differential of v. Moreover, for each operation in the original program,
the differentiated program performs additional operations dealing with the
differential variables. For example, suppose that the original program comes
to executing the following instruction on variables a, b, c, and array T:

a = b*T(10) + c (1)

Suppose also that variables ḃ, ċ, and array Ṫ are available and contain one
particular sort of differential: the tangent derivatives, i.e. the first-order vari-
ation of b, c, and T for a given variation of the input. Then the differentiated
program must execute additional operations that compute ȧ, using b, c, T

and their differentials ḃ, ċ, and Ṫ. These must somehow amount to:

ȧ = ḃ*T(10) + b*Ṫ(10) + ċ (2)

The derivatives are computed analytically, using the well known formulas
on derivation of elementary operations. Approximation errors, which are a
nuisance when using Divided Differences, have just vanished.

5

At this point, let us mention an elegant manner to implement AD: over-
loading. Overloading is a programming technique, available in several lan-
guages, where one can redefine the semantics of basic functions (such as
arithmetic operations), according to the type of their arguments. For ex-
ample, instruction (1) can easily subsume instruction (2), if only the type of
variables is changed from REAL to pairs of REAL, and the semantics of +, *, etc,
are augmented to compute the derivatives into, say, the second component of
the above pairs of REAL. Even when the language does not support overload-
ing, there is an elegant workaround [20]: just replace all REAL’s by COMPLEX

numbers, and put their derivative into the imaginary part! It is easy to
check that the arithmetic of COMPLEX numbers can be a good approximation
of overloaded operations on derivatives. The advantage of overloading is that
it requires very little code transformation. Drawbacks are that not all lan-
guages support overloading (or COMPLEX numbers), that overloaded programs
are poorly optimized by the compiler, and more importantly that overload-
ing is not suitable for the reverse mode of AD (cf section 2.3). Therefore,
overloading is not the choice method when efficiency is a concern. In this
case, source transformation techniques are preferred, using technology
from compilation and parallelization.

Automatic Differentiation can compute many different sorts of deriva-
tives. At least in theory, it can yield a complete Jacobian matrix, i.e. the
partial derivatives of each output with respect to each input. Higher or-
der differentiation is possible too, e.g. computation of Hessian tensors. In
practice, these mathematical objects are often too large or too expensive to
compute. Therefore, AD can also return smaller objects at a cheaper cost,
e.g directional derivatives, gradients, directional higher-order derivatives, or
Taylor series expansions. Similar techniques apply to domains slightly out-
side of strict differentiation: AD techniques are used to build programs that
compute on intervals or on probabilistic data. We believe the most promis-
ing of these “modes” is the computation of gradients, whereas computation
of first-order directional derivatives (called tangents) is the most straightfor-
ward, and is therefore an interesting basic mode. Let’s look at the theoretical
background that we need for these two particular modes.

2.1 Computer Programs and Mathematical Functions

Remember that we want to compute exact derivatives analytically, based on
a given computer program P which is seen as the principal specification of the

6

mathematical function f to differentiate. Therefore, we need to introduce a
general framework in which programs can be identified with functions. We
first identify programs with sequences of instructions, identified in turn with
composed functions.

Programs contain control, which is essentially discrete and therefore non-
differentiable. Consider the set of all possible run-time sequences of instruc-
tions. Of course there are a lot (often an infinity!) of such sequences, and
therefore we never build them explicitly! The control is just how one tells
the running program to switch to one sequence or another. For example this
small C program piece:

if (x <= 1.0)

printf("x too small");

else {
y = 1.0;

while (y <= 10.0) {
y = y*x;

x = x+0.5;

}
}

will execute according to the control as one of the following sequences of
instructions:

printf("x too small");

y = 1.0;

y = 1.0; y = y*x; x = x+0.5;

y = 1.0; y = y*x; x = x+0.5; y = y*x; x = x+0.5;

y = 1.0; y = y*x; x = x+0.5; y = y*x; x = x+0.5; y = y*x; x = x+0.5;

and so on... Each of these sequences is differentiable. The new program
generated by Automatic Differentiation uses the original program’s control
to guarantee it computes the differentials of the actual run-time sequence of
instructions. This is only piecewise differentiation. Thus, this differentiated
program will probably look like:

7

if (x <= 1.0)

printf("x too small");

else {
dy = 0.0;

y = 1.0;

while (y <= 10.0) {
dy = dy*x + y*dx;

y = y*x;

x = x+0.5;

}
}

However it sometimes happens, like in this example, that the control itself
depends on differentiated variables. In that case, a small change of the initial
values may result in a change of the control. Here, a small change of x may
change the number of iterations of the while loop, and the derivative is not
defined any more. Yet the new program generated by Automatic Differen-
tiation will return a result, and using this derivative may lead to errors. In
other words, the original program, with control, is only piecewise differen-
tiable, and “state of the art” AD does not take this into account correctly.
This is an open research problem. In the meantime, we simply assume that
this problem happens rarely enough. Experience on real programs shows
that this is a reasonable assumption. However, this problem is widely known
and it limits the confidence end-users place into AD.

Now that programs are identified with sequences of instructions, these
sequences are identified with composed functions. Precisely, the sequence of
instructions :

I1; I2; ...Ip−1; Ip;

is identified to the function :

f = fp ◦ fp−1 ◦ . . . ◦ f1

Each of these functions is naturally extended to operate on the domain of all
the program variables: variables not overwritten by the instruction are just
transmitted unchanged to the function’s result. We can then use the chain

8

rule to write formally the derivative of the program for a given input X :

f ′(X) = (f ′

p ◦ fp−1 ◦ fp−2 ◦ . . . ◦ f1(X))
. (f ′

p−1 ◦ fp−2 ◦ . . . ◦ f1(X))
. . . .
. (f ′

1(X))
= f ′

p(Wp−1) . f ′

p−1(Wp−2) f ′

1(W0)

(3)

Each f ′

k, derivative of function fk, is a Jacobian matrix. For short, we defined
W0 = X and Wk = fk(Wk−1) to be the values of the variables just after exe-
cuting the first k instructions. Computing the derivatives is just computing
and multiplying the elementary Jacobian matrices f ′

k(Wk−1).
Let us conclude this section with some bad news: for average size ap-

plications, the Jacobian matrix f ′(X) is often too large! Therefore it is not
reasonable to compute it explicitly: the matrix-matrix products would be too
expensive, and the resulting matrices would be too large to be stored. Ex-
cept in special cases, one must not compute f ′(X). Fortunately, many uses
of derivatives do not need f ′(X), but only a “view” of it, such as f ′(X).Ẋ
for a given Ẋ or f ′t(X).Y for a given Y . These two cases will be discussed
in the next two sections.

2.2 The Tangent Mode of Automatic Differentiation

For some applications, what is needed is the so-called sensitivity of a program.
For a given small variation Ẋ in the input space, we want the corresponding
first-order variation of the output, or “sensitivity”. By definition of the
Jacobian matrix, this sensitivity is Ẏ = f ′(X).Ẋ. Historically, this is the
first application of AD, probably because it is the easiest.

Recalling equation (3), we get:

Ẏ = f ′

p(Wp−1) . f ′

p−1(Wp−2) f ′

1(W0) . Ẋ (4)

To compute Ẏ efficiently, one must of course do it from right to left, be-
cause Matrix×Vector products are so much cheaper than Matrix×Matrix
products. This turns out to be easy, because this formula requires W0 first,
and then W1, and so on until Wp−1. In other words, the intermediate values
from the original program P are used as they are computed. Differentiated
instructions, that compute the Jacobian matrices and multiply them, can be

9

done along with the initial program. We only need to interleave the original
instructions and the derivative instructions.

In the tangent mode, the differentiated program is just a copy of the given
program, Additional derivative instructions are inserted just before each in-
struction. The control structures of the program are unchanged, i.e. the Call
Graph and Flow Graph have the same shape in P and P’. Figure 1 illustrates
AD in tangent mode. On the left column is an example subroutine, that
measures a sort of discrepancy between two given arrays T and U. The right
column shows the tangent differentiated subroutine, which computes tangent
derivatives, conventionally shown with a dot above. For example, the differ-
entiated instruction that precedes instruction e = SQRT(e2), implements the
following vector assignment that multiplies the instruction’s elementary Ja-
cobian by the vector of tangent derivatives:

[

ė2

ė

]

=

[

1 0
0.5/
√
e2 0

]

.

[

ė2

ė

]

original: T,U 7→ e tangent mode: T,Ṫ,U,U̇ 7→ e,ė

e2 = 0.0

do i=1,n

e1 = T(i)-U(i)

e2 = e2 + e1*e1

end do

e = SQRT(e2)

ė2 = 0.0

e2 = 0.0

do i=1,n

ė1 = Ṫ(i)-U̇(i)

e1 = T(i)-U(i)

ė2 = ė2 + 2.0*e1*ė1

e2 = e2 + e1*e1

end do

ė = 0.5*ė2/SQRT(e2)

e = SQRT(e2)

Figure 1: AD in tangent mode

The tangent mode of AD is rather straightforward. However, it can ben-
efit from some specific optimizations based on static analysis of the program.
In particular activity analysis (cf section 4.1) can vastly simplify the tangent
differentiated program, by statically detecting derivatives that are always
zero.

10

2.3 The Reverse Mode of Automatic Differentiation

Maybe the most promising application of AD is the computation of gradients
of a program. If there is only one scalar output f(X) = y (n = 1), the
Jacobian f ′(X) has only one row, and it is called the gradient of f at point X.
If n > 1, one can go back to the first case by defining a weighting Y , such that
< f(X).Y > is now a scalar. If the components of f(X) were some kind of
optimization criteria, this amounts to defining a single optimization criterion
< f(X).Y >, whose gradient at point X can be computed. By definition of
the Jacobian matrix, this gradient is X = f ′t(X).Y . This gradient is useful
in optimization problems (cf section 3), because it gives a descent direction
in the input space, used to find the optimum.

Recalling equation (3), we get:

X = f ′t
1 (W0) . f ′t

2 (W1) f ′t
p−1(Wp−2) . f ′t

p (Wp−1) . Y (5)

Here also, efficient computation of equation (5) must be done from right to
left. Again, one can show that the computation cost of this gradient is only
a small multiple of the computation cost of the original function f by P.
Figure 2 underlines this contrast between tangent and reverse modes of AD:
the program Ṗ resulting from the tangent mode of AD, which also costs a small
multiple of P’s execution time, returns only a column of the Jacobian Matrix.
To obtain the full Jacobian, or equivalently the gradient when there is only
one output, one must run Ṗ once for each element of the Cartesian basis of

()[

]m inputs

n outputs

Gradient

Tangent

Figure 2: Comparison of Tangent and Reverse AD modes

the input space. Therefore the cost of computing the Jacobian using the

11

tangent mode is proportional to the dimension of the input space. Similarly,
to compute the Jacobian using Divided Differences also requires a number of
evaluations of P proportional to the dimension of the input space. For each
basis direction ei in the input space, i.e. for each component of vector X,
one must run P at least once for X + ε.ei, and in fact more than once to find
a good enough ε. In contrast, the program P resulting from the reverse mode
of AD, which also costs a small multiple of P’s execution time, returns a row
of the Jacobian Matrix. To obtain the full Jacobian, one must run P once for
each element of the Cartesian basis of the output space. If m >> n and in
particular when there is only one output, the reverse mode of AD provides
the gradient at a much cheaper cost.

However, there is a difficulty with the reverse mode: the intermediate
values Wp−1 are used first, and then Wp−2, and so on until W0. This is
the inverse of their computation order in program P. A complete execution
of P is necessary to get Wp−1,and only then can the Jacobian×vector prod-
ucts be evaluated. But then Wp−2 is required, whereas instruction Ip−1 may
have overwritten it! There are mainly two ways to achieve this, called the
Recompute-All (RA) and the Store-All (SA) approaches.

The RA approach recomputes each needed Wk on demand, by restart-
ing the program on input W0 until instruction Ik. This is the fundamental
tactic of the AD tool tamc/taf [11]. The cost is extra execution time,
grossly proportional to the square of the number of run-time instructions p.
Figure 3 summarizes this tactic graphically. Left-to-right arrows represent
execution of original instructions Ik, right-to-left arrows represent the execu-
tion of the reverse instructions Ik which implement W k−1 = f ′t

k (Wk−1).W k.
The big black dot represents the storage of all variables needed to restart
execution from a given point, which is called a snapshot, and the big white
dots represent restoration of these variables from the snapshot.

The SA approach stores each Wk in memory, onto a stack, during a pre-
liminary execution of program P, known as the forward sweep. Then follows
the so-called backward sweep, which computes each f ′t

k (Wk−1) for k = p down
to 1, popping the Wk−1 from this stack upon demand. This is the basic tac-
tic in AD tools adifor [3, 5] and tapenade. The cost is memory space,
essentially proportional to the number of run-time instructions p. Figure 4
summarizes this tactic graphically. Small black dots represent storage of the
Wk on the stack, before next instruction might overwrite them, and small
white dots represent their popping from the stack when needed. We draw
these dots smaller than on figure 3 because it turns out we don’t need to store

12

time

I I I I I

I

I

I

I

I

1 2 3 p-2 p-1

p

p-1

2

1

1

Figure 3: The “Recompute-All” tactic

all Wk, but only the variables that will be overwritten by Ik+1. Figure 5 il-

time

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

Figure 4: The “Store-All” tactic

lustrates AD in reverse mode, using the SA approach as done by tapenade.
Actually, tapenade generates a simplified code, resulting from static analy-
sis and improvements described later in this paper(section 4.2). For clarity,
figure 5 does not benefit from these improvements. The original program is
the one of figure 1. Reverse derivatives are conventionally shown with a bar
above. The forward sweep is on the left column, and the backward sweep on
the right. Notice that in the backward sweep, the do loop now runs from
i=n down to 1. Considering again instruction e = SQRT(e2), differentiation
produces the following vector assignment that multiplies the instruction’s
transposed elementary Jacobian by the vector of reverse derivatives:

[

e2

e

]

=

[

1 0.5/
√
e2

0 0

]

.

[

e2

e

]

This takes two derivative instructions, because e must be reset to zero.
Notice furthermore the calls to PUSH and POP, that store and retrieve the
intermediate values of variables e1 and e2: in practice, not all values need

13

reverse mode: T,U,e 7→ T,U

forward sweep: backward sweep:
e2 = 0.0

do i=1,n

PUSH(e1)

e1 = T(i)-U(i)

PUSH(e2)

e2 = e2 + e1*e1

end do

e = SQRT(e2)

e2 = 0.0

e1 = 0.0

e2 = e2 + 0.5*e/SQRT(e2)

e = 0.0

do i=n,1,-1

POP(e2)

e1 = e1 + 2*e1*e2

POP(e1)

T(i) = T(i) + e1

U(i) = U(i) - e1

e1 = 0.0

end do

e2 = 0.0

Figure 5: AD in reverse mode, Store-All tactic

be stored before each instruction (cf section 4.2). Only the value(s) that are
going to be overwritten need be stored.

The RA and SA approaches appear very different. However, on large
programs P, neither the RA nor the SA approach can work. The SA approach
uses too much memory (almost proportional to the run-time number of
instructions). The RA approach consumes computation time (it will grossly
square the run-time number of instructions). Both ways need to use a special
trade-off technique, known as checkpointing. The idea is to select one or
many pieces of the run-time sequence of instructions, possibly nested. For
each piece p, one can spare some repeated recomputation in the RA case,
some memory in the SA case, at the cost of remembering a snapshot, i.e. a
part of the memory state at the beginning of p. On real programs, language
constraints usually force the pieces to be subroutines, loops, loop bodies, or
fragments of straight-line code.

There has been little work on the evaluation and comparison of these
strategies. With the notable exception of Griewank’s schedule of nested
checkpoints (SA strategy) [14], which was proved optimal for P being a loop
with a fixed number of iterations [16], there is no known optimal check-
pointing strategy for arbitrary programs. Moreover, no theoretical compari-

14

son between the RA and SA approaches exist, nor a common framework in
which these approaches could be combined. This is an open research prob-
lem, which could yield a huge benefit for AD tools, and help disseminate AD
among users.

Let us now compare checkpointing on RA and SA in the ideal case of a
pure straight-line program. We claim that checkpointing makes RA and SA
come closer. Figure 6 shows how the RA approach can use checkpointing for
one program piece p (the first part of the program), and then for two levels
of nested pieces. On very large programs, 3 or more nested levels can be
useful. At the second level, the memory space of the snapshot can be reused
for different program pieces. The benefit comes from the checkpointed piece
being executed fewer times. The cost is memory storage of the snapshot,
needed to restart the program just after the checkpointed piece. The benefit
is higher when p is at the beginning of the enclosing program piece. Similarly,

time

p{
time

Figure 6: Checkpointing on the “Recompute-All” tactic

figure 7 shows how the SA approach can use the same one-level and two-
levels checkpointing schemes. Again, the snapshot space used for the second

15

level of checkpointing is reused for two different program pieces. The benefit
comes from the checkpointed piece being executed the first time without any
storage of intermediate values. This divides the maximum size of the stack by
2. The cost is again the memory size of the snapshots, plus this time an extra
execution of the program piece p. This makes the two schemes come closer
as the number of nested checkpointing levels grow. On figure 6, the part on

time

p{
time

Figure 7: Checkpointing on the “Store-All” tactic

a gray background is a smaller scale reproduction of the basic RA scheme of
figure 3. Similarly on figure 7, the gray box is a smaller scale reproduction
of the basic SA scheme of figure 4. Apart from what happens at the “leaves”
(the gray boxes), the figures 6 and 7 are identical. This shows that RA and
SA with intense checkpointing can differ very little. The question remains
to compare pure SA and pure RA, but it becomes less crucial as these are
applied to smaller pieces of the program. However, we believe SA is more
efficient, especially on small pieces of program, because the stack can stay in
cache memory. We chose the SA approach for our AD tool tapenade. But
SA could do better with some amount of recomputing!

16

3 Motivating Applications of Reverse AD

3.1 Inverse Problems and Data Assimilation

We call inverse all problems where unknown values cannot be measured
directly, but instead we know some other measurable values which are con-
sequences of – or depend on – the unknown. Given actual measures of the
measurable values, the inverse problem is how to find the unknown values
which are behind them.

To do this, we assume we have a physical model that we believe represents
the way the unknown values determine the measurable values. When this
model is complex, then the inverse problem is nontrivial. From this physical
model we get a mathematical model, which is in general a set of partial
differential equations. Let us also assume, but this is not absolutely necessary,
that from the mathematical model, through discretization and resolution, we
get a program that computes the measurable values from the unknown values.

Let us formalize the problem. This classical formalization comes from
optimal control theory and a good reference is [21]. We are studying the
state W of a given system. In general, this state is defined for every point
in space, and also if time is involved for every instant in an observation
period [0, T]. Traditionally, the time coordinate is kept apart from the others
(i.e. space). The mathematical model relates the state W to a number of
external parameters, which are the collection of initial conditions, boundary
conditions, model parameters, etc, i.e. all the values that determine the
state. Some of these parameters, that we call γ, are the unknown of our
inverse problem. In general this relation between W and γ is implicit. It is
a set of partial differential equations that we write:

Ψ(γ, W) = 0 (6)

Equation (6) takes into account all external parameters, but we are only
concerned here by the dependence on γ. In optimal control theory, we would
call γ our control variable.

Any value of γ thus determines a state W (γ). We can easily extract from
this state the measurable values, and of course there is very little chance that
these values exactly match the values actually measured Wobs. Therefore
we start an optimization cycle to modify the unknown values γ, until the
resulting measurable values match best. We thus define a cost function that
measures the discrepancy on the measurable values in W (γ). In practice, not

17

all values in W (γ) can be measured in Wobs, but nevertheless we can define
this cost function J as the sum at each instant of some squared norm of the
discrepancy of each measured value ‖W (γ)−Wobs‖2.

j(γ) = J(W (γ)) =
1

2

∫ T

t=0

‖W (γ)(t)−Wobs(t)‖
2dt (7)

Therefore the inverse problem is to find the value of γ that minimizes j(γ),
which is such that j′(γ) = 0. If we use a gradient descent algorithm to find
γ, then we need at least to find the value of j′(γ) for each γ.

Here are two illustration examples:

• If the system we study is a piece of earth crust, it is difficult to mea-
sure directly the locations of the different layers of rock. However,
these locations condition shock wave propagation, and eventually con-
dition the measurable delay after which an initial shock is received at
a distant place. So γ is the location of layers of rock, Ψ models wave
propagation inside the rock, W is the position of the waves at each in-
stant, from which we deduce the theoretical reception delays at points
of measurement. J is the discrepancy we must minimize to find the
best estimation of rock layers location. The same method applies to
find an unknown drag coefficient of the bottom of a river, given the
model Ψ that captures the shape of the river bed, and measured values
of the river’s surface shape and input flow.

• In meteorology, the system studied is the evolution of the atmosphere.
The data assimilation problem looks for the best estimation of the
initial state from which the simulation will start. This initial state W0

at t = 0 is largely unknown. This is our γ. All we have is measurements
at various places for various times in [0, T]. We also know that this
initial state and all later states in [0, T] must obey the atmospheric
equations Ψ(γ, W) = 0. The inverse problem that looks for the initial
state γ = W0 that generates the sequence of states at each time in
[0, T] which is closest to the observed values, using a gradient descent,
is called variational data assimilation.

To find j′(γ), the mathematical approach first applies the chain rule to
equation (7), yielding:

j′(γ) =
∂J(W (γ))

∂γ
=

∂J

∂W

∂W

∂γ
(8)

18

The derivative of W with respect to γ comes from the state implicit equa-
tion (6), which we differentiate with respect to γ to get:

∂Ψ

∂γ
+

∂Ψ

∂W

∂W

∂γ
= 0 (9)

Assuming this can be solved for ∂W
∂γ

, we can then replace it into equation (8)
to get:

j′(γ) = − ∂J

∂W

∂Ψ

∂W

−1∂Ψ

∂γ
(10)

Now is the time to consider complexity of resolution. Equation (10)
involves one system resolution and then one product. First notice that

∂Ψ

∂W

is definitely too large to be computed explicitly, and therefore its inverse can-
not be computed and stored either. Nowadays both Ψ and W are discretized
with millions of dimensions. So our choices are either to run an iterative
resolution for

∂Ψ

∂W

−1 ∂Ψ

∂γ
(11)

and then multiply the result by ∂J
∂W

, or else to run an iterative resolution for

∂J

∂W

∂Ψ

∂W

−1

(12)

and then multiply the result by ∂Ψ

∂γ
. We notice that ∂Ψ

∂γ
has many columns,

following the dimension of γ, which can be several thousands. Therefore
computation of (11) requires as many resolutions of the linear system

∂Ψ

∂W
x =

∂Ψ

∂γ

Conversely, j is a scalar, ∂J
∂W

is a row vector, and it takes only one resolution
to compute (11), solving

Π∗
∂Ψ

∂W
=

∂J

∂W

19

for Π, which is called the adjoint state. This second approach is more efficient.
To summarize, this preferred adjoint method first solves

∂Ψ

∂W

∗

.Π =
∂J

∂W

∗

for the adjoint state Π, then just computes

j′(γ) = −Π∗
∂Ψ

∂γ

Suppose now that we already have a resolution program, i.e. a procedure
PΨ which, given γ, returns Wγ . We also have a procedure Pj which, given
a W , evaluates the cost function, i.e. the discrepancy between W and the
observed Wobs. Then we can avoid all the programming step involved by the
above mathematical method, using AD. Automatic Differentiation in reverse
mode of the program that computes

j = Pj(PΨ(γ))

directly gives the gradient of j, i.e. the desired j′(γ). This is indeed very
close to the mathematical resolution with the adjoint state: the reverse mode
actually computes a discretized adjoint on the program. One difference is
that the adjoint mechanism is applied to the whole program Pj◦PΨ, including
the resolution algorithm, whereas the resolution algorithm for Π above may
be different from the resolution algorithm for W .

So to get j′(γ), we can either write the adjoint equations, then discretize
them and solve them, or else we can use the reverse mode of AD on the
program that computes j from γ. The first method is more difficult, because
it involves a new implementation. The second method ideally doesn’t require
additional programming.

There is a difficulty though. The resolution for j′(γ) by AD uses reverse
differentiation of PΨ. PΨ takes γ and returns W , computed iteratively. PΨ

takes W and returns γ, computed iteratively with the same number of iter-
ations. The question is “will this second iteration converge?”. Jean-Charles
Gilbert has shown [12] that under some complex but widely satisfied con-
straints, if an iterative resolution converges to a result, then its AD derivative
converges to the derivative of the result. So we are confident that PΨ eventu-
ally converges to the desired γ. But we are not sure it will converge at same
speed! In other words, it is not sure that an efficient algorithm to compute
W (γ) and then j(γ) yields an efficient resolution algorithm to compute j′(γ).

20

The next section illustrates an hybrid approach that uses the AD reverse
derivatives for the non-iterative part of the resolution, and then solves the
adjoint system by hand with an ad-hoc resolution algorithm. This may be
an answer to the difficulty above.

Before that, let’s illustrate the use of reverse AD as described above, on
an example taken from Oceanography. OPA 9.0 is a large oceanography
code. One of its simplest “configurations” i.e. test cases, known as GYRE,
simulates the behavior of a rectangular basin of water put on the tropics
between latitudes 15o and 30o, with the wind blowing to the East. In order
to perform data assimilation, we need a gradient of an objective function,
related to the heat flux across some boundary at the northern angle, with
respect to an initial parameter, which is the temperature field in the com-
plete domain 20 days before. This system was discretized with 32× 22× 31

Influence of T at -300 metre

on the heat flux 20 days later

across north section

30o North

15o North

@@@@
-

HHHHHY

Kelvin wave

HHHHHHHY

Rossby wave

Figure 8: Oceanography gradient by reverse AD on OPA 9.0

nodes and 4320 time steps. The original simulation took 92 seconds, and the
differentiated program computed the gradient above in 657 seconds, which is
only seven times as long! Of course checkpointing was absolutely necessary
to reverse this long simulation, yielding several recomputations of the same

21

program steps, but nevertheless the factor seven is much better than what
divided differences would require.

3.2 Optimization in Aerodynamics

This application uses AD to optimize the shape of a supersonic aircraft, in
order to minimize the sonic boom felt on the ground. The problem, shown
on figure 9, is modeled numerically as the following chain of operations, that

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

Sonic Boom N−Wave

p

Tail Wave

Bow Wave

(far field)

Sonic Boom Downwards Emission
Control Box (near field)

Figure 9: Shock wave patterns on the near and far fields.

go from the parameters γ that define the geometry of the plane to a measure
of the sonic boom on the ground, the cost function j(γ).

Control Euler Pressure Cost
points ⇒ Geometry ⇒ flow ⇒ shock ⇒ function

γ Ω(γ) W (γ) ∇p(W) j(γ)

The intermediate steps are: the complete geometry Ω(γ) of the plane, the
Euler flow W (γ) around this geometry, and the pressure gradients ∇p(W)
under the plane. The cost function j(γ) actually combines the integral of
the squared pressure gradients with the discrepancy from prescribed lift and
drag coefficients.

We want to minimize j(γ), using a gradient method, by iterative modifi-
cations of the shape parameters γ. This gradient descent is driven by j′(γ),
which we must compute.

22

Since the chain from γ to j(γ) is actually a program, we can apply AD
in the reverse mode to the complete program to get j′(γ). However this
is impractical due to the size of the program. Remember that the reverse
mode, with the Store-All strategy, has a memory cost proportional to the
execution time of the program. There are also questions about convergence:
the original program solves the flow W (γ) iteratively. It is not sure whether
it makes sense to differentiate this complete iterative process.

We proposed in [19] an hybrid approach, where we only apply AD to
selected parts of the original program, then use the differentiated pieces in
a new, hand-coded solver, yielding the adjoint of the discretized flow equa-
tions and finally the gradient. A different approach is described in [13].
We go back to the mathematical equations. Basically, we consider a mini-
mization problem under a particular additional constraint: the flow equation
Ψ(γ, W (γ)) = 0, which expresses the dependence of the flow field W (γ) on
the shape γ. We thus want to find the γ0 that minimizes the cost func-
tional j(γ) = J(γ, W (γ)), under the constraint Ψ(γ, W (γ)) = 0. Here,
this constraint is the compressible Euler equations, solved in a domain Ωγ

parametrized by γ. This minimization problem is solved using Lagrange
multipliers. The problem’s Lagrangian is

L(W, γ, Π) = J(γ, W) + 〈Ψ(γ, W), Π〉, (13)

where Π is the adjoint state, which is a generalized Lagrange multiplier, and
〈 , 〉 is a suitable scalar product. Then the gradient j′(γ) is found by solving

Ψ(γ, W (γ)) = 0

∇W J(γ, W (γ)) − (∇WΨ(γ, W (γ)))∗ Π(γ) = 0

j′(γ) = ∇γJ(γ, W (γ)) − (∇γΨ(γ, W (γ)))∗ Π(γ). (14)

The first line gives W (γ). The second line is the so-called adjoint flow equa-
tion, and gives the adjoint state Π(γ). The last line gives the gradient j′(γ)
using Π(γ) and W (γ). This gradient will be used to update iteratively the
former γ.

We then remark that, if we isolate the subprogram Psi of the flow solver
program P that computes Ψ(γ, W (γ)), the reverse mode of AD can build au-
tomatically a new subprogram PsiW . This new subprogram, given any vec-
tor Π, returns the product (∇W Ψ(γ, W (γ)))∗ Π. Differentiation with respect
to γ instead of W gives another subprogram Psiγ that for any Π returns

23

(∇γΨ(γ, W (γ)))∗ Π. Similarly, if we isolate the subprogram J that com-
putes the cost function J(γ, W (γ)), the reverse mode of AD automatically
builds subprograms JW and Jγ that respectively compute ∇WJ(γ, W (γ)) and
∇γJ(γ, W (γ)).

With these subroutines generated, what remains to be done by hand to get
j′(γ) is the solver that solves the adjoint flow equation for Π. Notice that AD
does not give us the matrix (∇W Ψ(γ, W (γ)))∗ explicitly. Anyway this (2nd-
order) Jacobian matrix, although sparse, is too large for efficient storage and
use. Therefore, we build a matrix-free linear solver. Fortunately, we just need
to modify the algorithm developed for the flow solver P. P uses a simplified
(1st-order) Jacobian for preconditioning the pseudo-Newton time advancing.
This matrix is stored. We just transpose this simplified Jacobian and reuse
its Gauss-Seidel solver to build a preconditioned fixed-point iteration, that
solves the adjoint flow equation. We validated the resulting gradient by direct
comparison with divided differences of the cost function. The relative error
is about 10−6.

The overall optimization process is made of two nested loops. The outer
loop evaluates the gradient, using an adjoint state as described above, then
calls the inner loop which does a 1D search to get the steepest descent pa-
rameter, and finally updates the control parameters

Figure 10: Gradient of the Cost Functional on the skin of a jet

We applied this optimization program on the shape of a Supersonic Busi-
ness Jet, currently under development at Dassault Aviation. The mesh con-

24

sists of 173526 nodes and 981822 tetrahedra (for half of the aircraft). The
inflow Mach number is 1.8 and the angle of attack is 3◦. We target opti-
mization of the wings of the aircraft only. Even then, the flow, the adjoint
state, and the gradient j′(γ) are computed taking into account the complete
aircraft geometry. Figure 10 shows the gradient of our “sonic boom” cost
functional j on the skin on the complete aircraft. Darker colors indicate
places where modifying the shape strongly improves the sonic boom.

original geometry optimized geometry

Figure 11: Pressure distribution in a plane below the aircraft

Figure 11 shows the evolution of the pressure on the near field, after 8
optimization cycles. We observe that the shock produced by the outboard
part of the wings is dampened. However, within the Mach cone, close to
the fuselage, the pressure peak has slightly increased after the optimization
process. This increase is tolerable, compared to the reduction obtained on
the end of the wings.

4 Static Data Flow Analyses for a better AD

There is an already very large collection of Data Flow analyses developed
for compilers (standard, optimizing, or parallelizing). However, AD exhibits
specific behaviors that require new data flow analyses. In this section, we
describe these new analyses and show their interest. These analyses can be
formalized cleanly and implemented efficiently on programs internally kept as
Flow Graphs, using so-called “data flow equations”. These equations can even

25

be used to prove desirable properties of these analyses, such as termination
or optimality to some extent.

We shall focus on “activity” analysis, which is central to all modes of
AD, in section 4.1. Section 4.2 focuses on an analysis for the reverse mode,
called “TBR”. Section 4.3 says a word about the consequences of “aliasing”
in reverse AD. In section 4.4, we present extensions to “dead code” detection,
that can also improve AD-generated code.

The sequel will show example pieces of differentiated code, using the
notations and conventions of our AD tool tapenade. Let’s present these
conventions briefly.

First consider symbol names. If a variable v is of differentiable type
(e.g. a floating point real), and currently has a non-trivial derivative (cf
activity 4.1), this derivative is stored in a new variable that tapenade names
after v as follows: vd (”v dot”) in tangent mode, and vb (”v bar”) in reverse
mode. Derivative names for user-defined types, procedures and COMMONS are
built appending “ d” in tangent mode and “ b” in reverse mode. Figure 12
summarizes that.

original program tangent AD reverse AD
SUBROUTINE T1(a)

REAL a(10)

REAL w

INTEGER jj

TYPE(OBJ1) b(5)

COMMON /param/ jj,w

SUBROUTINE T1_D(a,ad)

REAL a(10),ad(10)

REAL w,wd

INTEGER jj

TYPE(OBJ1) b(5)

TYPE(OBJ1_D) bd(5)

COMMON /param/ jj,w

COMMON /param_d/ wd

SUBROUTINE T1_B(a,ab)

REAL a(10),ab(10)

REAL w,wb

INTEGER jj

TYPE(OBJ1) b(5)

TYPE(OBJ1_B) bb(5)

COMMON /param/ jj,w

COMMON /param_b/ wb

Figure 12: Names of differentiated symbols

Now consider an assignment Ik. In tangent mode (cf equation (4)), deriva-
tive instruction İk implements Ẇk = f ′

k(Wk−1).Ẇk−1, with initial Ẇ0 = Ẋ.

In reverse mode (cf equation (5)), derivative instruction(s)
←−
I k implements

W k−1 = f ′∗

k (Wk−1).W k, with initial W p = Y . tapenade, like the other AD
tools, tries to keep the original program’s structure: just like the original
program overwrites variables, the differentiated program overwrites the dif-
ferentiated variables, writing values Ẇk over previous values Ẇk−1 in tangent

26

mode, or writing values W k−1 over previous values W k in the reverse mode.
For example, if Ik is a(i)=x*b(j) + COS(a(i)), it is straightforward to
write the Jacobian of the corresponding function

fk : IR3 → IR3

ȧ(i)

ḃ(j)

ẋ

 7→

ȧ(i)

ḃ(j)

ẋ

which is the matrix

-SIN(a(i)) x b(j)

0 1 0
0 0 1

Recalling that transposing a matrix is just applying a symmetry with respect
to the diagonal, we can write the operations that İk and

←−
I k must implement:

İk implements

ȧ(i)

ḃ(j)

ẋ

 =

-SIN(a(i)) x b(j)

0 1 0
0 0 1

 ×

ȧ(i)

ḃ(j)

ẋ

 ,

←−
I k implements

a(i)

b(j)

x

 =

-SIN(a(i)) 0 0
x 1 0

b(j) 0 1

 ×

a(i)

b(j)

x

 ,

and therefore an AD tool would produce the derivative instructions shown
on figure 13.

tangent AD reverse AD
ad(i) = xd*b(j) &

& + x*bd(j) &

& - ad(i)*SIN(a(i))

xb = xb + b(j)*ab(i)

bb(j) = bb(j) + x*ab(i)

ab(i) = -SIN(a(i))*ab(i)

Figure 13: Differentiation of a simple assignment

27

4.1 Activity Analysis and reinitializations of deriva-
tives

In many real situations, the end-users of AD need only the derivatives of
some selected outputs of P with respect to some selected inputs of P. What-
ever the differentiation mode (tangent, reverse,. . .), these restrictions allow
the AD tool to produce a much more efficient differentiated program. Es-
sentially, fixing some inputs and neglecting some outputs allows AD to just
forget about several intermediate differentiated variables. This has two main
consequences:

• several differentiated variables just disappear from the differentiated
code, because they will contain either null or useless derivatives. Mem-
ory usage of the differentiated code becomes smaller.

• several differentiated instructions are simplified or erased because one
of their derivative arguments has a known trivial value. Execution time
of the differentiated code becomes shorter.

Activity analysis [17] is the specific analysis that detects these situations,
therefore allowing for a better differentiated code. Activity analysis is present
in all transformation-based AD tools.

To begin with, the end-user specifies that only some output variables
(the “dependent”) must be differentiated with respect to only some input
variables (the “independent”). We say that variable y depends on x when the
derivative of y with respect to x is not trivially null. We say that a variable
is “varied” if it depends on at least one independent. Conversely we say that
a variable is “useful” if at least one dependent depends on it. Finally, we say
that a variable is “active” if it is at the same time varied and useful. In the
special case of the tangent mode, it is easy to check that when variable v is
not varied at some place in the program, then its derivative v̇ at this place
is certainly null. Conversely when variable v is not useful, then whatever
the value of v̇, this value does not matter for the final result. Symmetric
reasoning applies for the reverse mode of AD: observing that differentiated
variables go upstream, we see that a useless variable has a null derivative, in
other words the partial derivative of the output with respect to this variable
is null. Conversely when variable v is not varied, then whatever the value of
v, this value does not matter for the final result.

28

Activity analysis is global, running on the complete call graph below the
topmost differentiated procedure. This is why there is no “separate compi-
lation” in AD: the whole call graph must be analyzed globally for a good
activity analysis. Let’s explain in more detail: activity analysis propagates
the information whether each variable depends on an independent, down-
stream on the program. It also propagates the information whether some
dependent depends on each variable, upstream on the program. Each time
this propagation encounters a call to some procedure R, it needs the precise
dependence pattern of each of R’s outputs on each of R’s inputs. This dif-
ferentiable dependency matrix, must be precomputed for each procedure in
the call graph, bottom-up, therefore calling for a global analysis on the call
graph, known as the Differentiable Dependency analysis

original program tangent AD reverse AD
x = 1.0

z = x*y

t = y**2

IF (t .GT. 100) ...

x = 1.0

zd = x*yd

z = x*y

t = y**2

IF (t .GT. 100) ...

x = 1.0

z = x*y

t = y**2

IF (t .GT. 100) ...

...

yb = yb + x*zb

Figure 14: Instructions simplifications due to Activity Analysis

Figure 14 illustrates the benefits of activity analysis. x immediately be-
comes not varied, and t is useless. Therefore, the AD tool knows that xd

and tb are null: they can be simplified and even never computed. Resetting
them explicitly to zero would be just a waste of time. We shall say that
these derivatives are implicit-null. Symmetrically, td and xb are non-null
but do not matter, and therefore need not be evaluated. However, if control
flow merges later downstream and the other incoming flow has an explicit
non-null derivative for this variable, the tool is forced to reset explicitly the
corresponding implicit-null variable just before control flow merges.

This has is a somewhat puzzling consequence: some of the user-given
independent and dependent variables may turn out to be inactive after ac-
tivity analysis. If so, the tool removes them automatically, which may be
surprising.

29

4.2 TBR Analysis

In section 2.3, we saw that the main drawback of the reverse mode of AD
is the memory consumption to store intermediate values before they are
overwritten during the forward sweep. Although checkpointing is a general
answer to this problem, it is advisable to restrict this storage to intermediate
values that are really needed by the backward sweep. Consider for example
an assignment x = a+2*b. The partial derivatives of the sum do not use the
values of a nor b. Therefore, as far as this instruction is concerned, there
is no need to store the values of a nor b in case they get overwritten in the
forward sweep. This is the purpose of the TBR analysis [9, 24, 17], which
analyses the program to find which variables are To Be Recorded, and which
are not.

In the example of figure 15, TBR analysis could prove that neither x nor y
were needed by the differentiated instructions, and therefore these variables
need not be PUSH’ed on nor POP’ed from the stack.

original program reverse mode: reverse mode:
naive backward sweep backward sweep TBR

x = x + EXP(a)

y = x + a**2

a = 3*z

CALL POPREAL4(a)

zb = zb + 3*ab

ab = 0.0

CALL POPREAL4(y)

ab = ab + 2*a*yb

xb = xb + yb

yb = 0.0

CALL POPREAL4(x)

ab = ab + EXP(a)*xb

CALL POPREAL4(a)

zb = zb + 3*ab

ab = 0.0

ab = ab + 2*a*yb

xb = xb + yb

yb = 0.0

ab = ab + EXP(a)*xb

Figure 15: Removing unnecessary storage through To Be Recorded analysis

4.3 Detection of Aliasing

Program transformation tools, and AD tools in particular, assume that two
different variables represent different memory locations. The program can
specify explicitly that two different variables indeed go to the same place,
using pointers or the EQUIVALENCE declaration. In this case the tool must

30

cope with that. But it is not recommended (and forbidden by the standard)
that the program hides this information, e.g declaring a procedure with two
formal arguments and giving them the same variable as an actual argument.
This is called aliasing. An AD tool must detect this situation and issue a
warning message. This message should not be overlooked, because it may
point to a future problem in the differentiated code, especially in the reverse
mode.

original program reverse AD: reverse AD:
forward sweep backward sweep

a(i) = 3*a(i)+a(i+1)

a(i+2) = 2*a(i)

a(n-i) = a(i)*a(n-i)

CALL PUSHREAL4(a(i))

a(i) = 3*a(i)+a(i+1)

CALL PUSHREAL4(a(i+2))

a(i+2) = 2*a(i)

tmp = a(i)*a(n-i)

CALL PUSHREAL4(a(n-i))

a(n-i) = tmp

CALL POPREAL4(a(n-i))

tmpb = ab(n-i)

ab(i) = ab(i)+a(n-i)*tmpb

ab(n-i) = a(i)*tmpb

CALL POPREAL4(a(i+2))

ab(i) = ab(i) + 2*ab(i+2)

ab(i+2) = 0.0

CALL POPREAL4(a(i))

ab(i+1) = ab(i+1) + ab(i)

ab(i) = 3*ab(i)

Figure 16: Detection and correction of aliasing in the reverse mode

Figure 16 shows another form of aliasing, local to an instruction, where
an assigned variable may or may not be the same as a read variable. In
this situation, it is impossible to write a single reverse differentiated instruc-
tion, because the differentiated code strongly depends on the fact that the
assigned variable is also read or not. tapenade detects this situation and
automatically inserts a temporary variable (e.g. tmp), therefore removing
local aliasing through instruction splitting. For example on figure 16, there
is a local aliasing in the third instruction, because equality between i and
n-i could not be decided.

4.4 Dead Adjoint Code

Reverse differentiation of the program P that computes function F yields
program P that computes the gradient of F. The original results of P, which
are also computed by the forward sweep of P, are not a result of P. Only the

31

original program reverse AD: reverse AD:
dead adjoint removed

IF (a.GT.0.0) THEN

a = LOG(a)

ELSE

a = LOG(c)

CALL SUB(a)

ENDIF

END

IF (a .GT. 0.0) THEN

CALL PUSHREAL4(a)

a = LOG(a)

CALL POPREAL4(a)

ab = ab/a

ELSE

a = LOG(c)

CALL PUSHREAL4(a)

CALL SUB(a)

CALL POPREAL4(a)

CALL SUB_B(a, ab)

cb = cb + ab/c

ab = 0.0

END IF

IF (a .GT. 0.0) THEN

ab = ab/a

ELSE

a = LOG(c)

CALL SUB_B(a, ab)

cb = cb + ab/c

ab = 0.0

END IF

Figure 17: Removing useless dead adjoint code

gradient is needed by the end-user. Moreover in most implementations the
original results will be overwritten and lost during the backward sweep of P.
Therefore some of the last instructions of the forward sweep of P are actually
dead code. An AD tool may use a slicing analysis, called Adjoint Liveness
analysis, to remove this dead adjoint code. The example on figure 17 shows
the effect of detection of Adjoint Liveness analysis on a small program which
terminates on a test, with some dead adjoint code at the end of each branch.

4.5 Undecidability

There is a theoretical limit to the precision of static analyses, called unde-
cidability. It states that is is impossible to design a program which, given
any program as an argument, will determine whether this argument program
terminates or not. There exist a variety of corollaries. For instance, one can’t
write a software tool that finds out if two programs are equivalent, giving the
same results in response to the same inputs. A program can’t even decide
that any two expressions of the analyzed program always evaluate to the
same result.

32

The consequence is that most static analyses that must answer to a
“boolean” question on the given program will give one of the three answers
“yes”, “no”, or “I can’t tell”. Obviously, if the answer is “I can’t tell”, the
tool that asked this question must be prepared to take the good decision.
This decision must be conservative, i.e. it must produce a transformed pro-
gram or an answer which is correct, whatever the run-time arguments. In
other words, the tool that asked this question and got the “I can’t tell” an-
swer must take no chances: it must continue with its work considering that
the run-time answer can be “yes” or “no” (there is no other possibility at
run-time).

Notice that undecidability is an absolute but very far barrier. In practice
other barriers will arise much sooner than undecidability, which have little
relation with it. For example comparison of expressions in array indexes can
become very complex [7] and tools generally give up when the expressions
are not linear with respect to the loop index. Array indexes can also involve
indirection arrays, i.e. other arrays with unknown values. Comparison would
require an enumeration of all possible cases, which is of course out of reach
practically. Also, deciding whether two pointers reference the same memory
location would require to enumerate all possible flows of control, and this is
also practically out of reach.

Undecidability should not discourage anyone from implementing analyz-
ers: in a sense, it just means that a given analyzer can always be improved,
asymptotically!

5 AD Tools and TAPENADE

Before we present the user interface of tapenade, let us mention the other
AD tools that we know, and our (partial) vision of how one might classify
them. Maybe a better source is the www.autodiff.org site for the Auto-
matic Differentiation community, managed by our colleagues in Aachen and
Argonne.

As we saw, some AD tools rely on program overloading rather than pro-
gram transformation. In general this makes the tool easier to implement.
However some overloading-based AD tools can become very sophisticated
and efficient, and represent a fair bit of hard work too. Overloading-based
AD tools exist only for target languages that permit some form of overload-
ing, e.g. C++ and Fortran95. Overloading-based AD-tools are particularly

33

adapted for differentiations that are mostly local to each statement, i.e. no
fancy control flow rescheduling is allowed. On the other hand, these lo-
cal operations can be very complex, more than what transformation-based
AD tools generally provide. For instance, overloading-based AD-tools can
generally compute not only first, but also second, third derivatives and so
on, as well as Taylor expansions or interval arithmetic. Adol-C [1], from
TU Dresden, is an excellent example of overloading-based AD tool. FAD-
BAD/TADIFF are other examples.

The AD tools based on program transformation parse and analyze the
original program and generate a new source program. tapenade is one of
those. These tools share their general architecture, with a front-end very
much like a compiler, followed by an analysis component, a differentiation
component, and finally a back-end that regenerates the differentiated source.
They differ in particular in the language that they recognize and differen-
tiate, the AD modes that they provide. They also exhibit some differences
in AD strategies mostly about the reverse mode. The best known other
transformation-based AD tools are the following:

• Adifor [3, 5] differentiates Fortran77 codes in tangent mode. Adifor
once was extended towards the reverse mode (Adjfor), but we believe
this know-how has now been re-injected into the OpenAD framework,
described below.

• Adic can be seen as the C equivalent of Adifor. However it is based
on a completely different architecture, from the OpenAD framework.
This framework, very similar to tapenade’s architecture, claims that
only front-end and back-end should depend on the particular language,
whereas the analysis and differentiation part should work on a language-
independent program representation. Adic differentiates ANSI C pro-
grams in tangent mode, with the possibility to obtain second deriva-
tives.

• OpenAD/F [25] differentiates Fortran codes in tangent and reverse
modes. Its strategy to restore intermediate values in reverse AD is
extremely close to tapenade’s. OpenAD/F is made of Adifor and
Adjfor components integrated into the OpenAD framework.

• TAMC [11], and its commercial offspring TAF differentiate Fortran
files. TAF also differentiates Fortran95 files, under certain restrictions.

34

TAF is commercialized by the FastOpt company in Hamburg, Germany.
TAF differentiates in tangent and reverse mode, with the recompute-all
approach to restore intermediate values in reverse AD. Checkpointing
and an algorithm to avoid useless recomputations (ERA) are used to
avoid explosion of run-time. TAF also provides a mode that efficiently
computes the sparsity pattern of Jacobian matrices, using bit-sets.

• TAC++ [11] is the C version of TAF. It is also developed by FastOpt.
Presently, TAC++ only handles a large subset of C, and it is still in its
development phase, although making significant progress. Like TAF, it
will provide tangent and reverse modes, with the same strategies, e.g.
the recompute-all approach with checkpointing for the reverse mode.

There are also AD tools that directly interface to an existing compiler. In
fact, these are extensions to the compiler so that differentiated code is added
at compile time. For instance the NAGWare Fortran95 compiler has AD
facilities inside, that are triggered by user directives in the Fortran source.
It so far provides tangent-mode differentiation only.

There are AD tools that target higher-level languages, such as MATLAB.
We know of ADiMat, MAD, and INTLAB. Even when they rely on opera-
tor overloading, they may embed a fair bit of program analysis to produce
efficient differentiated code.

5.1 TAPENADE

Here are more details on the Automatic Differentiation tool tapenade [18],
which is developed by our research team. tapenade progressively im-
plements the results of our research about models and static analyses for
AD. Development of tapenade started in 1999. It is the successor of
Odyssée [10], a former AD tool developed by inria and université de Nice
from 1992 to 1998. tapenade and Odyssée share some fundamental con-
cepts. tapenade is distributed by inria. At present, we are aware of regular
industrial use of tapenade at Dassault Aviation, CEA Cadarache, Rolls-
Royce (UK), BAe (UK), Alenia (Italy), Cargill (USA). Academic colleagues
use it on a regular basis at INRA (French agronomy research center), Oxford
(UK), Argonne National Lab (USA). tapenade is still under permanent
development, and figure 18 summarizes its present state.

tapenade has the following two principal objectives:

35

Automatic Differentiation Tool

Name: tapenade version 2.2

Date of birth: January 2002

Ancestors: Odyssée 1.7

Address: www.inria.fr/tropics/tapenade.html

Specialties: AD Reverse, Tangent, Vector Tangent, Restructuration
Reverse mode Strategy: Store-All, Checkpointing on calls

Applicable on: Fortran95, Fortran77, and older
Implementation Languages: 90% java, 10% c

Availabilility: Java classes for Linux and Solaris, or Web server

Internal features: Type Checking, Read-Written Analysis,

Forward and Backward Activity, Dead Adjoint Code, TBR

Figure 18: tapenade’s ID card

36

• To serve as an implementation platform to experiment with new modes
of AD or to validate new AD algorithms and analyses. Ideally, this
experimentation could also take place outside of our research team.

• To provide external end-users, academic or industrial, with state-of-
the-art AD of real programs, with no restriction on the style or on the
size of the application to differentiate.

The architecture of tapenade was designed according to the following
guidelines:

• Tools that work on programs must have an internal representation
which is convenient for analysis more than for mere edition. There-
fore, instead of syntax trees, we prefer Call Graphs of Flow Graphs.

• The internal representation must concentrate on the semantics of the
program and eliminate or normalize what is less essential. In particu-
lar, the internal representation should be independent of the particular
programming language used by the program.

• The internal representation must facilitate data flow analysis. Internal
representation of variables is essential, and must be chosen very care-
fully. In particular, it must once and for all solve the tedious array
region management due to constructs such as the Fortran COMMON and
EQUIVALENCE.

• Many program analyses are indeed independent of Automatic Differ-
entiation, and are identical to those needed by parallelizers. These
analyses must form a fundamental layer, clearly separated from the
AD specific part which is built above it.

• It is not necessary that a tool be restricted to mini-languages. Expe-
rience shows that real programs use all possibilities of their implemen-
tation language. If we want a usable tool, we must take care of every
construct or possibility offered by the language. Indeed, this is far less
boring than one could fear!

Figure 19 summarizes the architecture of tapenade, built after these guide-
lines. To enforce a clear separation from the language of the programs, we
devised an Intermediate Language (il), which should eventually contain all

37

trees (IL) trees (IL)

XXX parser

C parser (C)

Fortran95 parser (C)

Fortran77 parser (C)
Signatures of externals

XXX printer

C printer

Fortran95 printer (Java)

Fortran77 printer (Java)

other tool

Imperative Language Analyzer (Java)

Differentiation Engine (Java)

User Interface (Java / XHTML)

API

Figure 19: Overall Architecture of tapenade

the syntactic constructs of imperative languages. il has no concrete syntax,
i.e. no textual form. It is an abstract syntax, that strives to represent by the
same construct equivalent concrete constructs from different languages. il

currently covers all Fortran77, Fortran95, and c. Object-oriented constructs
are progressively being added. The front-end for a given language, and the
corresponding back-end, are put outside of tapenade, and communicate
with it by a simple tree transfer protocol.

Real programs often use external libraries, or more generally “black-box”
routines. The architecture must cope for that, because static analyses greatly
benefit from compact, summarized information on these black-box routines.
The end-user can provide tapenade with these signatures of black-box rou-
tines in a separate file.

The Imperative Language Analyzer performs general purpose analyses,
independent from AD. Figure 20 shows these analyses with their relative
dependencies. All of them run on Flow Graphs, according to their formal
description as data flow equations. The results of these general analyses
are of course used later by the AD level (cf figure 21), which performs Dif-
ferentiable Dependency Analysis followed by Activity Analysis (section 4.1)
and, specifically for the reverse mode, TBR Analysis (section 4.2) and Dead
Adjoint Code detection (section 4.4).

tapenade comes as a set of Java classes, from a source 86000 lines long.
tapenade can be downloaded and installed on a local computer from

our ftp server:

38

Useful
previous
results

Analysis

Result

LEGEND :
Tree protocol

reader

Program
internal representation

Type Checking

Symbol Tables
and Types

Pointer
analysis

Pointer
destinations

Read-Written
analysis

Read-Written sets

Detection of
Aliasing

Error messages

Detection of
Uninitialized variables

Error messages

Figure 20: Ordering of generic static data flow analyses in tapenade

39

Differentiable
dependency analysis

"Dep" sets

Activity analysis
(Varied and Useful)

Active variables

Dead adjoint
code detection

snapshots dead adjoint code

TBR
analysis

Required variables

Tangent
AD

Reverse
AD

Figure 21: Ordering of AD static data flow analyses in tapenade

ftp://ftp-sop.inria.fr/tropics/tapenade

and then it can be called directly as a command with arguments, e.g. from
a Makefile, or through a graphical user interface. The tapenade executable
exists for both Linux and Windows systems.

Alternatively, tapenade can be used directly as a web server by a dis-
tant user, without any need for a local installation. The server address is:

http://tapenade.inria.fr:8080/tapenade/index.jsp

which takes you to the tapenade input page shown on figure 22. This inter-
face gives the user access only to the fundamental options of the command-
line tapenade. Specifically, the web interface lets the user specify the source
and include files, their language, the root procedure, the dependents, the in-
dependents, and finally the differentiation mode.

A moment after the user clicked on one AD mode button which triggered
differentiation, the tapenade server sends the differentiation output in a
new web page, shown on figure 23. This graphical user interface helps ex-
amine tapenade output, highlighting correspondence between original and
differentiated code, as well as warning messages. The same interface is used
when the user adds the -html option to the command-line tapenade.

40

Figure 22: HTML interface for tapenade input

41

Figure 23: HTML interface for tapenade output

42

To replace tapenade in the context of AD tools, let’s describe its actual
differentiation model. tapenade performs AD by program transformation
instead of overloading. As could be expected, the primary goals of tapenade

are first derivatives, through the tangent and reverse modes of AD. We are
planning extensions for second-order derivatives, but this is still research at
this time.

To produce a better code, tapenade implements all the data-flow anal-
yses that we described in sections 4.1, 4.2, and 4.4 or pictured on figures 20
and 21. Whereas there is not much to add about the tangent mode, the re-
verse mode basically relies on a Store-All strategy (cf figure 4), implemented
through primitives that PUSH and POP values on/from a stack. As we
mentioned in section 2, this strategy cannot give good results on large pro-
grams without the storage/recomputation trade-off known as checkpointing.
The default strategy of tapenade is therefore to apply checkpointing to
each procedure call. Figure 24 illustrates this strategy on a simple call tree.
Execution of a procedure A in its original form is shown as A. The forward

A

B

C

D

A A

B

C

D D D B B

C C C

x : original form of x

x : forward sweep for x

x : backward sweep for x

: take snapshot

: use snapshot

Figure 24: Checkpointing on calls in tapenade reverse AD

sweep, i.e. execution of A augmented with storage of variables on the stack
just before they are overwritten, is shown as

−→
A . The backward sweep, i.e.

actual computation of the gradient of A, which pops values from the stack
when they are needed to restore the Xk’s, is shown as

←−
A . For each procedure

call, e.g. B, the procedure is run without storage during the enclosing forward
sweep

−→
A . When the backward sweep

←−
A reaches B, it runs

−→
B , i.e. B again

but this time with storage and then immediately it runs the backward sweep←−
B and finally the rest of

←−
A . Duplicate execution of B requires that some

variables used by B (a snapshot) be stored.
If the program’s call graph is actually a well balanced call tree, the mem-

ory size as well as the computation time required for the reverse differentiated

43

program grow only like the depth of the original call tree, i.e. like the loga-
rithm of the size of P, which is satisfactory.

Since call trees are rarely well-balanced in real programs, tapenade pro-
vides a way to control checkpointing, through user-given directives that des-
ignate the procedure calls that must not be checkpointed.

6 Validation of Differentiated Programs

Recalling the notations of section 2, we differentiate a program P that com-
putes a function F , with input X ∈ IRm and output Y = F (X) ∈ IRn.

Classically, one validates the results of the tangent mode by comparing
them with divided differences, i.e. by applying the well-known formula for a
differentiable function f of a scalar variable x ∈ IR:

f ′(x) = lim
ε→0

f(x + ε)− f(x)

ε
(15)

We recall that for a given direction Ẋ in the input space, the output of
the tangent mode should be Ẏ = F ′(X) × Ẋ. Introducing function g of
scalar variable h: g(h) = F (X + h×Ẋ), expanding g′ at input h = 0 with
equation (15) (on the left hand side) and with the chain rule (on the right
hand side) tell us that

lim
ε→0

F (X + ε×Ẋ)− F (X)

ε
= g′(0) = F ′(X)× Ẋ = Ẏ (16)

so that we can approximate Ẏ by running F twice, on X and on X + ε×Ẋ

The results of the reverse mode are validated in turn by using the vali-
dated tangent mode. This is called the “dot product” test. It relies on the
observation that for any given Ẋ, the result Ẏ of the tangent mode can
be taken as the input Y of the reverse mode, yielding a result X. We then
develop the dot product of X and Ẋ:

(X · Ẋ) = (F ′∗(X)× Ẏ · Ẋ) = Ẏ ∗ × F ′(X)× Ẋ = Ẏ ∗ × Ẏ = (Ẏ · Ẏ) (17)

so that we can validate the X returned by the adjoint code by comparison
with the Ẏ returned by the tangent mode.

44

7 Conclusion

We have presented Automatic Differentiation, and more precisely the fun-
damental notions that are behind the AD tools that use source program
transformation. We shall use figure 25 as a visual support to compare AD
with other ways to obtain derivatives. Our strongest claim is that if you need

DERIVATIVES

Div. Diff Analytic Diff

Maths AD

Overloading Source Transfo

Multi-dir Tangent Reverse

inaccuracy

programming

control

flexibility

efficiency

Figure 25: AD and other ways to compute derivatives

derivatives of functions that are already implemented as programs, then you
should seriously consider AD. At first thought, it is simpler to apply the
Divided Differences method (sometimes known also as “Finite Differences”),
but its inaccuracy is its major drawback.

Notice that Divided Differences sometimes behave better when the im-
plemented function is not differentiable, because its very inaccuracy has the
effect of smoothing discontinuities of the computed function. Therefore Di-

45

vided Differences can be an option when one only has piecewise differentia-
bility, like shown in section 2.1. Also, it is true that Divided Differences
may actually cost a little less than the tangent mode, which is their AD
equivalent.

Nevertheless when it is possible, it is probably safer to look for exact
analytical derivatives. Divided Differences are definitely not good if you
need gradients or if you need higher order derivatives.

Then again two options arise: one can consider the problem of finding
the derivatives as a new mathematical problem, with mathematical equa-
tions that must be discretized and solved numerically. This is a satisfying
mathematical approach, but one must consider its development cost.

AD is a very promising alternative when the function to be differentiated
has already been implemented. In a sense, AD reuses the resolution strategy
that has been implemented for the original function into the resolution of its
derivatives. When the original model or code changes, AD can be applied
again at very little cost.

There are still open questions of non-differentiability introduced by the
program’s control, or the fact that the iterative resolution of the derivatives
is not guaranteed to converge at the same speed as the original function
resolution. But in practice, AD returns derivatives that are just as good as
those returned by the “mathematical” approach above.

Inside the AD methods we distinguish Overloading-based approaches,
which are more flexible and can be adapted to all sorts of derivatives and
similar concepts. On the other hand, we advocate Source-Transformation-
based tools for the well-identified goals of tangent and reverse first-order
derivatives. Source transformation gives it full power when it performs global
analyses and transformations on the code being differentiated.

Source Transformation AD is really the best approach to the reverse mode
of AD, which computes gradients at a remarkably low cost. Reverse AD is
a discrete equivalent of the adjoint methods from control theory. Reverse
AD may appear puzzling and even complex at first sight. But AD tools
apply it very reliably so that a basic understanding of it generally suffices.
Reverse AD is really the choice method to get the gradients required by
inverse problems (e.g. data assimilation) and optimization problems.

AD tools can build highly optimized derivative programs in a matter
of minutes. AD tools are making progress steadily, but the best AD will
always require end-user intervention. Moreover, one must keep in mind the
limitations of AD in order to make a sensible usage of it. Fundamentally:

46

• real programs are always only piecewise differentiable, and only the
user can tell if these algorithmic discontinuities will be harmful or not.

• iterative resolution of the derivatives may not converge as well as the
original program, and the knowledge of the Numerical Scientist is in-
valuable to study this problem.

• reverse AD of large codes will always require the knowledge of a Com-
puter Scientist to implement the best storage/recomputation trade-off.

There are also a number of technical limitations to AD tools, which may
be partly lifted in the future, but which are the current frontier of AD tool
development:

• pointers are still hard to analyze, and memory allocation in the original
program is a challenge for the memory restoration mechanism of the
reverse mode.

• object-oriented languages pose several very practical problems, because
they far more intensively use the mechanisms of overloading and dy-
namic allocation. Data-Flow analysis of object-oriented programs may
become harder and return less useful results.

• parallel communications [8] or other system-related operations may in-
troduce a degree of randomness in the control flow, which is then hard
to reproduce, duplicate, or reverse.

References

[1] Adol-C. http://www.math.tu-dresden.de/ adol-c.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

[3] C. Bischof, A. Carle, P. Khademi, and A. Maurer. The adifor 2.0 system
for automatic differentiation of fortran77 programs. IEEE Comp. Sci.
& Eng., 3(3):18–32, 1996.

47

[4] M. Buecker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, ed-
itors. AD2004 Post-Conference Special Collection. Lecture Notes in
Computational Science and Engineering. Springer, 2004.

[5] A. Carle and M. Fagan. ADIFOR 3.0 overview. Technical Report
CAAM-TR-00-02, Rice University, 2000.

[6] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Nau-
mann(editors). Automatic Differentiation of Algorithms, from Simula-
tion to Optimization. Springer, 2001. Selected proceedings of AD2000,
Nice, France.

[7] B. Creusillet and F. Irigoin. Interprocedural array region analyses. In-
ternational Journal of Parallel Programming, 24(6):513–546, 1996.

[8] P. Dutto, C. Faure, and Fidanova S. Automatic differentiation and
parallelism. In Proceedings of Enumath 99, Finland, 1999.

[9] C. Faure and U. Naumann. Minimizing the tape size. In in [6], 2001.

[10] Ch. Faure and Y. Papegay. Odyssée User’s Guide. Version 1.7. Technical
Report RT–0224, INRIA, Sophia-Antipolis, France, 1998.

[11] R. Giering. Tangent linear and adjoint model compiler, users manual.
Technical report, 1997. http://www.autodiff.com/tamc.

[12] J.C. Gilbert. Automatic differentiation and iterative processes. Opti-
mization Methods and Software, 1:13–21, 1992.

[13] M.-B. Giles. Adjoint methods for aeronautical design. In Proceedings of
the ECCOMAS CFD Conference, 2001.

[14] A. Griewank. Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optimization Methods
and Software, 1:35–54, 1992.

[15] A. Griewank. Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation. SIAM, Frontiers in Applied Mathematics,
2000.

48

[16] J. Grimm, L. Pottier, and N. Rostaing-Schmidt. Optimal time and
minimum space-time product for reversing a certain class of programs.
In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors, Com-
putational Differentiation: Techniques, Applications and Tools, pages
95–106. SIAM, 1996. rapport de Recherche INRIA 2794.

[17] L. Hascoët, U. Naumann, and V. Pascual. Tbr analysis in reverse mode
automatic differentiation. Future Generation Computer Systems – Spe-
cial Issue on Automatic Differentiation, 2004. to appear.

[18] L. Hascoët and V Pascual. Tapenade 2.1 user’s guide. Technical report
300, INRIA, 2004.

[19] L. Hascoët, M. Vázquez, and A. Dervieux. Automatic differentiation for
optimum design, applied to sonic boom reduction. In V.Kumar et al.,
editor, Proceedings of the International Conference on Computational
Science and its Applications, ICCSA’03, Montreal, Canada, pages 85–
94. LNCS 2668, Springer, 2003.

[20] W. Kyle-Anderson, J. Newman, D. Whitfield, and E. Nielsen. Sensi-
tivity analysis for navier-stokes equations on unstructured meshes using
complex variables. AIAA Journal, 39(1):56–63, 2001.

[21] F.-X. le Dimet and O. Talagrand. Variational algorithms for analysis and
assimilation of meteorological observations: theoretical aspects. Tellus,
38A:97–110, 1986.

[22] M. Metcalf and J. Reid. Fortran 90/95 explained. Oxford University
Press, 1996.

[23] S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, San Francisco, 1997.

[24] U. Naumann. Reducing the memory requirement in reverse mode auto-
matic differentiation by solving TBR flow equations. In Proceedings of
the ICCS 2000 Conference on Computational Science, Part II, LNCS.
Springer, 2002.

[25] OpenAD. http://www.mcs.anl.gov/OpenAD.

49

