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1 Introduction

In the last two decades, the progress made in the optimization domain has
completely renewed the panoply of optimizers. When differentiable optimiza-
tion is considered, Sequential Quadratic Programming (SQP) algorithms have
replaced gradient ones, thanks to the integration of very efficient quasi-Newton
strategies. These methods directly address the optimality conditions and, more
frequently, handle parameters that are discrete representations of smooth func-
tions. However, since the new optimization theory and methods are built in
IR", the outcome of the process may loose its original smoothness.

To illustrate this, consider the “best-seller” problem of the calculus of vari-
ations:

1
Find @ such that # = argmin §/|Vu|2dx—/u fdz, (1)

choosing @ within a given subspace. The functional to minimize represents
the key concept in any optimization problem, where it is usually known as
cost functional. It quantifies the corrections brought to the unknown under
certain given conditions and it is defined according to our needs. In most
quasi-Newton optimization methods, the basic brick for the corrections which
are applied to the unknown is the gradient of the functional (for the problem
so defined by Equation (1))

g = —Au—f. (2)

which tells us how the unknown must be modified in order to get closer to
our minimization objective. This correction has the important disadvantage
to be a function much less regular than the previous iterate u. Indeed, if v has
continuous derivatives up to k-th order, it is true only up to (k — 2)-th for g.
Consequently, the iterative process of an algorithm relying on g, of the kind
un+1 =y’ — 04, (3)
would produce a new u with only (k — 2)-th continuous derivatives, then
(k — 4)-th ones and so on. Ultimately, it will be impossible to compute the
functional to minimize.

It is well known that, after discretization, using g for building corrections is
equivalent to apply a Jacobi iteration. This will amplify many high frequency
modes, unless the step length is reduced in order to satisfy a Courant-like sta-
bility condition. In this case, if the discretization is fine and the high frequency
modes are very numerous, the quasi-Newton process cannot compensate the



difficulties in converging. This is why quasi-Newton solvers for Partial Differ-
ential Equations (PDE) are generally associated with preconditioners.

By the way, we note the strong relation between preconditioners and smoo-
thers in this context. In the IR" theory, a preconditioner is used basically to
improve the condition number of a linear system, that is to reduce the ratio
between the largest and the smallest eigenvalue. In the discrete PDE case,
ill-conditioning comes from mesh dependent high frequency eigenvalues, that
increases with mesh fineness and with the degree of differential operator. Then
two ways of reducing this effect is either to use a coarse mesh, not an accept-
able solution, or to apply special devices for filtering high frequencies. In the
functional context, it seems necessary (and somewhat equivalent to the above
strategies) to work with an iterative correction in which regularity is not lost,
for example by multiplying it by an inverse Laplace operator, so that the order
of derivatives should be recovered.

Then the functional iteration can be done in a smooth manner, converg-
ing at its own convergence speed. An important consequence is that a good
discretization of this iteration should ideally have a convergence rate close to
the functional one, that is a mesh-size independent rate. Then, building a
preconditioner that renders the functional iteration regularity will increase the
potential qualities of the discretized iteration.

To sum up, the principle we shall follow is to introduce a preconditioner or
smoother inspired by functional properties in order to improve the optimization
iteration of our optimal shape design problem. More precisely, we shall apply
a multi-level preconditioner studied in a companion paper [1] to the present
one. This multi-level preconditioner is of Bramble-Pasciak-Xu type. Its par-
ticularity is that it applies to a large family of unstructured triangulations or
tetrahedrizations. The key principle for its application is the identification of
the loss of regularity and its compensation.

The application of this stategy assumes that we have a good knowledge of
the global optimality system to solve, including the functional properties: in
particular, continuous and discrete gradient do not appear here as competi-
tors, but as complementary aspects of the problem. The continuous gradient
derivation, in its typical form of a Hadamard formula, contributes to the under-
standing of the singularity arising in an optimum design gradient. Its analysis
helps for the choice of the particular multi-level preconditioner that we will

apply.

We shall illustrate these remarks on concrete shape optimal design problems
in Aeronautics. The optimization of supersonic transports is one of today’s



challenge in the field. We will concentrate in the optimization of the aero-
dynamic performances together with the sonic boom emission for supersonic
aircrafts, following a method firstly proposed in [2].

Sonic Boom Downwards Emission
Control Box (near field)

= Tail Wave

Bow Wave

Sonic Boom N-Wav
(far field)

‘ ¥ \I ‘

Figure 1: The sonic boom. Sketch of near and far field shock wave patterns of
a supersonic aircraft.

Let us introduce the general idea. Any solid body moving at a supersonic
speed developes a shock wave system. A simple solid of revolution (like a
projectile) produces essentially only two shock waves, one in front and the
other one behind. Although more complex bodies, like airplanes, produce
more complex shock patterns which coalesce beyond the near field. Figure
1 sketches the situation. Once the shock waves pattern reaches the soil, it
has ultimately become a two-shock system, which is called an N-type pressure
wave, which is dragged by the plane movement. Both the initial pressure
rise and final drop are steepened after propagation through the atmosphere,
producing very strong explosive sounds on the ground, which for instance
lays at 15 km below the airplane for the Concorde flying at cruise altitude.
This fact has motivated the prohibition of Concorde supersonic flights over
land. Therefore, the reduction of the sonic boom is an important issue in the
specification of the next generation of supersonic aircrafts [3, 4]. According to
[4], sonic boom minimization could be attained by considering basically three
points: to get the minimum pressure impulse, which is defined as the integral
of the absolute value of the overpressure ground signature, or the minimum
initial shock pressure rise or finally to smooth the pressure rise by distributing
it in a longer rise time. Different optimization strategies focus on one or several
of these possibilities.

The remainder of this paper is organized as follows. The next section
introduces the multilevel functional optimization problems in the context of



an adjoint formulation and proposes a solution to gradient’s regularity loss,
which is in turn studied with the aid of a Hadamard’s formula for transpira-
tion boundary conditions. Then, the sonic boom optimization is addressed in
terms of what we call the sonic boom downwards emission, (SBDE). Next, a
serie of numerical studies validates the proposed solutions. T'wo particular as-
pects are analyzed: the regularity loss and the transpiration conditions for 3D
problems. The section concludes with a numerical example. A projected su-
personic business jet is optimized following the proposed scheme. This project
is currently being developed at Dassault Aviation, which has kindly provided
the mesh for this problem. Finally, in the last section we conclude this paper
and give plans for future research.

2 Functional optimization

As announced in the introduction, gradients in optimal shape design need
functional preconditioning. This can be done by applying an elliptic operator
on shape perturbations, see for example [5] or [6]. We are here interested in a
more sophisticated preconditioning. In a companion paper [1] to the present
one, the building and the effect of a wavelet or a Bramble-Pasciak-Xu family
of preconditioners is examined in the context of 3D shape design. The next
subsection presents this family. Then we describe the optimal shape problem
to solve and we identify which preconditioner of the above family should be
applied.

2.1 Multilevel preconditioner

The shape of a volumic solid aircraft geometry can be discretized as a non-plane
triangulated surface in 3D. Let ¥y be the initial 3D surface, made of triangles.
The generic discrete surface ¥, is defined by the translation of length (also
denoted) v along an approximate unit normal vector 7 defined at the vertices
of ¥y. Therefore,

o

Z] isavertex of ¥, & & =7+ v(i) 7, (4)

where 7 is the index of the vertex, #7 is the physical position of the vertex of
Yo with same index 3.

Let g be a descent direction for . It is defined on the so-called fine level
and allows to build a corrected shape: X, s,. We note that the coarse level is
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an arbitrary unstructured mesh without any pre-built hierarchy. Let us first
explain how a coarser level is defined. A coarser level is built by grouping
together several fine nodes. Basis functions, that are unity-valued over each
of these groups and zero otherwise, are not enough regular. Then we intro-
duce a regular projection to a coarser level given by: LPP*L*, where P* is
the canonical projection to the coarser level, P (transpose of P*) denotes a
prolongation to the initial level, and £ is the smoothing operator defined as
an averaging weighted by a scalar product of normals:

(L &)= (1-0)7+0 ]—GV%:“{’} (5)
Wi

JEV(i)U{i}
where w;; are the weights given by :
w;; = max (Area(t) - Area(j) -it; -ii; , 0) ||| =1 Vi, (6)

being # the smoothing parameter. V(i) represents the neighbors of cell i and
Area(i) is the measure of its area.

With the above transfer and smoothing operators from any level m — 1 to
level m as elementary bricks, we can derive a projection operator related to
level k:

P = H LnPnPh L. (7)

1<m<k

This set of operators is used to construct the Additive Multilevel Preconditioner
(AMP) as follows:

n—1 1 n—k
Py = Pg = X (5) (Peng - Pg) 5)
k=1

where n is the coarsest level. The multiplying factor involves the character-
istic element lengths ratio between two consecutive levels (2 in this case, by
construction). It involves an exponent a, which is supposed to be the differen-
tiability degree lost by the gradient g. This degree is the only information
to get from the systems to solve, since the rest of the preconditioner derivation
does not depend on the nature of the PDE and on the functional definition
involved in the present problem. However the evaluation of this degree is of
crucial impact on the quality of the preconditioner. In order to identify it, we
need to analyse our particular optimization problem. This is carried out in
the next two sections.



2.2 Problem statement - Adjoint formulation.

In order to evaluate the gradients that will drive the optimization process, the
control theory provides an elegant and efficient method which by-passes the
costly alternative of computing them with finite differences. The use of this
method for aerodynamical design was introduced by Jameson in the classical
reference [7]. Basically, it consists of a minimization problem under a particular
additional constraint: the flow equations themselves.

The general form of the problem to solve is then the following: we want
to find ~, that minimizes a certain functional j(v) = J(v, W(y)) under the
constraint W(y, W(y)) = 0. All 7’s represent the parametrization of the shape
to optimize. j(7) is the cost functional mentioned above, whose dependence on
v is set by the aerodynamics community according to certain needs. Finally,
the constraint W(y,W (7)) = 0 is the set of flow equations, in this case the
compressible Euler equations, solved in a domain 2 for which 02 O =, being
W () the flow field.

The minimization problem is then solved using Lagrange multipliers. The
problem’s Lagrangian is

LW, 7, 1) = J(W,7) + (¥ (v, W), 1), (9)

where II is a generalized Lagrange multiplier, and ( , ) is a suitable scalar
product. Then, v, is found after solving

U(y,W(v)=0
(Vw ‘I’(%W( ))) II=VyJ(v,W(v)

)
i) = W) = {), V¥ (y, W()))- (10)

The first line is the flow solution, to obtain W(y). The second one is the
so called adjoint flow solution, to get II(). And in the last line, the gra-
dient j'(y) of the cost functional is evaluated, which in turn will be used to
modify the former . The derivatives of both the constraint and the cost func-
tional can be obtained either by finite differences or, much more efficiently, by
automatic/analytic differentiation [6].

The multilevel gradient approaches considered here rely on the algorithm
in Table 1. Here, for each iteration nc, g(, W,II) is a function of variables
v, W and II | that is identical to j'(y) only if W = W (v) (solution of the
state equations) and II = TI(v) (solution of the adjoint state equations). The
parameter p is either fixed or defined by a 1D search (steepest version). If
P*M" ig the identity, this algorithm results in a gradient method when g is



Multilevel Preconditioned Algorithm
Do nc
- Compute state W and adjoint II
- Compute gradient g¢(7"¢, W,II)
- Compute the preconditioner P*MP
- Compute p (intermal cycle)
- Update the shape correction:
,ync—i-l _ ,ync_p PAMP g(’}/nc,W,H)
Next nc

Table 1: Multilevel Preconditioned Algorithm

exactly j'(v). In the preconditioned case, we get a descent direction in a weak
sense since the preconditioner is symmetric positive.

It is worth to mention that if the state equations and the adjoint state
equations are not completely solved, g(v, W,II) is not the gradient of j(v).
However, g(v, W, II) tends towards j'(y) when the whole loop is converging; we
refer to that algorithm as a one-shot method (according to [8]) for solving
the optimality system of the optimization problem (see a discussion for 2D
applications in [9]). In this paper we have not used that approach.

2.3 Hadamard’s formula and regularity issues

The solution of a Poisson problem can be differentiated with respect to the vari-
ation of the geometrical domain boundary. This was first done by J. Hadamard.
It was rigourously revisited within the functional context of Sobolev spaces for
Poisson problems in [10]. In fact, this analysis cannot be optimal unless it is
derived in Holder spaces. An optimal study proposed in [1] shows that first
order variations are spatially less regular functions than the original Poisson
solution. This loss of derivative is an obstacle to the fast convergence of a
gradient method. The rigorous Hadamard differentiation with respect to the
geometrical domain for the compressible Euler model is today out of reach.
However, in several works and in particular in [11], [12], a formal Hadamard
differentiation is proposed. The object of this section is to recall briefly the
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conclusion of those studies, and then to adapt it to the case of transpiration
conditions and to finally address it to the loss of derivative in the continuous
context.

Let us consider an optimal shape design problem in which the domain €2,
of R is parametrized by a displacement v of a part of the boundary in the
normal direction V' to an initial geometry €2y, as shown in Figure 2. In the
other part of the boundary, we consider far field conditions that do not need
to be precised further for our argument.

Figure 2: Boundary parametrization.

Let D be a subdomain of €2, (inside €, for any admissible ). We consider
the minimization of the following functional:

. 1
jly) = §||W(7) - Wtarget||%) .

The state equation is the set of steady Euler equations with appropriate
boundary conditions. It is represented in a variational form as follows: for

all ¢ = (¢1, ¢2, B3, G4, ¢5) belonging to the appropriate space,

W) = = [ (FNS2+ 6N+ HONGY) de,

n /aﬂ p(n) ¢y + nl b5 + nl gy) dOQ, =0, (1)
where the Euler fluxes are F'(W), G(W') and H (W), corresponding respectively
to each of the space directions. The exterior normal 777 to 0§2, has components

(n,ny,nl).

Admitting that some differentiability assumptions are fulfilled, the Gateaux-
derivative of j at vy in the direction v can be obtained after some computa-
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tions (see [11]):

o1 o1 o1
FGV) G HOV)

—

e (VI
+ /a . (VP IL+ p VI - V) bydoc,,

i) = = [ ww) )@ V) 87d0%,

09, oz

with the following notations,

Op Op Op
nm = —11 — 1II — 1II
Vp o 2 + ay 3 + 95 4,
oI, oI, oIl
I = —= il -1
PV ox b dy P+ 0z b

The adjoint state II is solution of the system:

OF \"0ll (0G\ oIl [(0H\" oIl
(W) %"‘(W) a—y"‘(W) a — _(W(/YO)_Wtarget)XD on Q’ym

where xp, is the characteristic function of D and with boundary condition:

]._.[277/;0 + HgTLZO + H4TLZO = 0 on 6970.

Taking the L? space as pivot space for our gradient method would produce
the following direction of correction for the boundary parameter :

Y=Y — p9gr2(V, W, 1I)

where:
oIl oIl oIl o
2 = — _ _ =70
020 W) = = (F(V) G+ GOV) o4 HOW) ) (- 7)
+ (VpIl + p VII) (@°-V) . (12)

We observe that this correction is generally much less regular than the bound-
ary parameter vy. Indeed, inspired by elliptic smoothness, we can estimate
that the state variables are at most as regular as the boundary, but the above
correction involves derivatives of the adjoint state. Additionally, the normal
vector 770 is a derivative of the boundary. Regularity can be lost further if
we try to cast this gradient iteration in a Hilbert context in order to enjoy a
convergence theorem for the optimization iteration.

Let us now adapt this analysis to the case where the variable domain effect

is approximated by the combination of a constant domain with a transpira-
tion condition. We briefly recall the transpiration condition for Euler flows.

12



The slip boundary term of the flux W(W) is defined on a fixed reference
geometry (), as follows: for each component of the Euler flow equations set
(n° is the normal exterior to €),

V(W) stip boundary
g(NW + (0, pV)nl, p(W)nl), p(W)n?, p(W)q({13)
where
g(y) = . (i@ — i)

in which 4 is the velocity of the fluid. The state equation writes in a form that
is much similar to the above Euler model, i.e. for all ¢ we have

Wl W),60) = = [ (FONSE +G0M 5% 1 B!

oy
+Agm@@+@@+m@wmo

+ /aﬂ q(V) Wiy + Wagy + Wips + Wiy + (W5 + p)¢s) doSd
= 0, (14)

) dS

The label “TP” refers to the Euler flow with transpiration conditions. The
derivation of the gradient is not so different from the previous one, so we do
not give the details. The adjoint system at (vy, W (7)) writes:

OF \ " o1l oG\ " o1l OH\" oIl
@W)55*@%)55*@%)5;—*W“@‘mwﬂb°n%’

but now the boundary conditions write,

Op
oW,

(ang + I3n), + Ind + qlls)
0q
+ qll; +8W I_IX:W;c + Il5p | =0 Vi on 08

The functional Gateaux derivative turns to be:

-I 8
Jop(V0,07) = /aQ (Z LW, + H5P> 8—357 doSdy
o \'%

We observe that the term ¢ is a function of the normal vector n”. Now, in 2D
case, the value n?(s) at any curvilinear abscissa s of 0} is a function f of
7v(s) and of the curvilinear spatial derivative 7/(s) = %L(s) of 7. This writes
as follows

n’(s) = f(v(s),7(s)) (15)



then

On’ () : of of
———0(7(s),7'(s)) = dy(s) + 0v'(s 16
T 5) 7 () (v(s),7'(s)) () 7(s) 57 7'(s) (16)
but this can be also expressed from the Gateaux derivative of n” with respect
to :

an’Y . af af !
and thus:
aq . af af /

Then we still get an expression involving first-order derivatives of the shape
variables, as in (12). The 3D case is analogous.

These two examples show that in complex optimization problems, the direct
application in RY of gradient method, which is equivalent to choosing system-
atically the L? pivot space for the gradient iteration, may result in non-regular
functional iterations. Further, it appears that the loss in differentiability
is formally 1. If no preconditioner were introduced in order to compensate
this loss of smoothness, the convergence would show a behavior analog to that
of Jacobi or unpreconditioned Jacobi-type elliptic solvers, that is a very slow
and mesh-dependent convergence.

3 Sonic boom optimization

In this section we apply the concepts introduced above in order to solve an op-
timal shape design application problem, namely the sonic boom optimization
of an aircraft. The key point in sonic boom reduction is the same as in most of
the optimization problems: it has to be attained without a prohibitive degra-
dation of other flight qualities, in this particular case, related to the aircraft
aerodynamical performance. Furthermore, a direct evaluation of the shock sig-
nature on the soil from the 3D Euler equations is nowadays computationally
out of reach. It is necessary to model the far field sonic boom propagation,
an issue described both in [3] through the pioneering works of Witham about
the matter, and in [4]. The central idea in Witham’s theory is to propagate
bi-dimensionally, in a vertical plane spanned by the flight direction, the near
field shock wave pattern, assuming some (indeed strong) hypotheses. This
makes the pressure soil signature evaluation a problem separated from the

14



CFD simulation: it is a combination of a linearized propagation theory for the
far field signature and a non linear three dimensional set of equations (Euler’s
or Navier-Stokes’) for the near field flow.

We have identified two recent leading works on sonic boom optimization
which follow this line, within the gradient methods context. One alternative
is presented in [13]. In this work, it is proposed a parametrical optimization
scheme for the sonic boom, where the spatial parameters are determined by
several position coordinates of flying appendages (like canards) and nose tilt-
ing. The signature is modelled by the linearized theory as a function of some
geometric aircraft parameters. In the reduced design parameters’ space, an ad-
joint flow problem is solved in order to compute the cost functional gradient.
Then the problem results in a minimization of only the initial shock pressure
rise (ISPR), leaving aside any reduction of the rest of the signature
features. The other alternative is to increase the parameters space by taking
a finer parametrization of the shape itself of the wings and/or appendages:
in [14, 15] an adjoint method is again used to optimize a model supersonic
aircraft by modifying the positions of the discretized skin mesh (in [6], this
kind of shape parametrization is christened “CAD-free”, conversely to the
“CAD-based” parametrization like that of [13], which uses a reduced pa-
rameters space. We will follow this nomenclature too). In this case also, the
far field pressure is computed, but now as a function of the near field pres-
sure and as a result of an inverse problem given a target pressure ground
signature. This is done by solving two coupled adjoint problems. Another
novel “CAD-free” approach is that of [16], where the sonic boom is reduced
in an indirect way by considering a special drag function in the objective.
The pressure ground signature is evaluated by using a waveform parameter
method. The optimization procedure is carried out using a combination of re-
duced complexity models for the far field depending sensitivity and incomplete
sensitivities for the aerodynamical performance.

Although using a totally different method, it is worth to mention [17], as
cited in both [14] and [13], where instead of solving the adjoint problem, these
researchers use a genetic algorithm approach.

We propose a different, yet simplified way of sonic boom optimization.
Assuming that the source of the pressure signature on the soil is the near field
shock pattern below the airplane (we call it the sonic boom downwards
emission, SBDE), by reducing it, the pressure signature will be consequently
reduced. This fact is clearly seen in the previously cited references [16, 14].
In this way, after attaining a near field SBDE’s reduction, the far field could
be evaluated, but out of the optimization cycle, just to check the results. We
propose, as a first approach, to quantify the SBDE as the pressure gradient

15



squared norm integrated in a given “control box” below the airplane and
neighboring it, which is in fact a part of the CFD domain. The cost functional
includes also terms related to flight performance (lift and drag). Constructive
features, like wing thickness, can be treated by the sort of gradient projection
introduced above.

The main differences relative to the alternatives referenced above are re-
lated to the sonic boom quantification. While in [14, 15], a target far field
pressure distribution is given, in [13], the goal is to minimize only the ISPR.
In the former case, the optimization is done over the shape of the complete
aircraft and in the latter in a reduced design parameters space. In both cases,
there is a sort of additional constraint in the minimization problem, imposed
by limiting the space of solutions: either giving a target pressure or focusing
only in the ISPR. We believe that depending on what is the requested goal,
this approach can be sometimes very convenient. However, our analysis is
free of this constraint, because we seek to minimize the near field SBDE, on
the conviction that new aerodynamical shapes can be found, arising from the
proposed minimization problem and retaining good flight performance. Our
method is then complementary to other kinds of approach, like those described
above. Another important difference is that all the works previously mentioned
attack directly the full aircraft problem. In [2] we have already pointed out
that optimizing very simple tridimensional forms using this method can give a
deeper insight of the problem, about what is really producing the sonic boom.
We propose then to start by optimizing isolated parts of the plane, as a pre-
liminary step to the final stage, namely the full optimization of the plane.

3.1 Global approach. Transpiration conditions

We address now the transpiration boundary conditions, a key tool in our ap-
proach, its reliability being evaluated in the Numerical Examples section below.
The numerical method used for predicting the steady Euler flows is a finite vol-
ume scheme. The numerical flux evaluation is done following Van Leer flux
vector splitting, a choice depending on factors like robustness or problem size.
The overall differentiability of the process will allow to apply an exact-gradient
approach. The application of a shape design loop should involve the repeated
rezoning of the mesh to take into account the modifications of the aircraft’s
shape. In this work, inspired by the approach used by Young et al. [18], we
consider in a first phase the option of representing the shape modification by
applying a transpiration condition; this means that the current shape is defined
with respect to the mesh skin as a perturbation simulated by transpiration (see
for example [19]), referred in the sequel as the “transpired perturbation”. Then

16



v is the perturbation function; it is the algebraic length of the displacement of
the boundary along its normal.

The sensitivity analysis has been exactly derived. The validation of this
sensitivity is performed by a direct comparison with divided differences of the
cost function; the relative error in gradient components is about .001.

The global scheme is essentially made of three loops. The external loop is
a remeshing loop in which a new shape is derived from an old one updated
by the transpired perturbation. In the examples presented here, as the grid
movements were not so important, this remeshing step is skipped. However,
such a procedure was used to assess the correctness of the transpiration results
(see Section 4.2). The extensive use of the outer remeshing loop is discussed
in a forthcoming paper, where aeroelastic coupling is addressed and remeshing
becomes necessary.

The medium loop is a gradient optimization one in which the control vari-
able is the transpired perturbation; this loop involves the evaluation of the
gradient of the cost functional through an adjoint state (see Table 1). We
have discussed in previous works (e.g. [20]) the ability of the multilevel to
converge with a speed that is rather insensitive to the number of parameters;
we now stress that, although easily obtained by the multilevel method, the
optimal control can still show spurious high frequencies. We found that their
origin lied in the fact that normal vectors at nodes are not enough regular near
very curved part of the surface geometry. Our answer to this problem is to
smooth the normals defined at each node of the geometry.

Finally, the most internal loop is the 1D search in order to compute the
steepest descent parameter pop;.

3.2 Sonic boom downwards emission optimization

We propose here to measure the SBDE evaluating the volume integral of the
squared pressure gradient in a control “box” (as shown in Figure 1) below the
object. This is integrated in the cost functional as follows:

Op Op

J9) = a1(Cp = C™™)? + aa(Cy = CEm*) o [ v (19)

where «ay, as and ag are constants that allow to prescribe the weights of

the three constraints in j(7) that we want to consider, which are related to
the aerodynamical performance (drag and lift) and the sonic boom emission.
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Summation on repeated indices is assumed in the last term. From a practical
point of view, the integration volume QF is the part of the computational
domain placed below the airplane, limited in its upper boundary by a plane
below the aircraft and relatively close to it. It is worth to mention that the
proposed method shows no particular dependence on the precise location of
the upper limit of the SBDE’s control box.

p
P

ov

p \‘7 t

Pov
pri /
= t
, ~J

Figure 3: Overpressure ground signatures considered. Top, minimum impulse
with overpressure peak p,, (ISPR). Medium, minimum ISPR p,. Bottom,
minimum ISPR p,;, followed by a finite rise time At,, up to p,,.

The question is basically the following: can a reduction in the volume in-
tegral that we call the SBDE be translated in a reduction in the ground shock
signature? While, by using our method, we succeed in reducing the pressure
peak wn the near field, it could be asked what are the effects of this in the
far field. A positive answer can be deduced from works where the near field
(directly computed from the Euler equations) and the far field signature (com-
puted in an approzimated way as the far trace of the near field) are directly
compared [15, 16, 14]. Additionally, in [2] we have given some hints to un-
derstand the effect, at least from a qualitative point of view, by analyzing 2D
forms.

According to [4], there are three optimization goals related to ground pres-
sure signatures, shown in Figure 3: the impulse, the ISPR and the finite rise
time. The impulse is defined as the integral of the module of the pressure sig-
nature, the ISPR (initial shock pressure rise) and the rise time is the time for
the pressure to rise up to its maximum value. While strong impulse values can
produce important structural damage in the buildings affected, high ISPR and
negligeable rise time have strong impact on creatures, and in particular, pos-
sible psychological consequences on human beings. We have observed (viz.[2])
that the shapes obtained by diminishing the SBDE with the proposed method,
in general act on the combined effects, namely, reducing all of the three param-
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eters, but on the near field. That is to say, the optimization process driven by
the minimization of our cost functional indirectly acts on the cited parameters.
It reduces both the ISPR and the impulse and it slightly increments the rise
time. This can be seen in Figure 4, that shows the kind of results we have
obtained. It shows the pressure distribution along a line below the midspan
of an ONERA M6 wing for an Euler flow with a Mach number of 1.8 and an
angle of attack of 3.0°. First of all, we have optimized the M6 wing. Then, we
have created a 2D profile by cutting vertically through the 3D wing. Finally
we have generated a partially refined 2D mesh to study the pressure pattern
below the wing going up to several chord lengths. We acknowledge that this is
a qualitative analysis. However, we believe that it goes in the proper direction.
Further studies on the shockwave downwards propagation are currently carried
on.

Original M6 section
05 - Optimized M6 section

0.45
04
0.35
03
0.25
0.2 r
0.15 -
03

Z
-coordinate

Figure 4: ONERA M6, 2D section of an optimized 3D wing. Pressure shock
propagation below the airfoils at three different vertical positions placed at 0.5
, 3 and 6 chord lengths (this is the Z-coordinate).

4 Numerical Examples

4.1 The regularity loss

We have seen in Section 2 that the optimal exponent a in our preconditioner
(see Equation (8)’s multiplying factor) should be taken larger or equal to the
regularity loss. We have seen in Section 3 that this loss of derivation is at least
1. The purpose of this section is to try to observe by numerical experiments
how the best measured exponent a,, compares with the value predicted by
theory. The idea is to check the efficiency of the proposed AMP applied to
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Figure 5: ONERA M6. Convergence rates for different values of the exponent
a in the AMP definition equation (8).

an optimal design problem by evaluating its twofold claimed qualities: the
regularity recovery and its smoothing properties. These virtues should both
improve the convergence rate of the optimization procedure and produce better
smooth shapes.

We have optimized a simple wing geometry. This geometry is an ON-
ERA M6 wing, for incidence angle 3° and inflow Mach number 1.8. This
optimization example is deeply studied in [2]. We have explored the values
a=0,1,15, 2, 3, being a = 0 the equivalent to “No preconditioning”.
Figure 5 shows the convergence rates for the different values as the optimiza-
tion iterative process advances. The gradient norm convergence (left) is clearly
improved when the AMP is used, particularly with 1 < a < 2. Convergence
seem best for a = 1, but convergence is not much degraded for a = 2 and
iterated shapes are smoother. Figure 6 illustrates this fact. It is a plot of the
gradient norm along the downwards facing half wing taken along the mid-span,
comparing again the different choices of a, including a = 0. The smoothing
properties of the preconditioner is clearly seen. Consequently, the rest of the
numerical experiments of this paper will be performed with the multilevel ex-
ponent equal to 2. The final asymptotic behavior of the gradient is due to the
skin modifications which are restricted at the symmetry boundary.

4.2 Transpiration condition validation

In order to validate the 3D transpiration condition, we have carried out some
numerical tests. The idea is to compute some flow parameters and to com-
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Figure 6: ONERA M6. Cost functional gradient. Distribution along the
midline of the downwards wing surface after the first optimization iteration.
Different values of the exponent a are compared.

pare them with and without transpiration condition. We have proceeded as
follows. A single optimization iteration produces a modified shape. As stated
above, the space of shape modifications is represented by a skin perturbation ~y
that runs along the normals at each skin node, according to the transpiration
boundary condition. The original volume mesh can then be modified by adapt-
ing it to the “transpired” skin, producing a new mesh with the same number
of nodes and elements. In our case, the new position of the interior grid points
is determined from the displacement solution of a discrete pseudo-structural
problem representing the unstructured dynamic mesh. The pseudo-structural
system is constructed by lumping fictitious mass at each vertex of the mesh and
attaching fictitious lineal springs at each edge connecting two vertices as well
as fictitious torsional springs to each vertex [21]. The flow can then be recal-
culated with the new volume mesh and compared with that of the transpired
conditions.

Table 2 shows the test results. Cost functional j(y) and lift and drag
coefficients 'y and C'p computed for the original initial geometry are taken
as a unitary reference. In this case, again the ONERA M6 is the chosen
problem. The incidence angle is 3° and the inflow Mach number is 1.8. After a
single optimization iteration, both j(v) and Cp has diminished and C, remains
approximately constant. In Table 2, the values between brackets represent the
difference between those obtained with transpiration conditions accounting for
the skin modifications and those of the corresponding remeshed volume. It is
observed a relatively good accordance.

The remeshing algorithm can be used as a fine tuning correction for the
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final optimized form. Once the iterative optimization process is finished, a new
volume mesh can be generated to restart the problem. In this way, the normal
skin vectors defined at each of the surface nodes will change according to the
new discretization and, consequently, a new transpiration basis is obtained.
This basis will be, supposedly, better adapted to the optimized surface. Addi-
tionally, the sensitivity to further shape modifications can be more accurately
computed, although these modifications should be minor ones, in view of Table
2.

Original 1.000 | 1.000 | 1.000
(it=0)

Transpiration| 0.520 | 0.998 | 0.617
(it=1)

Remeshing 0.553 | 1.040 | 0.674
(from it=1) | (+6%)| (+4%)| (+8%)

Table 2: Transpiration condition validation. Values relative to those evalu-
ated in the original initial geometry. Between brackets, difference between
transpiration and remeshing values.

4.3 Supersonic Business Jet

The example we show here is an optimum design study done on a projected
Supersonic Business Jet, under developement at Dassault Aviation. It is also
shown in [2], together with some other examples. The aircraft’s geometry was
provided by the constructor, as a spatial grid with 173526 nodes and 981822
tetrahedra, which corresponds to half of the aircraft and a vertical symmetry
plane (see Figure 7). The inflow Mach number is 1.8 and the angle of attack
is 3°.

The aircraft wings are the targets of the optimization. The simplified
wings provided by the constructor for this generic geometry are horizontally
symmetrical, with two different sweep angles of 17° and 38° respectively, and
a rather smooth transition between them. The Mach angle for M = 1.8 is
around 34°. Therefore, while the inboard part of the wings falls within the
Mach cone (viz. [22]), producing a lower wave drag, the outboard wing cuts
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through the Mach cone. As a consequence, the sharpest pressure gradients
will be produced ahead of the outboard portion of the wing.

Figure 7: Dassault’s Supersonic Business Jet. Right, spatial grid close-up.
Left, aircraft and reference plane below.

This study is carried out in two steps, described in the next sub sections.
Firstly, the aircraft wings are extracted from the plane, re-meshed with a
coarser skin mesh, and optimized. In this way, the wings are totally isolated
of the influence of the rest of the fuselage. This simplified geometry is used to
do a preliminary study of the problem in which we show the effect of the three
constitutive terms of the cost functional. Secondly, we optimize the wings,
but now integrated in the original geometry of the aircraft, in order to see the
influence of the fuselage in the wings optimization process. Figure 15 is clear:
it shows the cost functional gradient distribution for the complete aircraft’s
surface at the initial optimization step. It tells which parts of the skin of
the complete aircraft should be modified related to the sonic boom emission
reduction. Combined with the isolated wings study, this could become a useful

tool for aircraft designers.

4.3.1 Isolated wings: wing optimization
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Figure 8: Isolated wings of the Supersonic Business Jet. Right, wing skin mesh
and its four sections considered (the thick horizontal lines), named sections A,
B, C and D from outside going inside towards the fuselage. Left, wing and

reference plane below.
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The skin mesh is shown in Figure 8 as well as the four cuts that are used
in Figure 10 and which represents the physical stations where the effect of the
optimization process is analyzed. The rather coarse skin mesh comprises 2409
nodes. In the same figure, at the bottom, it can be seen the wing and the plane
below, which is at the top of the control box. The pressure distribution on
this plane is used in Figure 9 to check how effective the sonic boom emission
reduction is. We have followed two different optimization strategies in order to
see the influence of the sonic boom reduction related to the lift and drag cost
functional terms, using two different sets of parameters «, shown in Table 3 and
named optimization strategies I and II. We have taken as target coefficients
that of the original initial shape for the lift, and zero for the drag. Table 3
shows the values relative to the target ones.

In both cases, we seek to keep the drag and lift targets while reducing the
sonic boom emission. The difference lays in the relative weight we assign to
each of the terms in the cost functional. While the first strategy (I) enforces the
aerodynamic performances, the second one is more aggressive for reducing the
sonic boom emission (II). For both cases we also show the pressure distribution
in the reference plane below, the wing profile at the four reference sections and
the pressure distribution along a line below them.

ayq ap ag
(in Cp term) | (in Cf term) (in |Vpl|?
term)
Optimization | 1.0 10.0 0.001
Strategy I
Optimization | 1.0 10.0 0.1
Strategy II

Table 3: Isolated wings of the Supersonic Business Jet. Optimization strategies
shown (a’s coefficients are those used in the cost functional definition).

The pressure distribution below the wing after optimization clearly shows
the two zones inside and outside the Mach cone, and the differences of both
optimization strategies. In the outboard region, the shock is reduced, its top
flattened and the rear over-expansion is almost eliminated, as seen in Figure
10. Although the strategy II seems to be more effective in the pressure peak re-
duction, both of them eliminate the over-expansion equally well. The strategy
I produces a more uniform pressure distribution (see Figure 9), particularly
in the inboard wing (see Figure 10, sections C and D). As described in [2],
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Figure 9: Isolated wings of the Supersonic Business Jet. Pressure distribu-
tion in the reference plane below the wing. Top, original geometry. Bottom,
optimized geometries following strategies (I), left, and (II), right.

this study renders totally new wing shapes that are non-uniformly modified
along the wingspan direction by the optimization cycle, as seen in the airfoils
obtained in sections A, B, C and D, in Figure 11.

0.28 T T 0.28 T T
Original wing  —+— Original wing ~ ——
Optimized wing (I) —*— Optimized wing (I) —*—
0.27 - timized wing () —*— | 0.27 | ptimized wing () —*— -|
0.26
025
a 024
023
0.22
0.21
02 02
5 0 5 10 15 20 25 30 35 40 5 0 5 10 15 20 25 30 35 40
X-coordinate (Below Section A) X-coordinate (Below Section B)
0.28 T T T 0.28 T T T T T T T T
Original wing  —+— Original wing ~ ——
Optimized wing (I) —*— Optimized wing (I) —*—
0.27 Optimized wing (Il) —*— 0.27 | Optimized wing (Il) —*—
0.26 0.26
025 025
a 024 a 024
023 023
0.22 0.22
0.21 0.21
02 02
5 0 5 10 15 20 25 30 35 40 5 0 5 10 15 20 25 30 35 40
X-coordinate (Below Section C) X-coordinate (Below Section D)

Figure 10: Isolated wings of the Supersonic Business Jet. Pressure along the
lines projected by sections on the reference plane below the aircraft.
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Figure 11 shows the original and the optimized airfoils obtained when cut-
ting the wings in the four sections of Figure 8. Both optimization strategies
include a by-sections volume preserving gradient projection technique (pro-
posed in [2]). In order to prevent outboard-to-inboard mass migration, the
volume preserving gradient is evaluated by dividing the wing-span in 30 sec-
tions and keeping the volume constant within each of them. For both strategies
I and II, outboard and inboard optimized airfoils show a very different effect.
As into the Mach cone the pressure gradients are much smoother, the two
inboard airfoils do not develop an acute leading edge. Although their down-
wards sides are flattened, the leading edge remains blunt. On the other hand,
the outboard optimized airfoils present very acute leading edges, particularly
for the farthest outboard one. The strategy II tends to create more flattened
outboard wing sections and more cambered inboard ones, due to its more ag-
gressive effect on pressure peak reduction. Because of the volume preservation,
this is translated in an outspread of the upper wing side, particularly in its rear
part. On the other hand, the shape produced by the strategy I is smoother,
because as the flattening and cambering of the downwards wing side is less,
the upper side is also more uniform. This effect is in turn seen as a pressure
overall flattening in the reference plane below the aircraft (see Figure 9). It
is remarkable that for both strategies I and II, the inboard optimized shapes
present the same tendency as that of [23], where only drag and lift are included
in the optimization cost.

The most important difference in the results produced by the strategies I
and II is not seen in the sonic boom downwards emission, which is reduced
almost equally well in both cases, but in the aerodynamical wing properties,
as shown in Table 4. The optimization strategy I leaves the aerodynamical
performances almost intact. We recall that the aerodynamical coefficients tar-
gets are reached here only by wing cambering: we have left aside the incidence
angle as a design variable for a next step in our research programme.

4.3.2 Integrated airplane: wing optimization

We continue this study with the complete airplane, of which Figure 12 shows
the Mach number and pressure distribution over its surface (postprocessed
using the symmetry plane as a “mirror”). Now, again only the wings are
optimized but the influence of the rest of the plane is taken into account: it is
deduced from these results that it is not at all negligeable.

The outcome of 8 iterations of the optimization strategy I is shown in Figure
13. In this figure it can be seen that the main peak has indeed diminished,
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CL CL/Cp
Original 1.000 5.18
Optimization | 0.982 5.09
Strategy I (target 1.000)
Optimization | 0.895 4.25
Strategy II (target 1.000)

Table 4: Tsolated wings of the Supersonic Business Jet. Optimization strategies
shown.
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Figure 11: Isolated wings of the Supersonic Business Jet. Shape optimization
shown at the four wing sections for both of the optimization strategies. Top:
outboard sections A (left) and B. Right: inboard sections C (left) and D.

as in all the other cases. As for the optimization of the isolated wings, the
optimization procedure has managed to damp the shock produced by the part
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of the wing which is outside the Mach cone (Figure 14, left). However, within
the Mach cone, the pressure peak has increased after the optimization process
(Figure 14). This increase is slight, its maximum remains indeed close to
that of the reduced shock. We believe that this fact can be attributed to
the effect of the rest of the aircraft, especially the neighboring fuselage. As
seen in Figure 15, the cost functional gradient distribution for the complete
aircraft’s surface tells us which parts of the skin of the complete aircraft should
be optimized relatively to the cost functional proposed here. As a consequence
of the application of our optimization procedure to this example, we can say
that the optimization of the isolated aircraft parts could give deeper ideas to
the designer about what really makes better shapes, even for rather coarse
skin meshes. This optimization can be done much faster than that of the full
aircraft and several different forms can be produced and tested until some of
them are selected. This changes can be introduced in the full aircraft, and
ultimately optimized completely to assess the changes.

Figure 12: Supersonic Business Jet. Contour levels. Left, Mach number.
Right, pressure.
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Figure 13: Supersonic Business Jet. Pressure distribution in a plane below the
aircraft. Left, original geometry. Right, optimized geometry. The two lines of
Figure 14 are shown here.
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Figure 14: Supersonic Business Jet. Pressure along two lines below the wing,
outside (left) and inside (right) the Mach cone.
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Figure 15: Supersonic Business Jet. Cost functional gradient distribution for
the complete aircraft’s surface.
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5 Conclusion

We have proposed a new method for the optimization of aerodynamic super-
sonic shapes, which is based mainly on two original ideas. First, the extension
of an additive multilevel method is applied to 3D shape parametrization. This
approach is presented with a complete chain of arguments. We invoke a recent
result on function smoothing of a multilevel preconditioners class. Using varia-
tional calculus, we have identified rather accurately the amount of smoothness
that is required. Next a complete transposition to the discrete 3D context with
unstructured tetrahedrization is built. This defines a tool that is applicable to
real life optimal design problems. Finally we assess and confirm the soundness
of these theoretical arguments with the aid of a concrete optimization problem.

In the practical applications, both the intermediate shapes we obtained are
smoother and the convergence rates are better than those without precondi-
tioning. This technique is also combined with several options well adapted to
each other: CAD-free parametrization to work on the discretized shapes, Euler
flow model with transpiration conditions which simulates the shape modifica-
tions produced by the optimization process, and a discrete adjoint approach,
to deal with the eventually large dimension of the design variables space (up
to 11000 surface grid points for a full Supersonic Business Jet optimization).

Laying on the optimum design side, the second original concept is the
sonic boom optimization in itself. It is based on two pilars: what we in fact
reduce and how we manage to reduce it. On one hand, we are not trying
to reduce the sonic boom itself (i.e. the shock signature on the soil, in the
far field), what requires additional (approximate) simulations falling out of
the Euler flow equations scope. Instead of this, our goal is to reduce the
pressure shock intensity in the near field below the plane, what we have called
the sonic boom downwards emission, SBDE. On the other hand, we do it by
modifying the aerodynamic shapes themselves. The parameters space is then
the physical position of the skin mesh nodes, a mesh that in turn can be
adapted to the needs of the flow field. Shape modifications are treated using
a 3D transpiration condition. This particular kind of boundary condition is
evaluated in this paper, resulting in a powerful and reliable tool for optimal
shape design.

In combination with our simplified but effective manner for addressing the
sonic boom emission, the shape optimization technique proposed in this paper
allows to conduct the research among a very large family of shapes. Very
simple examples show that bang-free geometries exist when no lift constraint
is required, but a well known fact is that lift produces always sonic boom [4]
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in supersonic flight condition. So when lifting bodies are seeked, shapes with
flattened downwards halves play a particularly interesting role since in many
cases they produce low sonic pressure rises, while keeping the lift. These kind
of shapes are well reproduced by the proposed algorithm. We illustrate this
point with a series of optimization examples with increasing shape complexity,
rising up to a pre-industrial jet geometry. Additionally, the proposed scheme
provides enough flexibility to tune the desired aerodynamic properties against
the sonic boom downwards emission.

There are still several limitations in the accuracy of our results, that lead
the way to future lines of research. The efficiency of the proposed approach
can become an important issue when stiffer functional and constraints were
considered and tenths of gradient iterations will be mandatory. Now, each
iteration requires the complete solution of state and adjoint systems. In [24], we
propose a new method inspired by Sequential Quadratic Programming (SQP)
techniques for the simultaneous, or one-shot, solution of state, adjoint and
optimality conditions. Concerning the cost functional model presented here,
we believe that although it has shown a very efficient performance, it can be
further improved.

In a following paper, we keep on developing the scheme here presented,
by going deeper and farther. Deeper, because we work on new and more
sophisticated versions of the cost functional. And farther because the next
objective is to solve multiphysics problems by adding to the optimization cycle
the aeroelastic coupling, all integrated in a Multi-Disciplinary Optimization
(MDO) scheme. In this way, the sonic boom optimization will take into account
also the deformations suffered by the aerodynamic shapes due to aeroelastic
effects.
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