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1 IntrodutionIn the last two deades, the progress made in the optimization domain hasompletely renewed the panoply of optimizers. When di�erentiable optimiza-tion is onsidered, Sequential Quadrati Programming (SQP) algorithms havereplaed gradient ones, thanks to the integration of very eÆient quasi-Newtonstrategies. These methods diretly address the optimality onditions and, morefrequently, handle parameters that are disrete representations of smooth fun-tions. However, sine the new optimization theory and methods are built inIRn, the outome of the proess may loose its original smoothness.To illustrate this, onsider the \best-seller" problem of the alulus of vari-ations: Find �u suh that �u = argminu 12 Z jruj2dx� Z u f dx ; (1)hoosing �u within a given subspae. The funtional to minimize representsthe key onept in any optimization problem, where it is usually known asost funtional. It quanti�es the orretions brought to the unknown underertain given onditions and it is de�ned aording to our needs. In mostquasi-Newton optimization methods, the basi brik for the orretions whihare applied to the unknown is the gradient of the funtional (for the problemso de�ned by Equation (1))g = ��u� f: (2)whih tells us how the unknown must be modi�ed in order to get loser toour minimization objetive. This orretion has the important disadvantageto be a funtion muh less regular than the previous iterate u. Indeed, if u hasontinuous derivatives up to k-th order, it is true only up to (k � 2)-th for g.Consequently, the iterative proess of an algorithm relying on g, of the kindun+1 = un � � g; (3)would produe a new u with only (k � 2)-th ontinuous derivatives, then(k � 4)-th ones and so on. Ultimately, it will be impossible to ompute thefuntional to minimize.It is well known that, after disretization, using g for building orretions isequivalent to apply a Jaobi iteration. This will amplify many high frequenymodes, unless the step length is redued in order to satisfy a Courant-like sta-bility ondition. In this ase, if the disretization is �ne and the high frequenymodes are very numerous, the quasi-Newton proess annot ompensate the4



diÆulties in onverging. This is why quasi-Newton solvers for Partial Di�er-ential Equations (PDE) are generally assoiated with preonditioners.By the way, we note the strong relation between preonditioners and smoo-thers in this ontext. In the IRn theory, a preonditioner is used basially toimprove the ondition number of a linear system, that is to redue the ratiobetween the largest and the smallest eigenvalue. In the disrete PDE ase,ill-onditioning omes from mesh dependent high frequeny eigenvalues, thatinreases with mesh �neness and with the degree of di�erential operator. Thentwo ways of reduing this e�et is either to use a oarse mesh, not an aept-able solution, or to apply speial devies for �ltering high frequenies. In thefuntional ontext, it seems neessary (and somewhat equivalent to the abovestrategies) to work with an iterative orretion in whih regularity is not lost,for example by multiplying it by an inverse Laplae operator, so that the orderof derivatives should be reovered.Then the funtional iteration an be done in a smooth manner, onverg-ing at its own onvergene speed. An important onsequene is that a gooddisretization of this iteration should ideally have a onvergene rate lose tothe funtional one, that is a mesh-size independent rate. Then, building apreonditioner that renders the funtional iteration regularity will inrease thepotential qualities of the disretized iteration.To sum up, the priniple we shall follow is to introdue a preonditioner orsmoother inspired by funtional properties in order to improve the optimizationiteration of our optimal shape design problem. More preisely, we shall applya multi-level preonditioner studied in a ompanion paper [1℄ to the presentone. This multi-level preonditioner is of Bramble-Pasiak-Xu type. Its par-tiularity is that it applies to a large family of unstrutured triangulations ortetrahedrizations. The key priniple for its appliation is the identi�ation ofthe loss of regularity and its ompensation.The appliation of this stategy assumes that we have a good knowledge ofthe global optimality system to solve, inluding the funtional properties: inpartiular, ontinuous and disrete gradient do not appear here as ompeti-tors, but as omplementary aspets of the problem. The ontinuous gradientderivation, in its typial form of a Hadamard formula, ontributes to the under-standing of the singularity arising in an optimum design gradient. Its analysishelps for the hoie of the partiular multi-level preonditioner that we willapply.We shall illustrate these remarks on onrete shape optimal design problemsin Aeronautis. The optimization of supersoni transports is one of today's5



hallenge in the �eld. We will onentrate in the optimization of the aero-dynami performanes together with the soni boom emission for supersoniairrafts, following a method �rstly proposed in [2℄.
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Figure 1: The soni boom. Sketh of near and far �eld shok wave patterns ofa supersoni airraft.Let us introdue the general idea. Any solid body moving at a supersonispeed developes a shok wave system. A simple solid of revolution (like aprojetile) produes essentially only two shok waves, one in front and theother one behind. Although more omplex bodies, like airplanes, produemore omplex shok patterns whih oalese beyond the near �eld. Figure1 skethes the situation. One the shok waves pattern reahes the soil, ithas ultimately beome a two-shok system, whih is alled an N-type pressurewave, whih is dragged by the plane movement. Both the initial pressurerise and �nal drop are steepened after propagation through the atmosphere,produing very strong explosive sounds on the ground, whih for instanelays at 15 km below the airplane for the Conorde ying at ruise altitude.This fat has motivated the prohibition of Conorde supersoni ights overland. Therefore, the redution of the soni boom is an important issue in thespei�ation of the next generation of supersoni airrafts [3, 4℄. Aording to[4℄, soni boom minimization ould be attained by onsidering basially threepoints: to get the minimum pressure impulse, whih is de�ned as the integralof the absolute value of the overpressure ground signature, or the minimuminitial shok pressure rise or �nally to smooth the pressure rise by distributingit in a longer rise time. Di�erent optimization strategies fous on one or severalof these possibilities.The remainder of this paper is organized as follows. The next setionintrodues the multilevel funtional optimization problems in the ontext of6



an adjoint formulation and proposes a solution to gradient's regularity loss,whih is in turn studied with the aid of a Hadamard's formula for transpira-tion boundary onditions. Then, the soni boom optimization is addressed interms of what we all the soni boom downwards emission, (SBDE). Next, aserie of numerial studies validates the proposed solutions. Two partiular as-pets are analyzed: the regularity loss and the transpiration onditions for 3Dproblems. The setion onludes with a numerial example. A projeted su-personi business jet is optimized following the proposed sheme. This projetis urrently being developed at Dassault Aviation, whih has kindly providedthe mesh for this problem. Finally, in the last setion we onlude this paperand give plans for future researh.2 Funtional optimizationAs announed in the introdution, gradients in optimal shape design needfuntional preonditioning. This an be done by applying an ellipti operatoron shape perturbations, see for example [5℄ or [6℄. We are here interested in amore sophistiated preonditioning. In a ompanion paper [1℄ to the presentone, the building and the e�et of a wavelet or a Bramble-Pasiak-Xu familyof preonditioners is examined in the ontext of 3D shape design. The nextsubsetion presents this family. Then we desribe the optimal shape problemto solve and we identify whih preonditioner of the above family should beapplied.2.1 Multilevel preonditionerThe shape of a volumi solid airraft geometry an be disretized as a non-planetriangulated surfae in 3D. Let �0 be the initial 3D surfae, made of triangles.The generi disrete surfae � is de�ned by the translation of length (alsodenoted)  along an approximate unit normal vetor ~n de�ned at the vertiesof �0. Therefore,~xi is a vertex of � , ~xi = ~xoi + (i) ~ni (4)where i is the index of the vertex, ~xoi is the physial position of the vertex of�0 with same index i.Let g be a desent diretion for . It is de�ned on the so-alled �ne leveland allows to build a orreted shape: �+Æ . We note that the oarse level is7



an arbitrary unstrutured mesh without any pre-built hierarhy. Let us �rstexplain how a oarser level is de�ned. A oarser level is built by groupingtogether several �ne nodes. Basis funtions, that are unity-valued over eahof these groups and zero otherwise, are not enough regular. Then we intro-due a regular projetion to a oarser level given by: LPP�L�, where P� isthe anonial projetion to the oarser level, P (transpose of P�) denotes aprolongation to the initial level, and L is the smoothing operator de�ned asan averaging weighted by a salar produt of normals:(L ~x)i = (1� �)~xi + � Xj2V(i)[figwij~xjXj2V(i)[figwij (5)where wij are the weights given by :wij = max (Area(i) �Area(j) � ~ni � ~nj ; 0) k~nik = 1 8 i; (6)being � the smoothing parameter. V(i) represents the neighbors of ell i andArea(i) is the measure of its area.With the above transfer and smoothing operators from any level m� 1 tolevel m as elementary briks, we an derive a projetion operator related tolevel k: Pk = Y1�m�kLmPmP�mL�m: (7)This set of operators is used to onstrut the Additive Multilevel Preonditioner(AMP) as follows:P AMPg = Png � n�1Xk=1 � 12a�n�k (Pk+1g � Pkg) (8)where n is the oarsest level. The multiplying fator involves the harater-isti element lengths ratio between two onseutive levels (2 in this ase, byonstrution). It involves an exponent a, whih is supposed to be the di�eren-tiability degree lost by the gradient g. This degree is the only informationto get from the systems to solve, sine the rest of the preonditioner derivationdoes not depend on the nature of the PDE and on the funtional de�nitioninvolved in the present problem. However the evaluation of this degree is ofruial impat on the quality of the preonditioner. In order to identify it, weneed to analyse our partiular optimization problem. This is arried out inthe next two setions.
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2.2 Problem statement - Adjoint formulation.In order to evaluate the gradients that will drive the optimization proess, theontrol theory provides an elegant and eÆient method whih by-passes theostly alternative of omputing them with �nite di�erenes. The use of thismethod for aerodynamial design was introdued by Jameson in the lassialreferene [7℄. Basially, it onsists of a minimization problem under a partiularadditional onstraint: the ow equations themselves.The general form of the problem to solve is then the following: we wantto �nd 0 that minimizes a ertain funtional j() = J(;W ()) under theonstraint 	(;W ()) = 0. All 's represent the parametrization of the shapeto optimize. j() is the ost funtional mentioned above, whose dependene on is set by the aerodynamis ommunity aording to ertain needs. Finally,the onstraint 	(;W ()) = 0 is the set of ow equations, in this ase theompressible Euler equations, solved in a domain 
 for whih �
 � , beingW () the ow �eld.The minimization problem is then solved using Lagrange multipliers. Theproblem's Lagrangian isL(W; ;�) = J(W; ) + h	(;W );�i; (9)where � is a generalized Lagrange multiplier, and h ; i is a suitable salarprodut. Then, 0 is found after solving	(;W ()) = 0(rW	(;W ()))� � = rWJ(;W ())j 0() = rJ(;W ()) � h�();r	(;W ())i: (10)The �rst line is the ow solution, to obtain W (). The seond one is theso alled adjoint ow solution, to get �(). And in the last line, the gra-dient j 0() of the ost funtional is evaluated, whih in turn will be used tomodify the former . The derivatives of both the onstraint and the ost fun-tional an be obtained either by �nite di�erenes or, muh more eÆiently, byautomati/analyti di�erentiation [6℄.The multilevel gradient approahes onsidered here rely on the algorithmin Table 1. Here, for eah iteration n, g(;W;�) is a funtion of variables, W and � , that is idential to j 0() only if W = W () (solution of thestate equations) and � = �() (solution of the adjoint state equations). Theparameter � is either �xed or de�ned by a 1D searh (steepest version). IfP AMP is the identity, this algorithm results in a gradient method when g is9



Multilevel Preonditioned AlgorithmDo n- Compute state W and adjoint �- Compute gradient g(n;W;�)- Compute the preonditioner PAMP- Compute � (internal yle)- Update the shape orretion:n+1 = n � � PAMP g(n;W;�)Next nTable 1: Multilevel Preonditioned Algorithmexatly j 0(). In the preonditioned ase, we get a desent diretion in a weaksense sine the preonditioner is symmetri positive.It is worth to mention that if the state equations and the adjoint stateequations are not ompletely solved, g(;W;�) is not the gradient of j().However, g(;W;�) tends towards j 0() when the whole loop is onverging; werefer to that algorithm as a one-shot method (aording to [8℄) for solvingthe optimality system of the optimization problem (see a disussion for 2Dappliations in [9℄). In this paper we have not used that approah.2.3 Hadamard's formula and regularity issuesThe solution of a Poisson problem an be di�erentiated with respet to the vari-ation of the geometrial domain boundary. This was �rst done by J. Hadamard.It was rigourously revisited within the funtional ontext of Sobolev spaes forPoisson problems in [10℄. In fat, this analysis annot be optimal unless it isderived in Holder spaes. An optimal study proposed in [1℄ shows that �rstorder variations are spatially less regular funtions than the original Poissonsolution. This loss of derivative is an obstale to the fast onvergene of agradient method. The rigorous Hadamard di�erentiation with respet to thegeometrial domain for the ompressible Euler model is today out of reah.However, in several works and in partiular in [11℄, [12℄, a formal Hadamarddi�erentiation is proposed. The objet of this setion is to reall briey the10



onlusion of those studies, and then to adapt it to the ase of transpirationonditions and to �nally address it to the loss of derivative in the ontinuousontext.Let us onsider an optimal shape design problem in whih the domain 
of Rd is parametrized by a displaement  of a part of the boundary in thenormal diretion V to an initial geometry 
0, as shown in Figure 2. In theother part of the boundary, we onsider far �eld onditions that do not needto be preised further for our argument.
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Figure 2: Boundary parametrization.Let D be a subdomain of 
 (inside 
 for any admissible ). We onsiderthe minimization of the following funtional:j() = 12 jjW ()�Wtargetjj2D :The state equation is the set of steady Euler equations with appropriateboundary onditions. It is represented in a variational form as follows: forall � = (�1; �2; �3; �4; �5) belonging to the appropriate spae,(	(;W ); �) = � Z
 (F (W )���x +G(W )���y +H(W )���z ) d
+ Z�
 p (nx �2 + ny �3 + nz �4) d�
 = 0; (11)where the Euler uxes are F (W ),G(W ) andH(W ), orresponding respetivelyto eah of the spae diretions. The exterior normal ~n to �
 has omponents(nx; ny ; nz).Admitting that some di�erentiability assumptions are ful�lled, the Gâteaux-derivative of j at 0 in the diretion Æ an be obtained after some omputa-11



tions (see [11℄):j 0(0; Æ) = � Z�
0(F (W )���x +G(W )���y +H(W )���z )(~n0 � ~V ) Æd�
0+ Z�
0 (rp � + p r�)(~n0 � ~V ) Æd�
0with the following notations,rp � = �p�x �2 + �p�y �3 + �p�z �4;p r� = ��2�x p + ��3�y p + ��4�z p:The adjoint state � is solution of the system: �F�W !� ���x + �G�W !� ���y + �H�W !� ���z = � (W (0)�Wtarget)�D on 
0 ;where �D is the harateristi funtion of D and with boundary ondition:�2n0x +�3n0y +�4n0z = 0 on �
0 :Taking the L2 spae as pivot spae for our gradient method would produethe following diretion of orretion for the boundary parameter : = o � �gL2(o;W;�)where:gL2(o;W;�) = � (F (W )���x +G(W )���y +H(W )���z ) (~n0 � ~V )+ (rp � + p r�) (~n0 � ~V ) : (12)We observe that this orretion is generally muh less regular than the bound-ary parameter 0. Indeed, inspired by ellipti smoothness, we an estimatethat the state variables are at most as regular as the boundary, but the aboveorretion involves derivatives of the adjoint state. Additionally, the normalvetor ~n0 is a derivative of the boundary. Regularity an be lost further ifwe try to ast this gradient iteration in a Hilbert ontext in order to enjoy aonvergene theorem for the optimization iteration.Let us now adapt this analysis to the ase where the variable domain e�etis approximated by the ombination of a onstant domain with a transpira-tion ondition. We briey reall the transpiration ondition for Euler ows.12



The slip boundary term of the ux 	(W ) is de�ned on a �xed referenegeometry 
0 as follows: for eah omponent of the Euler ow equations set(n0 is the normal exterior to 
0),	(W )slip boundary = q()W + � 0 ; p(W )n0x ; p(W )n0y ; p(W )n0z ; p(W )q() �(13)where q() = ~u : (~n0 � ~n)in whih ~u is the veloity of the uid. The state equation writes in a form thatis muh similar to the above Euler model, i.e. for all � we have(	TP(;W ); �) = � Z
0(F (W )���x +G(W )���y +H(W )���z ) d
0+ Z�
0 p (n0x �2 + n0y �3 + n0z �4) d�
0+ Z�
0 q()(W1�1 +W2�2 +W3�3 +W4�4 + (W5 + p)�5) d�
0= 0; (14)The label \TP" refers to the Euler ow with transpiration onditions. Thederivation of the gradient is not so di�erent from the previous one, so we donot give the details. The adjoint system at (0;W (0)) writes: �F�W !� ���x +  �G�W !� ���y +  �H�W !� ���z = �(W (0)�Wtarget)�D on 
0;but now the boundary onditions write,(�2n0x +�3n0y + �4n0z + q�5) �p�Wi+ q�i + �q�Wi  �iXk Wk +�5p! = 0 8i on �
0The funtional Gâteaux derivative turns to be:j 0TP(0; Æ) = Z�
0  Xk �kWk +�5p! �q� Æ d�
0We observe that the term q is a funtion of the normal vetor n. Now, in 2Dase, the value n(s) at any urvilinear absissa s of �
0 is a funtion f of(s) and of the urvilinear spatial derivative 0(s) = ��s (s) of . This writesas follows n(s) = f((s); 0(s)) (15)13



then �n(s)�((s); 0(s))Æ((s); 0(s)) = �f�(s)Æ(s) + �f�0(s)Æ0(s) (16)but this an be also expressed from the Gâteaux derivative of n with respetto : (�n� Æ)(s) = �f�(s)Æ(s) + �f�0(s)Æ0(s) (17)and thus: �q� Æ = � u  �f� Æ + �f�0 Æ0! : (18)Then we still get an expression involving �rst-order derivatives of the shapevariables, as in (12). The 3D ase is analogous.These two examples show that in omplex optimization problems, the diretappliation in RN of gradient method, whih is equivalent to hoosing system-atially the L2 pivot spae for the gradient iteration, may result in non-regularfuntional iterations. Further, it appears that the loss in di�erentiabilityis formally 1. If no preonditioner were introdued in order to ompensatethis loss of smoothness, the onvergene would show a behavior analog to thatof Jaobi or unpreonditioned Jaobi-type ellipti solvers, that is a very slowand mesh-dependent onvergene.3 Soni boom optimizationIn this setion we apply the onepts introdued above in order to solve an op-timal shape design appliation problem, namely the soni boom optimizationof an airraft. The key point in soni boom redution is the same as in most ofthe optimization problems: it has to be attained without a prohibitive degra-dation of other ight qualities, in this partiular ase, related to the airraftaerodynamial performane. Furthermore, a diret evaluation of the shok sig-nature on the soil from the 3D Euler equations is nowadays omputationallyout of reah. It is neessary to model the far �eld soni boom propagation,an issue desribed both in [3℄ through the pioneering works of Witham aboutthe matter, and in [4℄. The entral idea in Witham's theory is to propagatebi-dimensionally, in a vertial plane spanned by the ight diretion, the near�eld shok wave pattern, assuming some (indeed strong) hypotheses. Thismakes the pressure soil signature evaluation a problem separated from the14



CFD simulation: it is a ombination of a linearized propagation theory for thefar �eld signature and a non linear three dimensional set of equations (Euler'sor Navier-Stokes') for the near �eld ow.We have identi�ed two reent leading works on soni boom optimizationwhih follow this line, within the gradient methods ontext. One alternativeis presented in [13℄. In this work, it is proposed a parametrial optimizationsheme for the soni boom, where the spatial parameters are determined byseveral position oordinates of ying appendages (like anards) and nose tilt-ing. The signature is modelled by the linearized theory as a funtion of somegeometri airraft parameters. In the redued design parameters' spae, an ad-joint ow problem is solved in order to ompute the ost funtional gradient.Then the problem results in a minimization of only the initial shok pressurerise (ISPR), leaving aside any redution of the rest of the signaturefeatures. The other alternative is to inrease the parameters spae by takinga �ner parametrization of the shape itself of the wings and/or appendages:in [14, 15℄ an adjoint method is again used to optimize a model supersoniairraft by modifying the positions of the disretized skin mesh (in [6℄, thiskind of shape parametrization is hristened \CAD-free", onversely to the\CAD-based" parametrization like that of [13℄, whih uses a redued pa-rameters spae. We will follow this nomenlature too). In this ase also, thefar �eld pressure is omputed, but now as a funtion of the near �eld pres-sure and as a result of an inverse problem given a target pressure groundsignature. This is done by solving two oupled adjoint problems. Anothernovel \CAD-free" approah is that of [16℄, where the soni boom is reduedin an indiret way by onsidering a speial drag funtion in the objetive.The pressure ground signature is evaluated by using a waveform parametermethod. The optimization proedure is arried out using a ombination of re-dued omplexity models for the far �eld depending sensitivity and inompletesensitivities for the aerodynamial performane.Although using a totally di�erent method, it is worth to mention [17℄, asited in both [14℄ and [13℄, where instead of solving the adjoint problem, theseresearhers use a geneti algorithm approah.We propose a di�erent, yet simpli�ed way of soni boom optimization.Assuming that the soure of the pressure signature on the soil is the near �eldshok pattern below the airplane (we all it the soni boom downwardsemission, SBDE), by reduing it, the pressure signature will be onsequentlyredued. This fat is learly seen in the previously ited referenes [16, 14℄.In this way, after attaining a near �eld SBDE's redution, the far �eld ouldbe evaluated, but out of the optimization yle, just to hek the results. Wepropose, as a �rst approah, to quantify the SBDE as the pressure gradient15



squared norm integrated in a given \ontrol box" below the airplane andneighboring it, whih is in fat a part of the CFD domain. The ost funtionalinludes also terms related to ight performane (lift and drag). Construtivefeatures, like wing thikness, an be treated by the sort of gradient projetionintrodued above.The main di�erenes relative to the alternatives referened above are re-lated to the soni boom quanti�ation. While in [14, 15℄, a target far �eldpressure distribution is given, in [13℄, the goal is to minimize only the ISPR.In the former ase, the optimization is done over the shape of the ompleteairraft and in the latter in a redued design parameters spae. In both ases,there is a sort of additional onstraint in the minimization problem, imposedby limiting the spae of solutions: either giving a target pressure or fousingonly in the ISPR. We believe that depending on what is the requested goal,this approah an be sometimes very onvenient. However, our analysis isfree of this onstraint, beause we seek to minimize the near �eld SBDE, onthe onvition that new aerodynamial shapes an be found, arising from theproposed minimization problem and retaining good ight performane. Ourmethod is then omplementary to other kinds of approah, like those desribedabove. Another important di�erene is that all the works previously mentionedattak diretly the full airraft problem. In [2℄ we have already pointed outthat optimizing very simple tridimensional forms using this method an give adeeper insight of the problem, about what is really produing the soni boom.We propose then to start by optimizing isolated parts of the plane, as a pre-liminary step to the �nal stage, namely the full optimization of the plane.3.1 Global approah. Transpiration onditionsWe address now the transpiration boundary onditions, a key tool in our ap-proah, its reliability being evaluated in the Numerial Examples setion below.The numerial method used for prediting the steady Euler ows is a �nite vol-ume sheme. The numerial ux evaluation is done following Van Leer uxvetor splitting, a hoie depending on fators like robustness or problem size.The overall di�erentiability of the proess will allow to apply an exat-gradientapproah. The appliation of a shape design loop should involve the repeatedrezoning of the mesh to take into aount the modi�ations of the airraft'sshape. In this work, inspired by the approah used by Young et al. [18℄, weonsider in a �rst phase the option of representing the shape modi�ation byapplying a transpiration ondition; this means that the urrent shape is de�nedwith respet to the mesh skin as a perturbation simulated by transpiration (seefor example [19℄), referred in the sequel as the \transpired perturbation". Then16



 is the perturbation funtion; it is the algebrai length of the displaement ofthe boundary along its normal.The sensitivity analysis has been exatly derived. The validation of thissensitivity is performed by a diret omparison with divided di�erenes of theost funtion; the relative error in gradient omponents is about .001.The global sheme is essentially made of three loops. The external loop isa remeshing loop in whih a new shape is derived from an old one updatedby the transpired perturbation. In the examples presented here, as the gridmovements were not so important, this remeshing step is skipped. However,suh a proedure was used to assess the orretness of the transpiration results(see Setion 4.2). The extensive use of the outer remeshing loop is disussedin a forthoming paper, where aeroelasti oupling is addressed and remeshingbeomes neessary.The medium loop is a gradient optimization one in whih the ontrol vari-able is the transpired perturbation; this loop involves the evaluation of thegradient of the ost funtional through an adjoint state (see Table 1). Wehave disussed in previous works (e.g. [20℄) the ability of the multilevel toonverge with a speed that is rather insensitive to the number of parameters;we now stress that, although easily obtained by the multilevel method, theoptimal ontrol an still show spurious high frequenies. We found that theirorigin lied in the fat that normal vetors at nodes are not enough regular nearvery urved part of the surfae geometry. Our answer to this problem is tosmooth the normals de�ned at eah node of the geometry.Finally, the most internal loop is the 1D searh in order to ompute thesteepest desent parameter �opt.3.2 Soni boom downwards emission optimizationWe propose here to measure the SBDE evaluating the volume integral of thesquared pressure gradient in a ontrol \box" (as shown in Figure 1) below theobjet. This is integrated in the ost funtional as follows:j() = �1(CD � CtargetD )2 + �2(CL � CtargetL )2 + �3 Z
B �p�xi �p�xi dV (19)where �1, �2 and �3 are onstants that allow to presribe the weights ofthe three onstraints in j() that we want to onsider, whih are related tothe aerodynamial performane (drag and lift) and the soni boom emission.17



Summation on repeated indies is assumed in the last term. From a pratialpoint of view, the integration volume 
B is the part of the omputationaldomain plaed below the airplane, limited in its upper boundary by a planebelow the airraft and relatively lose to it. It is worth to mention that theproposed method shows no partiular dependene on the preise loation ofthe upper limit of the SBDE's ontrol box.
p

ov

p
ov

pov

p
ri

∆ tri

//

p

p

t

p

t

t

Figure 3: Overpressure ground signatures onsidered. Top, minimum impulsewith overpressure peak pov (ISPR). Medium, minimum ISPR pov. Bottom,minimum ISPR pri, followed by a �nite rise time �tri, up to pov.The question is basially the following: an a redution in the volume in-tegral that we all the SBDE be translated in a redution in the ground shoksignature? While, by using our method, we sueed in reduing the pressurepeak in the near �eld, it ould be asked what are the e�ets of this in thefar �eld. A positive answer an be dedued from works where the near �eld(diretly omputed from the Euler equations) and the far �eld signature (om-puted in an approximated way as the far trae of the near �eld) are diretlyompared [15, 16, 14℄. Additionally, in [2℄ we have given some hints to un-derstand the e�et, at least from a qualitative point of view, by analyzing 2Dforms.Aording to [4℄, there are three optimization goals related to ground pres-sure signatures, shown in Figure 3: the impulse, the ISPR and the �nite risetime. The impulse is de�ned as the integral of the module of the pressure sig-nature, the ISPR (initial shok pressure rise) and the rise time is the time forthe pressure to rise up to its maximum value. While strong impulse values anprodue important strutural damage in the buildings a�eted, high ISPR andnegligeable rise time have strong impat on reatures, and in partiular, pos-sible psyhologial onsequenes on human beings. We have observed (viz.[2℄)that the shapes obtained by diminishing the SBDE with the proposed method,in general at on the ombined e�ets, namely, reduing all of the three param-18



eters, but on the near �eld. That is to say, the optimization proess driven bythe minimization of our ost funtional indiretly ats on the ited parameters.It redues both the ISPR and the impulse and it slightly inrements the risetime. This an be seen in Figure 4, that shows the kind of results we haveobtained. It shows the pressure distribution along a line below the midspanof an ONERA M6 wing for an Euler ow with a Mah number of 1.8 and anangle of attak of 3:0Æ. First of all, we have optimized the M6 wing. Then, wehave reated a 2D pro�le by utting vertially through the 3D wing. Finallywe have generated a partially re�ned 2D mesh to study the pressure patternbelow the wing going up to several hord lengths. We aknowledge that this isa qualitative analysis. However, we believe that it goes in the proper diretion.Further studies on the shokwave downwards propagation are urrently arriedon.
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Figure 4: ONERA M6, 2D setion of an optimized 3D wing. Pressure shokpropagation below the airfoils at three di�erent vertial positions plaed at 0.5, 3 and 6 hord lengths (this is the Z-oordinate).4 Numerial Examples4.1 The regularity lossWe have seen in Setion 2 that the optimal exponent a in our preonditioner(see Equation (8)'s multiplying fator) should be taken larger or equal to theregularity loss. We have seen in Setion 3 that this loss of derivation is at least1. The purpose of this setion is to try to observe by numerial experimentshow the best measured exponent aopt ompares with the value predited bytheory. The idea is to hek the eÆieny of the proposed AMP applied to19
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Figure 5: ONERA M6. Convergene rates for di�erent values of the exponenta in the AMP de�nition equation (8).an optimal design problem by evaluating its twofold laimed qualities: theregularity reovery and its smoothing properties. These virtues should bothimprove the onvergene rate of the optimization proedure and produe bettersmooth shapes.We have optimized a simple wing geometry. This geometry is an ON-ERA M6 wing, for inidene angle 3Æ and inow Mah number 1.8. Thisoptimization example is deeply studied in [2℄. We have explored the valuesa = 0 ; 1 ; 1:5 ; 2 ; 3, being a = 0 the equivalent to \No preonditioning".Figure 5 shows the onvergene rates for the di�erent values as the optimiza-tion iterative proess advanes. The gradient norm onvergene (left) is learlyimproved when the AMP is used, partiularly with 1 � a � 2. Convergeneseem best for a = 1, but onvergene is not muh degraded for a = 2 anditerated shapes are smoother. Figure 6 illustrates this fat. It is a plot of thegradient norm along the downwards faing half wing taken along the mid-span,omparing again the di�erent hoies of a, inluding a = 0. The smoothingproperties of the preonditioner is learly seen. Consequently, the rest of thenumerial experiments of this paper will be performed with the multilevel ex-ponent equal to 2. The �nal asymptoti behavior of the gradient is due to theskin modi�ations whih are restrited at the symmetry boundary.4.2 Transpiration ondition validationIn order to validate the 3D transpiration ondition, we have arried out somenumerial tests. The idea is to ompute some ow parameters and to om-20
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Figure 6: ONERA M6. Cost funtional gradient. Distribution along themidline of the downwards wing surfae after the �rst optimization iteration.Di�erent values of the exponent a are ompared.pare them with and without transpiration ondition. We have proeeded asfollows. A single optimization iteration produes a modi�ed shape. As statedabove, the spae of shape modi�ations is represented by a skin perturbation that runs along the normals at eah skin node, aording to the transpirationboundary ondition. The original volume mesh an then be modi�ed by adapt-ing it to the \transpired" skin, produing a new mesh with the same numberof nodes and elements. In our ase, the new position of the interior grid pointsis determined from the displaement solution of a disrete pseudo-struturalproblem representing the unstrutured dynami mesh. The pseudo-struturalsystem is onstruted by lumping �titious mass at eah vertex of the mesh andattahing �titious lineal springs at eah edge onneting two verties as wellas �titious torsional springs to eah vertex [21℄. The ow an then be real-ulated with the new volume mesh and ompared with that of the transpiredonditions.Table 2 shows the test results. Cost funtional j() and lift and dragoeÆients CL and CD omputed for the original initial geometry are takenas a unitary referene. In this ase, again the ONERA M6 is the hosenproblem. The inidene angle is 3Æ and the inow Mah number is 1.8. After asingle optimization iteration, both j() and CD has diminished and CL remainsapproximately onstant. In Table 2, the values between brakets represent thedi�erene between those obtained with transpiration onditions aounting forthe skin modi�ations and those of the orresponding remeshed volume. It isobserved a relatively good aordane.The remeshing algorithm an be used as a �ne tuning orretion for the21



�nal optimized form. One the iterative optimization proess is �nished, a newvolume mesh an be generated to restart the problem. In this way, the normalskin vetors de�ned at eah of the surfae nodes will hange aording to thenew disretization and, onsequently, a new transpiration basis is obtained.This basis will be, supposedly, better adapted to the optimized surfae. Addi-tionally, the sensitivity to further shape modi�ations an be more auratelyomputed, although these modi�ations should be minor ones, in view of Table2. j() CL CDOriginal(it=0) 1.000 1.000 1.000Transpiration(it=1) 0.520 0.998 0.617Remeshing(from it=1) 0.553(+6%) 1.040(+4%) 0.674(+8%)Table 2: Transpiration ondition validation. Values relative to those evalu-ated in the original initial geometry. Between brakets, di�erene betweentranspiration and remeshing values.4.3 Supersoni Business JetThe example we show here is an optimum design study done on a projetedSupersoni Business Jet, under developement at Dassault Aviation. It is alsoshown in [2℄, together with some other examples. The airraft's geometry wasprovided by the onstrutor, as a spatial grid with 173526 nodes and 981822tetrahedra, whih orresponds to half of the airraft and a vertial symmetryplane (see Figure 7). The inow Mah number is 1.8 and the angle of attakis 3Æ.The airraft wings are the targets of the optimization. The simpli�edwings provided by the onstrutor for this generi geometry are horizontallysymmetrial, with two di�erent sweep angles of 17Æ and 38Æ respetively, anda rather smooth transition between them. The Mah angle for M = 1:8 isaround 34Æ. Therefore, while the inboard part of the wings falls within theMah one (viz. [22℄), produing a lower wave drag, the outboard wing uts22



through the Mah one. As a onsequene, the sharpest pressure gradientswill be produed ahead of the outboard portion of the wing.

Figure 7: Dassault's Supersoni Business Jet. Right, spatial grid lose-up.Left, airraft and referene plane below.This study is arried out in two steps, desribed in the next sub setions.Firstly, the airraft wings are extrated from the plane, re-meshed with aoarser skin mesh, and optimized. In this way, the wings are totally isolatedof the inuene of the rest of the fuselage. This simpli�ed geometry is used todo a preliminary study of the problem in whih we show the e�et of the threeonstitutive terms of the ost funtional. Seondly, we optimize the wings,but now integrated in the original geometry of the airraft, in order to see theinuene of the fuselage in the wings optimization proess. Figure 15 is lear:it shows the ost funtional gradient distribution for the omplete airraft'ssurfae at the initial optimization step. It tells whih parts of the skin ofthe omplete airraft should be modi�ed related to the soni boom emissionredution. Combined with the isolated wings study, this ould beome a usefultool for airraft designers.4.3.1 Isolated wings: wing optimization
Figure 8: Isolated wings of the Supersoni Business Jet. Right, wing skin meshand its four setions onsidered (the thik horizontal lines), named setions A,B, C and D from outside going inside towards the fuselage. Left, wing andreferene plane below. 23



The skin mesh is shown in Figure 8 as well as the four uts that are usedin Figure 10 and whih represents the physial stations where the e�et of theoptimization proess is analyzed. The rather oarse skin mesh omprises 2409nodes. In the same �gure, at the bottom, it an be seen the wing and the planebelow, whih is at the top of the ontrol box. The pressure distribution onthis plane is used in Figure 9 to hek how e�etive the soni boom emissionredution is. We have followed two di�erent optimization strategies in order tosee the inuene of the soni boom redution related to the lift and drag ostfuntional terms, using two di�erent sets of parameters �, shown in Table 3 andnamed optimization strategies I and II. We have taken as target oeÆientsthat of the original initial shape for the lift, and zero for the drag. Table 3shows the values relative to the target ones.In both ases, we seek to keep the drag and lift targets while reduing thesoni boom emission. The di�erene lays in the relative weight we assign toeah of the terms in the ost funtional. While the �rst strategy (I) enfores theaerodynami performanes, the seond one is more aggressive for reduing thesoni boom emission (II). For both ases we also show the pressure distributionin the referene plane below, the wing pro�le at the four referene setions andthe pressure distribution along a line below them.�1(in CD term) �2(in CL term) �3(in jrpj2term)OptimizationStrategy I 1.0 10.0 0.001OptimizationStrategy II 1.0 10.0 0.1Table 3: Isolated wings of the Supersoni Business Jet. Optimization strategiesshown (�'s oeÆients are those used in the ost funtional de�nition).The pressure distribution below the wing after optimization learly showsthe two zones inside and outside the Mah one, and the di�erenes of bothoptimization strategies. In the outboard region, the shok is redued, its topattened and the rear over-expansion is almost eliminated, as seen in Figure10. Although the strategy II seems to be more e�etive in the pressure peak re-dution, both of them eliminate the over-expansion equally well. The strategyI produes a more uniform pressure distribution (see Figure 9), partiularlyin the inboard wing (see Figure 10, setions C and D). As desribed in [2℄,24



Figure 9: Isolated wings of the Supersoni Business Jet. Pressure distribu-tion in the referene plane below the wing. Top, original geometry. Bottom,optimized geometries following strategies (I), left, and (II), right.this study renders totally new wing shapes that are non-uniformly modi�edalong the wingspan diretion by the optimization yle, as seen in the airfoilsobtained in setions A, B, C and D, in Figure 11.
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Figure 10: Isolated wings of the Supersoni Business Jet. Pressure along thelines projeted by setions on the referene plane below the airraft.25



Figure 11 shows the original and the optimized airfoils obtained when ut-ting the wings in the four setions of Figure 8. Both optimization strategiesinlude a by-setions volume preserving gradient projetion tehnique (pro-posed in [2℄). In order to prevent outboard-to-inboard mass migration, thevolume preserving gradient is evaluated by dividing the wing-span in 30 se-tions and keeping the volume onstant within eah of them. For both strategiesI and II, outboard and inboard optimized airfoils show a very di�erent e�et.As into the Mah one the pressure gradients are muh smoother, the twoinboard airfoils do not develop an aute leading edge. Although their down-wards sides are attened, the leading edge remains blunt. On the other hand,the outboard optimized airfoils present very aute leading edges, partiularlyfor the farthest outboard one. The strategy II tends to reate more attenedoutboard wing setions and more ambered inboard ones, due to its more ag-gressive e�et on pressure peak redution. Beause of the volume preservation,this is translated in an outspread of the upper wing side, partiularly in its rearpart. On the other hand, the shape produed by the strategy I is smoother,beause as the attening and ambering of the downwards wing side is less,the upper side is also more uniform. This e�et is in turn seen as a pressureoverall attening in the referene plane below the airraft (see Figure 9). Itis remarkable that for both strategies I and II, the inboard optimized shapespresent the same tendeny as that of [23℄, where only drag and lift are inludedin the optimization ost.The most important di�erene in the results produed by the strategies Iand II is not seen in the soni boom downwards emission, whih is reduedalmost equally well in both ases, but in the aerodynamial wing properties,as shown in Table 4. The optimization strategy I leaves the aerodynamialperformanes almost intat. We reall that the aerodynamial oeÆients tar-gets are reahed here only by wing ambering: we have left aside the inideneangle as a design variable for a next step in our researh programme.4.3.2 Integrated airplane: wing optimizationWe ontinue this study with the omplete airplane, of whih Figure 12 showsthe Mah number and pressure distribution over its surfae (postproessedusing the symmetry plane as a \mirror"). Now, again only the wings areoptimized but the inuene of the rest of the plane is taken into aount: it isdedued from these results that it is not at all negligeable.The outome of 8 iterations of the optimization strategy I is shown in Figure13. In this �gure it an be seen that the main peak has indeed diminished,26



CL CL=CDOriginal 1.000 5.18OptimizationStrategy I 0.982(target 1.000) 5.09OptimizationStrategy II 0.895(target 1.000) 4.25Table 4: Isolated wings of the Supersoni Business Jet. Optimization strategiesshown.
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Figure 11: Isolated wings of the Supersoni Business Jet. Shape optimizationshown at the four wing setions for both of the optimization strategies. Top:outboard setions A (left) and B. Right: inboard setions C (left) and D.as in all the other ases. As for the optimization of the isolated wings, theoptimization proedure has managed to damp the shok produed by the part27



of the wing whih is outside the Mah one (Figure 14, left). However, withinthe Mah one, the pressure peak has inreased after the optimization proess(Figure 14). This inrease is slight, its maximum remains indeed lose tothat of the redued shok. We believe that this fat an be attributed tothe e�et of the rest of the airraft, espeially the neighboring fuselage. Asseen in Figure 15, the ost funtional gradient distribution for the ompleteairraft's surfae tells us whih parts of the skin of the omplete airraft shouldbe optimized relatively to the ost funtional proposed here. As a onsequeneof the appliation of our optimization proedure to this example, we an saythat the optimization of the isolated airraft parts ould give deeper ideas tothe designer about what really makes better shapes, even for rather oarseskin meshes. This optimization an be done muh faster than that of the fullairraft and several di�erent forms an be produed and tested until some ofthem are seleted. This hanges an be introdued in the full airraft, andultimately optimized ompletely to assess the hanges.

Figure 12: Supersoni Business Jet. Contour levels. Left, Mah number.Right, pressure.

28



Figure 13: Supersoni Business Jet. Pressure distribution in a plane below theairraft. Left, original geometry. Right, optimized geometry. The two lines ofFigure 14 are shown here.
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Figure 14: Supersoni Business Jet. Pressure along two lines below the wing,outside (left) and inside (right) the Mah one.

Figure 15: Supersoni Business Jet. Cost funtional gradient distribution forthe omplete airraft's surfae. 29



5 ConlusionWe have proposed a new method for the optimization of aerodynami super-soni shapes, whih is based mainly on two original ideas. First, the extensionof an additive multilevel method is applied to 3D shape parametrization. Thisapproah is presented with a omplete hain of arguments. We invoke a reentresult on funtion smoothing of a multilevel preonditioners lass. Using varia-tional alulus, we have identi�ed rather aurately the amount of smoothnessthat is required. Next a omplete transposition to the disrete 3D ontext withunstrutured tetrahedrization is built. This de�nes a tool that is appliable toreal life optimal design problems. Finally we assess and on�rm the soundnessof these theoretial arguments with the aid of a onrete optimization problem.In the pratial appliations, both the intermediate shapes we obtained aresmoother and the onvergene rates are better than those without preondi-tioning. This tehnique is also ombined with several options well adapted toeah other: CAD-free parametrization to work on the disretized shapes, Eulerow model with transpiration onditions whih simulates the shape modi�a-tions produed by the optimization proess, and a disrete adjoint approah,to deal with the eventually large dimension of the design variables spae (upto 11000 surfae grid points for a full Supersoni Business Jet optimization).Laying on the optimum design side, the seond original onept is thesoni boom optimization in itself. It is based on two pilars: what we in fatredue and how we manage to redue it. On one hand, we are not tryingto redue the soni boom itself (i.e. the shok signature on the soil, in thefar �eld), what requires additional (approximate) simulations falling out ofthe Euler ow equations sope. Instead of this, our goal is to redue thepressure shok intensity in the near �eld below the plane, what we have alledthe soni boom downwards emission, SBDE. On the other hand, we do it bymodifying the aerodynami shapes themselves. The parameters spae is thenthe physial position of the skin mesh nodes, a mesh that in turn an beadapted to the needs of the ow �eld. Shape modi�ations are treated usinga 3D transpiration ondition. This partiular kind of boundary ondition isevaluated in this paper, resulting in a powerful and reliable tool for optimalshape design.In ombination with our simpli�ed but e�etive manner for addressing thesoni boom emission, the shape optimization tehnique proposed in this paperallows to ondut the researh among a very large family of shapes. Verysimple examples show that bang-free geometries exist when no lift onstraintis required, but a well known fat is that lift produes always soni boom [4℄30



in supersoni ight ondition. So when lifting bodies are seeked, shapes withattened downwards halves play a partiularly interesting role sine in manyases they produe low soni pressure rises, while keeping the lift. These kindof shapes are well reprodued by the proposed algorithm. We illustrate thispoint with a series of optimization examples with inreasing shape omplexity,rising up to a pre-industrial jet geometry. Additionally, the proposed shemeprovides enough exibility to tune the desired aerodynami properties againstthe soni boom downwards emission.There are still several limitations in the auray of our results, that leadthe way to future lines of researh. The eÆieny of the proposed approahan beome an important issue when sti�er funtional and onstraints wereonsidered and tenths of gradient iterations will be mandatory. Now, eahiteration requires the omplete solution of state and adjoint systems. In [24℄, wepropose a new method inspired by Sequential Quadrati Programming (SQP)tehniques for the simultaneous, or one-shot, solution of state, adjoint andoptimality onditions. Conerning the ost funtional model presented here,we believe that although it has shown a very eÆient performane, it an befurther improved.In a following paper, we keep on developing the sheme here presented,by going deeper and farther. Deeper, beause we work on new and moresophistiated versions of the ost funtional. And farther beause the nextobjetive is to solve multiphysis problems by adding to the optimization ylethe aeroelasti oupling, all integrated in a Multi-Disiplinary Optimization(MDO) sheme. In this way, the soni boom optimization will take into aountalso the deformations su�ered by the aerodynami shapes due to aeroelastie�ets.Aknowledgements : We thank Dassault Aviation for making availablehis Supersoni Business Jet's mesh for this projet, and partiularly MihelMallet for reading and ommenting this doument, Gilbert Rog�e et MihelRavahol for stimulating disussions. We are also grateful to CINES (CentreInformatique National de l'Enseignement Sup�erieur) for providing the ompu-tational failities where the largest examples were ran and to the Frenh Min-istry of Researh for granting the projet, under the oordination of S�ebastienCandel and Denis Jeandel.
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