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 boom redu
tion of a supersoni
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h with an adjoint state evaluation.The multi-level pre
onditioner is designed from an analysis of the gradientregularity loss. The soni
 boom redu
tion is a
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t way byminimizing what we 
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 boom downwards emission, whi
h is 
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es are also guaranteed by in
luding their evaluation in the problem's 
ostfun
tional. Appli
ations to 3D geometries are presented.
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1 Introdu
tionIn the last two de
ades, the progress made in the optimization domain has
ompletely renewed the panoply of optimizers. When di�erentiable optimiza-tion is 
onsidered, Sequential Quadrati
 Programming (SQP) algorithms haverepla
ed gradient ones, thanks to the integration of very eÆ
ient quasi-Newtonstrategies. These methods dire
tly address the optimality 
onditions and, morefrequently, handle parameters that are dis
rete representations of smooth fun
-tions. However, sin
e the new optimization theory and methods are built inIRn, the out
ome of the pro
ess may loose its original smoothness.To illustrate this, 
onsider the \best-seller" problem of the 
al
ulus of vari-ations: Find �u su
h that �u = argminu 12 Z jruj2dx� Z u f dx ; (1)
hoosing �u within a given subspa
e. The fun
tional to minimize representsthe key 
on
ept in any optimization problem, where it is usually known as
ost fun
tional. It quanti�es the 
orre
tions brought to the unknown under
ertain given 
onditions and it is de�ned a

ording to our needs. In mostquasi-Newton optimization methods, the basi
 bri
k for the 
orre
tions whi
hare applied to the unknown is the gradient of the fun
tional (for the problemso de�ned by Equation (1))g = ��u� f: (2)whi
h tells us how the unknown must be modi�ed in order to get 
loser toour minimization obje
tive. This 
orre
tion has the important disadvantageto be a fun
tion mu
h less regular than the previous iterate u. Indeed, if u has
ontinuous derivatives up to k-th order, it is true only up to (k � 2)-th for g.Consequently, the iterative pro
ess of an algorithm relying on g, of the kindun+1 = un � � g; (3)would produ
e a new u with only (k � 2)-th 
ontinuous derivatives, then(k � 4)-th ones and so on. Ultimately, it will be impossible to 
ompute thefun
tional to minimize.It is well known that, after dis
retization, using g for building 
orre
tions isequivalent to apply a Ja
obi iteration. This will amplify many high frequen
ymodes, unless the step length is redu
ed in order to satisfy a Courant-like sta-bility 
ondition. In this 
ase, if the dis
retization is �ne and the high frequen
ymodes are very numerous, the quasi-Newton pro
ess 
annot 
ompensate the4



diÆ
ulties in 
onverging. This is why quasi-Newton solvers for Partial Di�er-ential Equations (PDE) are generally asso
iated with pre
onditioners.By the way, we note the strong relation between pre
onditioners and smoo-thers in this 
ontext. In the IRn theory, a pre
onditioner is used basi
ally toimprove the 
ondition number of a linear system, that is to redu
e the ratiobetween the largest and the smallest eigenvalue. In the dis
rete PDE 
ase,ill-
onditioning 
omes from mesh dependent high frequen
y eigenvalues, thatin
reases with mesh �neness and with the degree of di�erential operator. Thentwo ways of redu
ing this e�e
t is either to use a 
oarse mesh, not an a

ept-able solution, or to apply spe
ial devi
es for �ltering high frequen
ies. In thefun
tional 
ontext, it seems ne
essary (and somewhat equivalent to the abovestrategies) to work with an iterative 
orre
tion in whi
h regularity is not lost,for example by multiplying it by an inverse Lapla
e operator, so that the orderof derivatives should be re
overed.Then the fun
tional iteration 
an be done in a smooth manner, 
onverg-ing at its own 
onvergen
e speed. An important 
onsequen
e is that a gooddis
retization of this iteration should ideally have a 
onvergen
e rate 
lose tothe fun
tional one, that is a mesh-size independent rate. Then, building apre
onditioner that renders the fun
tional iteration regularity will in
rease thepotential qualities of the dis
retized iteration.To sum up, the prin
iple we shall follow is to introdu
e a pre
onditioner orsmoother inspired by fun
tional properties in order to improve the optimizationiteration of our optimal shape design problem. More pre
isely, we shall applya multi-level pre
onditioner studied in a 
ompanion paper [1℄ to the presentone. This multi-level pre
onditioner is of Bramble-Pas
iak-Xu type. Its par-ti
ularity is that it applies to a large family of unstru
tured triangulations ortetrahedrizations. The key prin
iple for its appli
ation is the identi�
ation ofthe loss of regularity and its 
ompensation.The appli
ation of this stategy assumes that we have a good knowledge ofthe global optimality system to solve, in
luding the fun
tional properties: inparti
ular, 
ontinuous and dis
rete gradient do not appear here as 
ompeti-tors, but as 
omplementary aspe
ts of the problem. The 
ontinuous gradientderivation, in its typi
al form of a Hadamard formula, 
ontributes to the under-standing of the singularity arising in an optimum design gradient. Its analysishelps for the 
hoi
e of the parti
ular multi-level pre
onditioner that we willapply.We shall illustrate these remarks on 
on
rete shape optimal design problemsin Aeronauti
s. The optimization of supersoni
 transports is one of today's5




hallenge in the �eld. We will 
on
entrate in the optimization of the aero-dynami
 performan
es together with the soni
 boom emission for supersoni
air
rafts, following a method �rstly proposed in [2℄.
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Figure 1: The soni
 boom. Sket
h of near and far �eld sho
k wave patterns ofa supersoni
 air
raft.Let us introdu
e the general idea. Any solid body moving at a supersoni
speed developes a sho
k wave system. A simple solid of revolution (like aproje
tile) produ
es essentially only two sho
k waves, one in front and theother one behind. Although more 
omplex bodies, like airplanes, produ
emore 
omplex sho
k patterns whi
h 
oales
e beyond the near �eld. Figure1 sket
hes the situation. On
e the sho
k waves pattern rea
hes the soil, ithas ultimately be
ome a two-sho
k system, whi
h is 
alled an N-type pressurewave, whi
h is dragged by the plane movement. Both the initial pressurerise and �nal drop are steepened after propagation through the atmosphere,produ
ing very strong explosive sounds on the ground, whi
h for instan
elays at 15 km below the airplane for the Con
orde 
ying at 
ruise altitude.This fa
t has motivated the prohibition of Con
orde supersoni
 
ights overland. Therefore, the redu
tion of the soni
 boom is an important issue in thespe
i�
ation of the next generation of supersoni
 air
rafts [3, 4℄. A

ording to[4℄, soni
 boom minimization 
ould be attained by 
onsidering basi
ally threepoints: to get the minimum pressure impulse, whi
h is de�ned as the integralof the absolute value of the overpressure ground signature, or the minimuminitial sho
k pressure rise or �nally to smooth the pressure rise by distributingit in a longer rise time. Di�erent optimization strategies fo
us on one or severalof these possibilities.The remainder of this paper is organized as follows. The next se
tionintrodu
es the multilevel fun
tional optimization problems in the 
ontext of6



an adjoint formulation and proposes a solution to gradient's regularity loss,whi
h is in turn studied with the aid of a Hadamard's formula for transpira-tion boundary 
onditions. Then, the soni
 boom optimization is addressed interms of what we 
all the soni
 boom downwards emission, (SBDE). Next, aserie of numeri
al studies validates the proposed solutions. Two parti
ular as-pe
ts are analyzed: the regularity loss and the transpiration 
onditions for 3Dproblems. The se
tion 
on
ludes with a numeri
al example. A proje
ted su-personi
 business jet is optimized following the proposed s
heme. This proje
tis 
urrently being developed at Dassault Aviation, whi
h has kindly providedthe mesh for this problem. Finally, in the last se
tion we 
on
lude this paperand give plans for future resear
h.2 Fun
tional optimizationAs announ
ed in the introdu
tion, gradients in optimal shape design needfun
tional pre
onditioning. This 
an be done by applying an ellipti
 operatoron shape perturbations, see for example [5℄ or [6℄. We are here interested in amore sophisti
ated pre
onditioning. In a 
ompanion paper [1℄ to the presentone, the building and the e�e
t of a wavelet or a Bramble-Pas
iak-Xu familyof pre
onditioners is examined in the 
ontext of 3D shape design. The nextsubse
tion presents this family. Then we des
ribe the optimal shape problemto solve and we identify whi
h pre
onditioner of the above family should beapplied.2.1 Multilevel pre
onditionerThe shape of a volumi
 solid air
raft geometry 
an be dis
retized as a non-planetriangulated surfa
e in 3D. Let �0 be the initial 3D surfa
e, made of triangles.The generi
 dis
rete surfa
e �
 is de�ned by the translation of length (alsodenoted) 
 along an approximate unit normal ve
tor ~n de�ned at the verti
esof �0. Therefore,~x
i is a vertex of �
 , ~x
i = ~xoi + 
(i) ~ni (4)where i is the index of the vertex, ~xoi is the physi
al position of the vertex of�0 with same index i.Let g be a des
ent dire
tion for 
. It is de�ned on the so-
alled �ne leveland allows to build a 
orre
ted shape: �
+Æ
 . We note that the 
oarse level is7



an arbitrary unstru
tured mesh without any pre-built hierar
hy. Let us �rstexplain how a 
oarser level is de�ned. A 
oarser level is built by groupingtogether several �ne nodes. Basis fun
tions, that are unity-valued over ea
hof these groups and zero otherwise, are not enough regular. Then we intro-du
e a regular proje
tion to a 
oarser level given by: LPP�L�, where P� isthe 
anoni
al proje
tion to the 
oarser level, P (transpose of P�) denotes aprolongation to the initial level, and L is the smoothing operator de�ned asan averaging weighted by a s
alar produ
t of normals:(L ~x)i = (1� �)~xi + � Xj2V(i)[figwij~xjXj2V(i)[figwij (5)where wij are the weights given by :wij = max (Area(i) �Area(j) � ~ni � ~nj ; 0) k~nik = 1 8 i; (6)being � the smoothing parameter. V(i) represents the neighbors of 
ell i andArea(i) is the measure of its area.With the above transfer and smoothing operators from any level m� 1 tolevel m as elementary bri
ks, we 
an derive a proje
tion operator related tolevel k: Pk = Y1�m�kLmPmP�mL�m: (7)This set of operators is used to 
onstru
t the Additive Multilevel Pre
onditioner(AMP) as follows:P AMPg = Png � n�1Xk=1 � 12a�n�k (Pk+1g � Pkg) (8)where n is the 
oarsest level. The multiplying fa
tor involves the 
hara
ter-isti
 element lengths ratio between two 
onse
utive levels (2 in this 
ase, by
onstru
tion). It involves an exponent a, whi
h is supposed to be the di�eren-tiability degree lost by the gradient g. This degree is the only informationto get from the systems to solve, sin
e the rest of the pre
onditioner derivationdoes not depend on the nature of the PDE and on the fun
tional de�nitioninvolved in the present problem. However the evaluation of this degree is of
ru
ial impa
t on the quality of the pre
onditioner. In order to identify it, weneed to analyse our parti
ular optimization problem. This is 
arried out inthe next two se
tions.
8



2.2 Problem statement - Adjoint formulation.In order to evaluate the gradients that will drive the optimization pro
ess, the
ontrol theory provides an elegant and eÆ
ient method whi
h by-passes the
ostly alternative of 
omputing them with �nite di�eren
es. The use of thismethod for aerodynami
al design was introdu
ed by Jameson in the 
lassi
alreferen
e [7℄. Basi
ally, it 
onsists of a minimization problem under a parti
ularadditional 
onstraint: the 
ow equations themselves.The general form of the problem to solve is then the following: we wantto �nd 
0 that minimizes a 
ertain fun
tional j(
) = J(
;W (
)) under the
onstraint 	(
;W (
)) = 0. All 
's represent the parametrization of the shapeto optimize. j(
) is the 
ost fun
tional mentioned above, whose dependen
e on
 is set by the aerodynami
s 
ommunity a

ording to 
ertain needs. Finally,the 
onstraint 	(
;W (
)) = 0 is the set of 
ow equations, in this 
ase the
ompressible Euler equations, solved in a domain 
 for whi
h �
 � 
, beingW (
) the 
ow �eld.The minimization problem is then solved using Lagrange multipliers. Theproblem's Lagrangian isL(W; 
;�) = J(W; 
) + h	(
;W );�i; (9)where � is a generalized Lagrange multiplier, and h ; i is a suitable s
alarprodu
t. Then, 
0 is found after solving	(
;W (
)) = 0(rW	(
;W (
)))� � = rWJ(
;W (
))j 0(
) = r
J(
;W (
)) � h�(
);r
	(
;W (
))i: (10)The �rst line is the 
ow solution, to obtain W (
). The se
ond one is theso 
alled adjoint 
ow solution, to get �(
). And in the last line, the gra-dient j 0(
) of the 
ost fun
tional is evaluated, whi
h in turn will be used tomodify the former 
. The derivatives of both the 
onstraint and the 
ost fun
-tional 
an be obtained either by �nite di�eren
es or, mu
h more eÆ
iently, byautomati
/analyti
 di�erentiation [6℄.The multilevel gradient approa
hes 
onsidered here rely on the algorithmin Table 1. Here, for ea
h iteration n
, g(
;W;�) is a fun
tion of variables
, W and � , that is identi
al to j 0(
) only if W = W (
) (solution of thestate equations) and � = �(
) (solution of the adjoint state equations). Theparameter � is either �xed or de�ned by a 1D sear
h (steepest version). IfP AMP is the identity, this algorithm results in a gradient method when g is9



Multilevel Pre
onditioned AlgorithmDo n
- Compute state W and adjoint �- Compute gradient g(
n
;W;�)- Compute the pre
onditioner PAMP- Compute � (internal 
y
le)- Update the shape 
orre
tion:
n
+1 = 
n
 � � PAMP g(
n
;W;�)Next n
Table 1: Multilevel Pre
onditioned Algorithmexa
tly j 0(
). In the pre
onditioned 
ase, we get a des
ent dire
tion in a weaksense sin
e the pre
onditioner is symmetri
 positive.It is worth to mention that if the state equations and the adjoint stateequations are not 
ompletely solved, g(
;W;�) is not the gradient of j(
).However, g(
;W;�) tends towards j 0(
) when the whole loop is 
onverging; werefer to that algorithm as a one-shot method (a

ording to [8℄) for solvingthe optimality system of the optimization problem (see a dis
ussion for 2Dappli
ations in [9℄). In this paper we have not used that approa
h.2.3 Hadamard's formula and regularity issuesThe solution of a Poisson problem 
an be di�erentiated with respe
t to the vari-ation of the geometri
al domain boundary. This was �rst done by J. Hadamard.It was rigourously revisited within the fun
tional 
ontext of Sobolev spa
es forPoisson problems in [10℄. In fa
t, this analysis 
annot be optimal unless it isderived in Holder spa
es. An optimal study proposed in [1℄ shows that �rstorder variations are spatially less regular fun
tions than the original Poissonsolution. This loss of derivative is an obsta
le to the fast 
onvergen
e of agradient method. The rigorous Hadamard di�erentiation with respe
t to thegeometri
al domain for the 
ompressible Euler model is today out of rea
h.However, in several works and in parti
ular in [11℄, [12℄, a formal Hadamarddi�erentiation is proposed. The obje
t of this se
tion is to re
all brie
y the10




on
lusion of those studies, and then to adapt it to the 
ase of transpiration
onditions and to �nally address it to the loss of derivative in the 
ontinuous
ontext.Let us 
onsider an optimal shape design problem in whi
h the domain 

of Rd is parametrized by a displa
ement 
 of a part of the boundary in thenormal dire
tion V to an initial geometry 
0, as shown in Figure 2. In theother part of the boundary, we 
onsider far �eld 
onditions that do not needto be pre
ised further for our argument.
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Figure 2: Boundary parametrization.Let D be a subdomain of 

 (inside 

 for any admissible 
). We 
onsiderthe minimization of the following fun
tional:j(
) = 12 jjW (
)�Wtargetjj2D :The state equation is the set of steady Euler equations with appropriateboundary 
onditions. It is represented in a variational form as follows: forall � = (�1; �2; �3; �4; �5) belonging to the appropriate spa
e,(	(
;W ); �) = � Z

 (F (W )���x +G(W )���y +H(W )���z ) d

+ Z�

 p (n
x �2 + n
y �3 + n
z �4) d�

 = 0; (11)where the Euler 
uxes are F (W ),G(W ) andH(W ), 
orresponding respe
tivelyto ea
h of the spa
e dire
tions. The exterior normal ~n
 to �

 has 
omponents(n
x; n
y ; n
z).Admitting that some di�erentiability assumptions are ful�lled, the Gâteaux-derivative of j at 
0 in the dire
tion Æ
 
an be obtained after some 
omputa-11



tions (see [11℄):j 0(
0; Æ
) = � Z�

0(F (W )���x +G(W )���y +H(W )���z )(~n
0 � ~V ) Æ
d�

0+ Z�

0 (rp � + p r�)(~n
0 � ~V ) Æ
d�

0with the following notations,rp � = �p�x �2 + �p�y �3 + �p�z �4;p r� = ��2�x p + ��3�y p + ��4�z p:The adjoint state � is solution of the system: �F�W !� ���x + �G�W !� ���y + �H�W !� ���z = � (W (
0)�Wtarget)�D on 

0 ;where �D is the 
hara
teristi
 fun
tion of D and with boundary 
ondition:�2n
0x +�3n
0y +�4n
0z = 0 on �

0 :Taking the L2 spa
e as pivot spa
e for our gradient method would produ
ethe following dire
tion of 
orre
tion for the boundary parameter 
:
 = 
o � �gL2(
o;W;�)where:gL2(
o;W;�) = � (F (W )���x +G(W )���y +H(W )���z ) (~n
0 � ~V )+ (rp � + p r�) (~n
0 � ~V ) : (12)We observe that this 
orre
tion is generally mu
h less regular than the bound-ary parameter 
0. Indeed, inspired by ellipti
 smoothness, we 
an estimatethat the state variables are at most as regular as the boundary, but the above
orre
tion involves derivatives of the adjoint state. Additionally, the normalve
tor ~n
0 is a derivative of the boundary. Regularity 
an be lost further ifwe try to 
ast this gradient iteration in a Hilbert 
ontext in order to enjoy a
onvergen
e theorem for the optimization iteration.Let us now adapt this analysis to the 
ase where the variable domain e�e
tis approximated by the 
ombination of a 
onstant domain with a transpira-tion 
ondition. We brie
y re
all the transpiration 
ondition for Euler 
ows.12



The slip boundary term of the 
ux 	(W ) is de�ned on a �xed referen
egeometry 
0 as follows: for ea
h 
omponent of the Euler 
ow equations set(n0 is the normal exterior to 
0),	(W )slip boundary = q(
)W + � 0 ; p(W )n0x ; p(W )n0y ; p(W )n0z ; p(W )q(
) �(13)where q(
) = ~u : (~n0 � ~n
)in whi
h ~u is the velo
ity of the 
uid. The state equation writes in a form thatis mu
h similar to the above Euler model, i.e. for all � we have(	TP(
;W ); �) = � Z
0(F (W )���x +G(W )���y +H(W )���z ) d
0+ Z�
0 p (n0x �2 + n0y �3 + n0z �4) d�
0+ Z�
0 q(
)(W1�1 +W2�2 +W3�3 +W4�4 + (W5 + p)�5) d�
0= 0; (14)The label \TP" refers to the Euler 
ow with transpiration 
onditions. Thederivation of the gradient is not so di�erent from the previous one, so we donot give the details. The adjoint system at (
0;W (
0)) writes: �F�W !� ���x +  �G�W !� ���y +  �H�W !� ���z = �(W (
0)�Wtarget)�D on 
0;but now the boundary 
onditions write,(�2n0x +�3n0y + �4n0z + q�5) �p�Wi+ q�i + �q�Wi  �iXk Wk +�5p! = 0 8i on �
0The fun
tional Gâteaux derivative turns to be:j 0TP(
0; Æ
) = Z�
0  Xk �kWk +�5p! �q�
 Æ
 d�
0We observe that the term q is a fun
tion of the normal ve
tor n
. Now, in 2D
ase, the value n
(s) at any 
urvilinear abs
issa s of �
0 is a fun
tion f of
(s) and of the 
urvilinear spatial derivative 
0(s) = �
�s (s) of 
. This writesas follows n
(s) = f(
(s); 
0(s)) (15)13



then �n
(s)�(
(s); 
0(s))Æ(
(s); 
0(s)) = �f�
(s)Æ
(s) + �f�
0(s)Æ
0(s) (16)but this 
an be also expressed from the Gâteaux derivative of n
 with respe
tto 
: (�n
�
 Æ
)(s) = �f�
(s)Æ
(s) + �f�
0(s)Æ
0(s) (17)and thus: �q�
 Æ
 = � u  �f�
 Æ
 + �f�
0 Æ
0! : (18)Then we still get an expression involving �rst-order derivatives of the shapevariables, as in (12). The 3D 
ase is analogous.These two examples show that in 
omplex optimization problems, the dire
tappli
ation in RN of gradient method, whi
h is equivalent to 
hoosing system-ati
ally the L2 pivot spa
e for the gradient iteration, may result in non-regularfun
tional iterations. Further, it appears that the loss in di�erentiabilityis formally 1. If no pre
onditioner were introdu
ed in order to 
ompensatethis loss of smoothness, the 
onvergen
e would show a behavior analog to thatof Ja
obi or unpre
onditioned Ja
obi-type ellipti
 solvers, that is a very slowand mesh-dependent 
onvergen
e.3 Soni
 boom optimizationIn this se
tion we apply the 
on
epts introdu
ed above in order to solve an op-timal shape design appli
ation problem, namely the soni
 boom optimizationof an air
raft. The key point in soni
 boom redu
tion is the same as in most ofthe optimization problems: it has to be attained without a prohibitive degra-dation of other 
ight qualities, in this parti
ular 
ase, related to the air
raftaerodynami
al performan
e. Furthermore, a dire
t evaluation of the sho
k sig-nature on the soil from the 3D Euler equations is nowadays 
omputationallyout of rea
h. It is ne
essary to model the far �eld soni
 boom propagation,an issue des
ribed both in [3℄ through the pioneering works of Witham aboutthe matter, and in [4℄. The 
entral idea in Witham's theory is to propagatebi-dimensionally, in a verti
al plane spanned by the 
ight dire
tion, the near�eld sho
k wave pattern, assuming some (indeed strong) hypotheses. Thismakes the pressure soil signature evaluation a problem separated from the14



CFD simulation: it is a 
ombination of a linearized propagation theory for thefar �eld signature and a non linear three dimensional set of equations (Euler'sor Navier-Stokes') for the near �eld 
ow.We have identi�ed two re
ent leading works on soni
 boom optimizationwhi
h follow this line, within the gradient methods 
ontext. One alternativeis presented in [13℄. In this work, it is proposed a parametri
al optimizations
heme for the soni
 boom, where the spatial parameters are determined byseveral position 
oordinates of 
ying appendages (like 
anards) and nose tilt-ing. The signature is modelled by the linearized theory as a fun
tion of somegeometri
 air
raft parameters. In the redu
ed design parameters' spa
e, an ad-joint 
ow problem is solved in order to 
ompute the 
ost fun
tional gradient.Then the problem results in a minimization of only the initial sho
k pressurerise (ISPR), leaving aside any redu
tion of the rest of the signaturefeatures. The other alternative is to in
rease the parameters spa
e by takinga �ner parametrization of the shape itself of the wings and/or appendages:in [14, 15℄ an adjoint method is again used to optimize a model supersoni
air
raft by modifying the positions of the dis
retized skin mesh (in [6℄, thiskind of shape parametrization is 
hristened \CAD-free", 
onversely to the\CAD-based" parametrization like that of [13℄, whi
h uses a redu
ed pa-rameters spa
e. We will follow this nomen
lature too). In this 
ase also, thefar �eld pressure is 
omputed, but now as a fun
tion of the near �eld pres-sure and as a result of an inverse problem given a target pressure groundsignature. This is done by solving two 
oupled adjoint problems. Anothernovel \CAD-free" approa
h is that of [16℄, where the soni
 boom is redu
edin an indire
t way by 
onsidering a spe
ial drag fun
tion in the obje
tive.The pressure ground signature is evaluated by using a waveform parametermethod. The optimization pro
edure is 
arried out using a 
ombination of re-du
ed 
omplexity models for the far �eld depending sensitivity and in
ompletesensitivities for the aerodynami
al performan
e.Although using a totally di�erent method, it is worth to mention [17℄, as
ited in both [14℄ and [13℄, where instead of solving the adjoint problem, theseresear
hers use a geneti
 algorithm approa
h.We propose a di�erent, yet simpli�ed way of soni
 boom optimization.Assuming that the sour
e of the pressure signature on the soil is the near �eldsho
k pattern below the airplane (we 
all it the soni
 boom downwardsemission, SBDE), by redu
ing it, the pressure signature will be 
onsequentlyredu
ed. This fa
t is 
learly seen in the previously 
ited referen
es [16, 14℄.In this way, after attaining a near �eld SBDE's redu
tion, the far �eld 
ouldbe evaluated, but out of the optimization 
y
le, just to 
he
k the results. Wepropose, as a �rst approa
h, to quantify the SBDE as the pressure gradient15



squared norm integrated in a given \
ontrol box" below the airplane andneighboring it, whi
h is in fa
t a part of the CFD domain. The 
ost fun
tionalin
ludes also terms related to 
ight performan
e (lift and drag). Constru
tivefeatures, like wing thi
kness, 
an be treated by the sort of gradient proje
tionintrodu
ed above.The main di�eren
es relative to the alternatives referen
ed above are re-lated to the soni
 boom quanti�
ation. While in [14, 15℄, a target far �eldpressure distribution is given, in [13℄, the goal is to minimize only the ISPR.In the former 
ase, the optimization is done over the shape of the 
ompleteair
raft and in the latter in a redu
ed design parameters spa
e. In both 
ases,there is a sort of additional 
onstraint in the minimization problem, imposedby limiting the spa
e of solutions: either giving a target pressure or fo
usingonly in the ISPR. We believe that depending on what is the requested goal,this approa
h 
an be sometimes very 
onvenient. However, our analysis isfree of this 
onstraint, be
ause we seek to minimize the near �eld SBDE, onthe 
onvi
tion that new aerodynami
al shapes 
an be found, arising from theproposed minimization problem and retaining good 
ight performan
e. Ourmethod is then 
omplementary to other kinds of approa
h, like those des
ribedabove. Another important di�eren
e is that all the works previously mentionedatta
k dire
tly the full air
raft problem. In [2℄ we have already pointed outthat optimizing very simple tridimensional forms using this method 
an give adeeper insight of the problem, about what is really produ
ing the soni
 boom.We propose then to start by optimizing isolated parts of the plane, as a pre-liminary step to the �nal stage, namely the full optimization of the plane.3.1 Global approa
h. Transpiration 
onditionsWe address now the transpiration boundary 
onditions, a key tool in our ap-proa
h, its reliability being evaluated in the Numeri
al Examples se
tion below.The numeri
al method used for predi
ting the steady Euler 
ows is a �nite vol-ume s
heme. The numeri
al 
ux evaluation is done following Van Leer 
uxve
tor splitting, a 
hoi
e depending on fa
tors like robustness or problem size.The overall di�erentiability of the pro
ess will allow to apply an exa
t-gradientapproa
h. The appli
ation of a shape design loop should involve the repeatedrezoning of the mesh to take into a

ount the modi�
ations of the air
raft'sshape. In this work, inspired by the approa
h used by Young et al. [18℄, we
onsider in a �rst phase the option of representing the shape modi�
ation byapplying a transpiration 
ondition; this means that the 
urrent shape is de�nedwith respe
t to the mesh skin as a perturbation simulated by transpiration (seefor example [19℄), referred in the sequel as the \transpired perturbation". Then16




 is the perturbation fun
tion; it is the algebrai
 length of the displa
ement ofthe boundary along its normal.The sensitivity analysis has been exa
tly derived. The validation of thissensitivity is performed by a dire
t 
omparison with divided di�eren
es of the
ost fun
tion; the relative error in gradient 
omponents is about .001.The global s
heme is essentially made of three loops. The external loop isa remeshing loop in whi
h a new shape is derived from an old one updatedby the transpired perturbation. In the examples presented here, as the gridmovements were not so important, this remeshing step is skipped. However,su
h a pro
edure was used to assess the 
orre
tness of the transpiration results(see Se
tion 4.2). The extensive use of the outer remeshing loop is dis
ussedin a forth
oming paper, where aeroelasti
 
oupling is addressed and remeshingbe
omes ne
essary.The medium loop is a gradient optimization one in whi
h the 
ontrol vari-able is the transpired perturbation; this loop involves the evaluation of thegradient of the 
ost fun
tional through an adjoint state (see Table 1). Wehave dis
ussed in previous works (e.g. [20℄) the ability of the multilevel to
onverge with a speed that is rather insensitive to the number of parameters;we now stress that, although easily obtained by the multilevel method, theoptimal 
ontrol 
an still show spurious high frequen
ies. We found that theirorigin lied in the fa
t that normal ve
tors at nodes are not enough regular nearvery 
urved part of the surfa
e geometry. Our answer to this problem is tosmooth the normals de�ned at ea
h node of the geometry.Finally, the most internal loop is the 1D sear
h in order to 
ompute thesteepest des
ent parameter �opt.3.2 Soni
 boom downwards emission optimizationWe propose here to measure the SBDE evaluating the volume integral of thesquared pressure gradient in a 
ontrol \box" (as shown in Figure 1) below theobje
t. This is integrated in the 
ost fun
tional as follows:j(
) = �1(CD � CtargetD )2 + �2(CL � CtargetL )2 + �3 Z
B �p�xi �p�xi dV (19)where �1, �2 and �3 are 
onstants that allow to pres
ribe the weights ofthe three 
onstraints in j(
) that we want to 
onsider, whi
h are related tothe aerodynami
al performan
e (drag and lift) and the soni
 boom emission.17



Summation on repeated indi
es is assumed in the last term. From a pra
ti
alpoint of view, the integration volume 
B is the part of the 
omputationaldomain pla
ed below the airplane, limited in its upper boundary by a planebelow the air
raft and relatively 
lose to it. It is worth to mention that theproposed method shows no parti
ular dependen
e on the pre
ise lo
ation ofthe upper limit of the SBDE's 
ontrol box.
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Figure 3: Overpressure ground signatures 
onsidered. Top, minimum impulsewith overpressure peak pov (ISPR). Medium, minimum ISPR pov. Bottom,minimum ISPR pri, followed by a �nite rise time �tri, up to pov.The question is basi
ally the following: 
an a redu
tion in the volume in-tegral that we 
all the SBDE be translated in a redu
tion in the ground sho
ksignature? While, by using our method, we su

eed in redu
ing the pressurepeak in the near �eld, it 
ould be asked what are the e�e
ts of this in thefar �eld. A positive answer 
an be dedu
ed from works where the near �eld(dire
tly 
omputed from the Euler equations) and the far �eld signature (
om-puted in an approximated way as the far tra
e of the near �eld) are dire
tly
ompared [15, 16, 14℄. Additionally, in [2℄ we have given some hints to un-derstand the e�e
t, at least from a qualitative point of view, by analyzing 2Dforms.A

ording to [4℄, there are three optimization goals related to ground pres-sure signatures, shown in Figure 3: the impulse, the ISPR and the �nite risetime. The impulse is de�ned as the integral of the module of the pressure sig-nature, the ISPR (initial sho
k pressure rise) and the rise time is the time forthe pressure to rise up to its maximum value. While strong impulse values 
anprodu
e important stru
tural damage in the buildings a�e
ted, high ISPR andnegligeable rise time have strong impa
t on 
reatures, and in parti
ular, pos-sible psy
hologi
al 
onsequen
es on human beings. We have observed (viz.[2℄)that the shapes obtained by diminishing the SBDE with the proposed method,in general a
t on the 
ombined e�e
ts, namely, redu
ing all of the three param-18



eters, but on the near �eld. That is to say, the optimization pro
ess driven bythe minimization of our 
ost fun
tional indire
tly a
ts on the 
ited parameters.It redu
es both the ISPR and the impulse and it slightly in
rements the risetime. This 
an be seen in Figure 4, that shows the kind of results we haveobtained. It shows the pressure distribution along a line below the midspanof an ONERA M6 wing for an Euler 
ow with a Ma
h number of 1.8 and anangle of atta
k of 3:0Æ. First of all, we have optimized the M6 wing. Then, wehave 
reated a 2D pro�le by 
utting verti
ally through the 3D wing. Finallywe have generated a partially re�ned 2D mesh to study the pressure patternbelow the wing going up to several 
hord lengths. We a
knowledge that this isa qualitative analysis. However, we believe that it goes in the proper dire
tion.Further studies on the sho
kwave downwards propagation are 
urrently 
arriedon.
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Figure 4: ONERA M6, 2D se
tion of an optimized 3D wing. Pressure sho
kpropagation below the airfoils at three di�erent verti
al positions pla
ed at 0.5, 3 and 6 
hord lengths (this is the Z-
oordinate).4 Numeri
al Examples4.1 The regularity lossWe have seen in Se
tion 2 that the optimal exponent a in our pre
onditioner(see Equation (8)'s multiplying fa
tor) should be taken larger or equal to theregularity loss. We have seen in Se
tion 3 that this loss of derivation is at least1. The purpose of this se
tion is to try to observe by numeri
al experimentshow the best measured exponent aopt 
ompares with the value predi
ted bytheory. The idea is to 
he
k the eÆ
ien
y of the proposed AMP applied to19
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Figure 5: ONERA M6. Convergen
e rates for di�erent values of the exponenta in the AMP de�nition equation (8).an optimal design problem by evaluating its twofold 
laimed qualities: theregularity re
overy and its smoothing properties. These virtues should bothimprove the 
onvergen
e rate of the optimization pro
edure and produ
e bettersmooth shapes.We have optimized a simple wing geometry. This geometry is an ON-ERA M6 wing, for in
iden
e angle 3Æ and in
ow Ma
h number 1.8. Thisoptimization example is deeply studied in [2℄. We have explored the valuesa = 0 ; 1 ; 1:5 ; 2 ; 3, being a = 0 the equivalent to \No pre
onditioning".Figure 5 shows the 
onvergen
e rates for the di�erent values as the optimiza-tion iterative pro
ess advan
es. The gradient norm 
onvergen
e (left) is 
learlyimproved when the AMP is used, parti
ularly with 1 � a � 2. Convergen
eseem best for a = 1, but 
onvergen
e is not mu
h degraded for a = 2 anditerated shapes are smoother. Figure 6 illustrates this fa
t. It is a plot of thegradient norm along the downwards fa
ing half wing taken along the mid-span,
omparing again the di�erent 
hoi
es of a, in
luding a = 0. The smoothingproperties of the pre
onditioner is 
learly seen. Consequently, the rest of thenumeri
al experiments of this paper will be performed with the multilevel ex-ponent equal to 2. The �nal asymptoti
 behavior of the gradient is due to theskin modi�
ations whi
h are restri
ted at the symmetry boundary.4.2 Transpiration 
ondition validationIn order to validate the 3D transpiration 
ondition, we have 
arried out somenumeri
al tests. The idea is to 
ompute some 
ow parameters and to 
om-20
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Figure 6: ONERA M6. Cost fun
tional gradient. Distribution along themidline of the downwards wing surfa
e after the �rst optimization iteration.Di�erent values of the exponent a are 
ompared.pare them with and without transpiration 
ondition. We have pro
eeded asfollows. A single optimization iteration produ
es a modi�ed shape. As statedabove, the spa
e of shape modi�
ations is represented by a skin perturbation 
that runs along the normals at ea
h skin node, a

ording to the transpirationboundary 
ondition. The original volume mesh 
an then be modi�ed by adapt-ing it to the \transpired" skin, produ
ing a new mesh with the same numberof nodes and elements. In our 
ase, the new position of the interior grid pointsis determined from the displa
ement solution of a dis
rete pseudo-stru
turalproblem representing the unstru
tured dynami
 mesh. The pseudo-stru
turalsystem is 
onstru
ted by lumping �
titious mass at ea
h vertex of the mesh andatta
hing �
titious lineal springs at ea
h edge 
onne
ting two verti
es as wellas �
titious torsional springs to ea
h vertex [21℄. The 
ow 
an then be re
al-
ulated with the new volume mesh and 
ompared with that of the transpired
onditions.Table 2 shows the test results. Cost fun
tional j(
) and lift and drag
oeÆ
ients CL and CD 
omputed for the original initial geometry are takenas a unitary referen
e. In this 
ase, again the ONERA M6 is the 
hosenproblem. The in
iden
e angle is 3Æ and the in
ow Ma
h number is 1.8. After asingle optimization iteration, both j(
) and CD has diminished and CL remainsapproximately 
onstant. In Table 2, the values between bra
kets represent thedi�eren
e between those obtained with transpiration 
onditions a

ounting forthe skin modi�
ations and those of the 
orresponding remeshed volume. It isobserved a relatively good a

ordan
e.The remeshing algorithm 
an be used as a �ne tuning 
orre
tion for the21



�nal optimized form. On
e the iterative optimization pro
ess is �nished, a newvolume mesh 
an be generated to restart the problem. In this way, the normalskin ve
tors de�ned at ea
h of the surfa
e nodes will 
hange a

ording to thenew dis
retization and, 
onsequently, a new transpiration basis is obtained.This basis will be, supposedly, better adapted to the optimized surfa
e. Addi-tionally, the sensitivity to further shape modi�
ations 
an be more a

urately
omputed, although these modi�
ations should be minor ones, in view of Table2. j(
) CL CDOriginal(it=0) 1.000 1.000 1.000Transpiration(it=1) 0.520 0.998 0.617Remeshing(from it=1) 0.553(+6%) 1.040(+4%) 0.674(+8%)Table 2: Transpiration 
ondition validation. Values relative to those evalu-ated in the original initial geometry. Between bra
kets, di�eren
e betweentranspiration and remeshing values.4.3 Supersoni
 Business JetThe example we show here is an optimum design study done on a proje
tedSupersoni
 Business Jet, under developement at Dassault Aviation. It is alsoshown in [2℄, together with some other examples. The air
raft's geometry wasprovided by the 
onstru
tor, as a spatial grid with 173526 nodes and 981822tetrahedra, whi
h 
orresponds to half of the air
raft and a verti
al symmetryplane (see Figure 7). The in
ow Ma
h number is 1.8 and the angle of atta
kis 3Æ.The air
raft wings are the targets of the optimization. The simpli�edwings provided by the 
onstru
tor for this generi
 geometry are horizontallysymmetri
al, with two di�erent sweep angles of 17Æ and 38Æ respe
tively, anda rather smooth transition between them. The Ma
h angle for M = 1:8 isaround 34Æ. Therefore, while the inboard part of the wings falls within theMa
h 
one (viz. [22℄), produ
ing a lower wave drag, the outboard wing 
uts22



through the Ma
h 
one. As a 
onsequen
e, the sharpest pressure gradientswill be produ
ed ahead of the outboard portion of the wing.

Figure 7: Dassault's Supersoni
 Business Jet. Right, spatial grid 
lose-up.Left, air
raft and referen
e plane below.This study is 
arried out in two steps, des
ribed in the next sub se
tions.Firstly, the air
raft wings are extra
ted from the plane, re-meshed with a
oarser skin mesh, and optimized. In this way, the wings are totally isolatedof the in
uen
e of the rest of the fuselage. This simpli�ed geometry is used todo a preliminary study of the problem in whi
h we show the e�e
t of the three
onstitutive terms of the 
ost fun
tional. Se
ondly, we optimize the wings,but now integrated in the original geometry of the air
raft, in order to see thein
uen
e of the fuselage in the wings optimization pro
ess. Figure 15 is 
lear:it shows the 
ost fun
tional gradient distribution for the 
omplete air
raft'ssurfa
e at the initial optimization step. It tells whi
h parts of the skin ofthe 
omplete air
raft should be modi�ed related to the soni
 boom emissionredu
tion. Combined with the isolated wings study, this 
ould be
ome a usefultool for air
raft designers.4.3.1 Isolated wings: wing optimization
Figure 8: Isolated wings of the Supersoni
 Business Jet. Right, wing skin meshand its four se
tions 
onsidered (the thi
k horizontal lines), named se
tions A,B, C and D from outside going inside towards the fuselage. Left, wing andreferen
e plane below. 23



The skin mesh is shown in Figure 8 as well as the four 
uts that are usedin Figure 10 and whi
h represents the physi
al stations where the e�e
t of theoptimization pro
ess is analyzed. The rather 
oarse skin mesh 
omprises 2409nodes. In the same �gure, at the bottom, it 
an be seen the wing and the planebelow, whi
h is at the top of the 
ontrol box. The pressure distribution onthis plane is used in Figure 9 to 
he
k how e�e
tive the soni
 boom emissionredu
tion is. We have followed two di�erent optimization strategies in order tosee the in
uen
e of the soni
 boom redu
tion related to the lift and drag 
ostfun
tional terms, using two di�erent sets of parameters �, shown in Table 3 andnamed optimization strategies I and II. We have taken as target 
oeÆ
ientsthat of the original initial shape for the lift, and zero for the drag. Table 3shows the values relative to the target ones.In both 
ases, we seek to keep the drag and lift targets while redu
ing thesoni
 boom emission. The di�eren
e lays in the relative weight we assign toea
h of the terms in the 
ost fun
tional. While the �rst strategy (I) enfor
es theaerodynami
 performan
es, the se
ond one is more aggressive for redu
ing thesoni
 boom emission (II). For both 
ases we also show the pressure distributionin the referen
e plane below, the wing pro�le at the four referen
e se
tions andthe pressure distribution along a line below them.�1(in CD term) �2(in CL term) �3(in jrpj2term)OptimizationStrategy I 1.0 10.0 0.001OptimizationStrategy II 1.0 10.0 0.1Table 3: Isolated wings of the Supersoni
 Business Jet. Optimization strategiesshown (�'s 
oeÆ
ients are those used in the 
ost fun
tional de�nition).The pressure distribution below the wing after optimization 
learly showsthe two zones inside and outside the Ma
h 
one, and the di�eren
es of bothoptimization strategies. In the outboard region, the sho
k is redu
ed, its top
attened and the rear over-expansion is almost eliminated, as seen in Figure10. Although the strategy II seems to be more e�e
tive in the pressure peak re-du
tion, both of them eliminate the over-expansion equally well. The strategyI produ
es a more uniform pressure distribution (see Figure 9), parti
ularlyin the inboard wing (see Figure 10, se
tions C and D). As des
ribed in [2℄,24



Figure 9: Isolated wings of the Supersoni
 Business Jet. Pressure distribu-tion in the referen
e plane below the wing. Top, original geometry. Bottom,optimized geometries following strategies (I), left, and (II), right.this study renders totally new wing shapes that are non-uniformly modi�edalong the wingspan dire
tion by the optimization 
y
le, as seen in the airfoilsobtained in se
tions A, B, C and D, in Figure 11.
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Figure 10: Isolated wings of the Supersoni
 Business Jet. Pressure along thelines proje
ted by se
tions on the referen
e plane below the air
raft.25



Figure 11 shows the original and the optimized airfoils obtained when 
ut-ting the wings in the four se
tions of Figure 8. Both optimization strategiesin
lude a by-se
tions volume preserving gradient proje
tion te
hnique (pro-posed in [2℄). In order to prevent outboard-to-inboard mass migration, thevolume preserving gradient is evaluated by dividing the wing-span in 30 se
-tions and keeping the volume 
onstant within ea
h of them. For both strategiesI and II, outboard and inboard optimized airfoils show a very di�erent e�e
t.As into the Ma
h 
one the pressure gradients are mu
h smoother, the twoinboard airfoils do not develop an a
ute leading edge. Although their down-wards sides are 
attened, the leading edge remains blunt. On the other hand,the outboard optimized airfoils present very a
ute leading edges, parti
ularlyfor the farthest outboard one. The strategy II tends to 
reate more 
attenedoutboard wing se
tions and more 
ambered inboard ones, due to its more ag-gressive e�e
t on pressure peak redu
tion. Be
ause of the volume preservation,this is translated in an outspread of the upper wing side, parti
ularly in its rearpart. On the other hand, the shape produ
ed by the strategy I is smoother,be
ause as the 
attening and 
ambering of the downwards wing side is less,the upper side is also more uniform. This e�e
t is in turn seen as a pressureoverall 
attening in the referen
e plane below the air
raft (see Figure 9). Itis remarkable that for both strategies I and II, the inboard optimized shapespresent the same tenden
y as that of [23℄, where only drag and lift are in
ludedin the optimization 
ost.The most important di�eren
e in the results produ
ed by the strategies Iand II is not seen in the soni
 boom downwards emission, whi
h is redu
edalmost equally well in both 
ases, but in the aerodynami
al wing properties,as shown in Table 4. The optimization strategy I leaves the aerodynami
alperforman
es almost inta
t. We re
all that the aerodynami
al 
oeÆ
ients tar-gets are rea
hed here only by wing 
ambering: we have left aside the in
iden
eangle as a design variable for a next step in our resear
h programme.4.3.2 Integrated airplane: wing optimizationWe 
ontinue this study with the 
omplete airplane, of whi
h Figure 12 showsthe Ma
h number and pressure distribution over its surfa
e (postpro
essedusing the symmetry plane as a \mirror"). Now, again only the wings areoptimized but the in
uen
e of the rest of the plane is taken into a

ount: it isdedu
ed from these results that it is not at all negligeable.The out
ome of 8 iterations of the optimization strategy I is shown in Figure13. In this �gure it 
an be seen that the main peak has indeed diminished,26



CL CL=CDOriginal 1.000 5.18OptimizationStrategy I 0.982(target 1.000) 5.09OptimizationStrategy II 0.895(target 1.000) 4.25Table 4: Isolated wings of the Supersoni
 Business Jet. Optimization strategiesshown.
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Figure 11: Isolated wings of the Supersoni
 Business Jet. Shape optimizationshown at the four wing se
tions for both of the optimization strategies. Top:outboard se
tions A (left) and B. Right: inboard se
tions C (left) and D.as in all the other 
ases. As for the optimization of the isolated wings, theoptimization pro
edure has managed to damp the sho
k produ
ed by the part27



of the wing whi
h is outside the Ma
h 
one (Figure 14, left). However, withinthe Ma
h 
one, the pressure peak has in
reased after the optimization pro
ess(Figure 14). This in
rease is slight, its maximum remains indeed 
lose tothat of the redu
ed sho
k. We believe that this fa
t 
an be attributed tothe e�e
t of the rest of the air
raft, espe
ially the neighboring fuselage. Asseen in Figure 15, the 
ost fun
tional gradient distribution for the 
ompleteair
raft's surfa
e tells us whi
h parts of the skin of the 
omplete air
raft shouldbe optimized relatively to the 
ost fun
tional proposed here. As a 
onsequen
eof the appli
ation of our optimization pro
edure to this example, we 
an saythat the optimization of the isolated air
raft parts 
ould give deeper ideas tothe designer about what really makes better shapes, even for rather 
oarseskin meshes. This optimization 
an be done mu
h faster than that of the fullair
raft and several di�erent forms 
an be produ
ed and tested until some ofthem are sele
ted. This 
hanges 
an be introdu
ed in the full air
raft, andultimately optimized 
ompletely to assess the 
hanges.

Figure 12: Supersoni
 Business Jet. Contour levels. Left, Ma
h number.Right, pressure.

28



Figure 13: Supersoni
 Business Jet. Pressure distribution in a plane below theair
raft. Left, original geometry. Right, optimized geometry. The two lines ofFigure 14 are shown here.
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Figure 14: Supersoni
 Business Jet. Pressure along two lines below the wing,outside (left) and inside (right) the Ma
h 
one.

Figure 15: Supersoni
 Business Jet. Cost fun
tional gradient distribution forthe 
omplete air
raft's surfa
e. 29



5 Con
lusionWe have proposed a new method for the optimization of aerodynami
 super-soni
 shapes, whi
h is based mainly on two original ideas. First, the extensionof an additive multilevel method is applied to 3D shape parametrization. Thisapproa
h is presented with a 
omplete 
hain of arguments. We invoke a re
entresult on fun
tion smoothing of a multilevel pre
onditioners 
lass. Using varia-tional 
al
ulus, we have identi�ed rather a

urately the amount of smoothnessthat is required. Next a 
omplete transposition to the dis
rete 3D 
ontext withunstru
tured tetrahedrization is built. This de�nes a tool that is appli
able toreal life optimal design problems. Finally we assess and 
on�rm the soundnessof these theoreti
al arguments with the aid of a 
on
rete optimization problem.In the pra
ti
al appli
ations, both the intermediate shapes we obtained aresmoother and the 
onvergen
e rates are better than those without pre
ondi-tioning. This te
hnique is also 
ombined with several options well adapted toea
h other: CAD-free parametrization to work on the dis
retized shapes, Euler
ow model with transpiration 
onditions whi
h simulates the shape modi�
a-tions produ
ed by the optimization pro
ess, and a dis
rete adjoint approa
h,to deal with the eventually large dimension of the design variables spa
e (upto 11000 surfa
e grid points for a full Supersoni
 Business Jet optimization).Laying on the optimum design side, the se
ond original 
on
ept is thesoni
 boom optimization in itself. It is based on two pilars: what we in fa
tredu
e and how we manage to redu
e it. On one hand, we are not tryingto redu
e the soni
 boom itself (i.e. the sho
k signature on the soil, in thefar �eld), what requires additional (approximate) simulations falling out ofthe Euler 
ow equations s
ope. Instead of this, our goal is to redu
e thepressure sho
k intensity in the near �eld below the plane, what we have 
alledthe soni
 boom downwards emission, SBDE. On the other hand, we do it bymodifying the aerodynami
 shapes themselves. The parameters spa
e is thenthe physi
al position of the skin mesh nodes, a mesh that in turn 
an beadapted to the needs of the 
ow �eld. Shape modi�
ations are treated usinga 3D transpiration 
ondition. This parti
ular kind of boundary 
ondition isevaluated in this paper, resulting in a powerful and reliable tool for optimalshape design.In 
ombination with our simpli�ed but e�e
tive manner for addressing thesoni
 boom emission, the shape optimization te
hnique proposed in this paperallows to 
ondu
t the resear
h among a very large family of shapes. Verysimple examples show that bang-free geometries exist when no lift 
onstraintis required, but a well known fa
t is that lift produ
es always soni
 boom [4℄30



in supersoni
 
ight 
ondition. So when lifting bodies are seeked, shapes with
attened downwards halves play a parti
ularly interesting role sin
e in many
ases they produ
e low soni
 pressure rises, while keeping the lift. These kindof shapes are well reprodu
ed by the proposed algorithm. We illustrate thispoint with a series of optimization examples with in
reasing shape 
omplexity,rising up to a pre-industrial jet geometry. Additionally, the proposed s
hemeprovides enough 
exibility to tune the desired aerodynami
 properties againstthe soni
 boom downwards emission.There are still several limitations in the a

ura
y of our results, that leadthe way to future lines of resear
h. The eÆ
ien
y of the proposed approa
h
an be
ome an important issue when sti�er fun
tional and 
onstraints were
onsidered and tenths of gradient iterations will be mandatory. Now, ea
hiteration requires the 
omplete solution of state and adjoint systems. In [24℄, wepropose a new method inspired by Sequential Quadrati
 Programming (SQP)te
hniques for the simultaneous, or one-shot, solution of state, adjoint andoptimality 
onditions. Con
erning the 
ost fun
tional model presented here,we believe that although it has shown a very eÆ
ient performan
e, it 
an befurther improved.In a following paper, we keep on developing the s
heme here presented,by going deeper and farther. Deeper, be
ause we work on new and moresophisti
ated versions of the 
ost fun
tional. And farther be
ause the nextobje
tive is to solve multiphysi
s problems by adding to the optimization 
y
lethe aeroelasti
 
oupling, all integrated in a Multi-Dis
iplinary Optimization(MDO) s
heme. In this way, the soni
 boom optimization will take into a

ountalso the deformations su�ered by the aerodynami
 shapes due to aeroelasti
e�e
ts.A
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