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Abstract

Automatic differentiation is the primary means of obtain-
ing analytic derivatives from a numerical model given as a
computer program. Therefore, it is an essential productivity
tool in numerous computational science and engineering
domains. Computing gradients with the adjoint (also called
reverse) mode via source transformation is a particularly
beneficial but also challenging use of automatic differentia-
tion. To date only ad hoc solutions for adjoint differentiation
of MPI programs have been available, forcing automatic
differentiation tool users to reason about parallel communi-
cation dataflow and dependencies and manually develop ad-
joint communication code. Using the communication graph
as a model we characterize the principal problems of
adjoining the most frequently used communication idioms.
We propose solutions to cover these idioms and consider the
consequences for the MPI implementation, the MPI user and
MPI-aware program analysis. The MIT general circulation
model serves as a use case to illustrate the viability of our
approach.
keywords: MPI, automatic differentiation, source transfor-
mation, reverse mode

1. Introduction

In many areas of computational science, it is necessary
or desirable to compute the derivatives of functions. In
numerical optimization, gradients and sometimes Hessians
are used to help locate the extrema of a function. Sensitivity
analysis of computer models of physical systems can provide
information about how various parameters affect the model
and how accurately certain parameters must be measured.
Moreover, higher-order derivatives can improve the accuracy
of a numerical method, such as a differential equation solver,
enabling, for example, longer time steps.

Automatic differentiation (AD) is a technique for com-
puting the analytic derivatives of numerical functions given
as computer programs. Unlike finite difference approxima-
tions these analytic derivatives are computed with machine
precision. AD exploits the associativity of the chain rule
and the finite number of intrinsic mathematical functions

in a programming language to automate the generation
of efficient derivative code [1]. The adjoint (or reverse)
mode of AD is particularly attractive for computing first
derivatives of scalar functions, because it enables one to
compute gradients at a cost that is a small multiple of the
cost of computing the function and – unlike finite difference
gradient approximations – is independent of the number
of input variables. This makes reverse mode AD the only
technology that can feasibly compute gradients of large scale
numerical models that can have 108 or more input variables.

The adjoint mode of automatic differentiation combines
partial derivatives according to the chain rule, starting at the
output (dependent) variable and proceeding (in a direction
opposite to the control and data flow of the original function
computation) to the input (independent) variables. For any
variable u in the original program P , the AD procedure
creates an adjoint variable ū in the adjoint program P̄ .
This variable represents the derivative of the output variable
with respect to u. Consequently, a statement of the form
v=φ(u) in the original program P results in an update of
the form ū+=v̄*(∂v/∂u). Typically φ is some intrinsic
function like sin, cos etc. in the programming language
of the numerical model to be adjoined. The assignment v
= φ(u) may overwrite a previously used value of v. The
generic formulation of the adjoint statement as an increment
of the adjoint counterparts of the original right-hand-side
arguments necessitates to set v̄=0 subsequent to the incre-
ment of ū. Therefore, the simple assignment v=u has as
adjoint the two statements ū+=v̄;v̄=0. In the following we
will see that this plays an important role in the practical
implementation of message-passing adjoints. Because the
derivative of v with respect to u, ∂v/∂u, may depend on
the value of u and because the variable u may be reused
and overwritten many times during the function evaluation,
the derivative code must record or recompute all overwritten
variables whose value is needed in derivative computation.
In practice, domain-specific data flow analysis is used to
identify variables whose values must be recorded, partial
derivatives are “pre-accumulated” within basic blocks, and
complex incremental and multilevel checkpointing schemes
are employed to reduce memory requirements [2]. However,
for simplicity and without loss of generality, in this paper we
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assume that a program (or program section) P is transformed
into a new program section P∗ = P+P̄ , where P+ runs
forward, recording all overwritten variables, and P̄ runs
backward, computing partial derivatives and combining them
according to the chain rule. The “backward” execution is
accomplished by reversing the flow of control. This implies a
reversal of the statement order within basic blocks including
calls to communication library subroutines.

Many large-scale computational science applications are
parallel programs implemented by using MPI message pass-
ing. Consequently, in order to apply the adjoint mode
of AD to these applications, mechanisms are needed that
reverse the flow of information through MPI messages.
Previous work [3], [4], [5], [6], [7] has examined the AD
of parallel programs, but this work has focused primarily
on the forward mode of automatic differentiation or has
relied on the user to implement differentiated versions of
communication routines or other ad hoc methods. In this
paper we introduce a mechanism for the adjoint mode
differentiation of MPI programs, including MPI programs
that use nonblocking communication primitives. Given this
context we focus on qualitative statements regarding the
ability to automatically create adjoint code for the most
common MPI idioms and the preservation of the basic
characteristics of the communication idiom. The latter plays
a role in ensuring the correctness of the transformation and
retaining the generic performance advantages for which a
given MPI idiom may have been chosen in the original
model. Incremental runtime improvements or suggestions
on how to improve the communication interface as a whole
are beyond the scope of this paper. Consequently, we do
not present the timings of the forward and the adjoint
communication. Instead, we use a case study to show the
principal feasibility of our approach.

In Sec. 2 we introduce the MPI idioms of concern in this
paper. Section 3 briefly covers the transformation of plain
point-to-point communication and details possible solutions
for more complex idioms that are the main contribution of
this paper. In Sec. 4 we highlight how the approach was used
to automate the transformation of the communication in the
MIT general circulation mode. We summarize the results in
Sec. 6.

2. Typical MPI Idioms

In the following sections we omit the mpi_ prefix from
subroutine and variable names and also omit parameters
that are not essential in our context. This section briefly
introduces the message-passing concepts relevant to our
subject. An automatic transformation of message-passing
logic has to be aware of the efficiency considerations that
are the reason for different communication modes and the
constraints that are implied by these communication modes.
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Figure 2. Immediate return send (a) and combination
of isend and irecv with waitall (b)

Two commonly used models for message-passing com-
munications are the MPI control flow graph (MPICFG) [8]
and the communication graph [9, pp. 399–403]. A central
issue for correct MPI programs is to be deadlock free.
Deadlocks can be visualized as cycles in the communication
graph. In Fig. 1(a) we show a cycle (in red) indicating
a deadlock when two processes P1 and P2 want to send
data to each other at the same time. We can reorder the
calls, see Fig. 1(b), to break the deadlock. Alternatively we
could keep the order but unblock the send call by using the
“buffered” version bsend, thus making the communication
dependency edges unidirectional, see Fig. 1(c). For the plain
(frequently called “blocking”) pairs of send/recv calls,
the edges linking the vertices are bidirectional because the
MPI standard allows a blocking implementation; that is, the
send/recv call may return only after the control flow in
the counterpart has reached the respective recv/send call.
In complicated programs the deadlock-free order may not
always be apparent. For large data sets the buffered send
may run out of buffer space, thereby introducing a deadlock
caused by memory starvation.

A third option to resolve the deadlock shown in Fig. 2(a)
uses the nonblocking isend(a,r), which keeps the data
in the program address space referenced by variable a
and receives a request identifier r. The program can then
advance to the subsequent wait(r), after whose return the
data in the send buffer a is known to have been transmitted
to the receiving side. We assume here that the input program
P is deadlock free. However, the automatic transformation
has to ensure that the transformed MPI program P̄ is also
deadlock free. Thus, the transformation has to be cognizant
of specific communication patterns in P to retain their ability
to break potential deadlocks.

Other than permitting an immediate return, the variety



of different modes for send (and recv) calls has its
rationale in efficiency considerations. Unlike bsend, an
isend avoids copying the data to an intermediate buffer
but also requires that the send buffer not be overwritten until
the corresponding wait call returns. Another nonblocking
variant is a sequence irecv – send – wait. A read
(or overwrite) of the receive buffer prior to the return of
the corresponding wait yields undefined values. While
the transformation should retain efficiency advantages for
P̄ , it also has to satisfy the restrictions on the buffers.
Because one would like to minimize artificially imposed
order on the message handling, often the individual wait
calls are collected in a single waitall call, see Fig. 2(b),
where we combine isend and irecv. The waitall
vertices in the communication graph typically have more
than one communication in-edge. Two other common sce-
narios causing multiple communication in- and out-edges
are collective communications (for instance, broadcasts and
reductions) and the use of wildcard for the tag or the source
parameter. In Sec. 3 we explain the consequences of multiple
communication in- and out-edges.

3. Adjoining MPI Idioms

In this section we explain the construction of the adjoint
P̄ of our program section of interest P . A direct application
of a source transformation tool to an MPI implementation
is impractical for many reasons. One obvious reason is
that we would merely shift the need to prescribe adjoint
semantics to communication operations to some lower level
not covered by the MPI standard. For the transformation
we will consider certain patterns of MPI library calls and
propose a set of slightly modified interfaces that we can then
treat as atomic units in a transformation that implements the
adjoint semantic.

As in sequential programs, the adjoint P̄ will require
certain variable values during its execution. These values
might have been recorded in the accompanying augmented
forward section P+. However, the particular means of
restoring these values is not the subject of this paper and
does not affect what is proposed here. Consequently, we do
not specify P+ for the following examples, and we omit
from P̄ any statements related to restoring the values.

One can consider a send(a) to be a use of the data in
variable a and the corresponding recv(b) into a variable
b to be a setting of the data in b that is equivalent to writing
a simple assignment statement b=a. As explained in Sec. 1
the adjoint statements corresponding to this assignment are
ā+=b̄; b̄=0. Applying the above analogy we can express
the adjoint as send(b̄); b̄=0 as the adjoint of the original
recv call and recv(t); ā+=t as the adjoint of the
original send call. This has been repeatedly discovered and
used in various contexts (e.g., [6], [10]) and is the extent to
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Figure 3. Adjoint of Fig. 2(a).

which automatic transformation has been supporting MPI
until now.

3.1. Required Context

The semantics of the adjoint computation as introduced
in Sec. 1 implies that both the control flow and the commu-
nication edges have to be reversed. We already mentioned
the need to preserve certain features of the communication
patterns to keep the communication efficient and deadlock
free; see, for example, Fig. 3. This communication pat-
tern can be adjoined while remaining deadlock free by
replacing the MPI calls and reversing the direction of the
communication edges and the control flow. Considering the
modes of send and recv calls, we can derive a set of
patterns where simple rules suffice for the adjoint program
transformation. Table 1 shows rules for adjoining a restricted
set of MPI send/recv patterns. We omit all parameters
except for the buffers a, b, a temporary buffer t, and the
request parameter r for nonblocking calls. For simplicity
we consider send(a); to be equivalent to isend(a,r);
wait(r); and similarly for recv. For send(a), that is
isend(a,r); wait(r), we apply rule 1 and reverse
the control flow, obtaining irecv(t,r); wait(r);
ā+=t, that is, recv(t); ā+=t. When all communication
patterns in a program P match one of the rules listed in
Table 1, then one can replace the respective MPI calls as
prescribed. Together with control flow reversal orchestrated
by the regular adjoint transformation, the correct reversal
of the communication edges then is implied. A framework
to formally prove these rules can be found in [11]. As

Table 1. Adjoining rules

X in P in P̄
call paired with call paired with
isend(a,r) wait(r) wait(r);ā+=t irecv(t,r)
wait(r) isend(a,r) irecv(t,r) wait(r)
irecv(b,r) wait(r) wait(r);b̄=0 isend(b̄,r)
wait(r) irecv(b,r) isend(b̄,r) wait(r)
bsend(a) recv(b) recv(t);ā+=t bsend(b̄)
recv(b) bsend(a) bsend(b̄);b̄=0 recv(t)
ssend(a) recv(b) recv(t);ā+=t ssend(b̄)
recv(b) ssend(a) ssend(b̄);b̄=0 recv(t)

evident from the table entries the proper adjoint for a given
call depends on the context in the original code. One has



to facilitate the proper pairing of the isend/irecv calls
with their respective individual waits for rules 1–4 (intra-
process) and also of send mode for a given recv for rules
5–8 (inter-process). An automatic code analysis will often be
unable to determine the exact pairs. Instead one could either
use the notion of communication channels identified by
pragmas [3] or wrap the MPI calls into a separate layer. This
layer needs to encapsulate the required context information
(e.g., via distinct wait variants) and potentially passes the
respective user space buffer as an additional argument; for
example, swait(r,a) may be paired with isend(a,r).
Likewise the layer would introduce distinct recv vari-
ants; for example, brecv would be paired with bsend.
Note that combinations of nonblocking, synchronous and
buffered send and receive modes not listed in Table 1 can
be easily derived. For instance, the adjoint of a sequence
of ibsend(a,r) - recv(b) - wait(r) involves rule
2 for the wait and rule 5 for the recv, resulting in
the adjoint sequence irecv(t,r) - bsend(b̄);b̄=0 -
wait(r);ā+=t.

3.2. Wildcards and Collective Communication

The adjoining recipes have so far considered only cases
where the vertices in the communication graph have single
in- and out-edges. Using the MPI wildcard values for
parameters source or tag implies that a given recv
might be paired with any send from a particular set; that
is, the recv vertex has multiple communication in-edges
only one of which at any time during the execution is
actually traversed. Transforming the recv into a send for
the adjoint means that we need to be able to determine the
destination. A simple solution is to record the values of the
tag and source parameters in the augmented forward version
P+ at run-time. Conceptually this could be interpreted as a
run-time incarnation of the communication graph in which
the set of potential in- or out-edges has been replaced by
the one communication that actually takes place. Thus, the
single in- and out-edge property is satisfied again. In P̄ the
wildcard parameters are replaced with the actual values that
were recorded during the execution of P+, thus ensuring that
we traverse the correct, inverted communication edge. One
can show that for any deadlock-free run-time incarnation of
the communication graph, one can construct a corresponding
adjoint communication graph that will also be deadlock free.

For collective communications the transformation of the
respective MPI calls is essentially uniform across the par-
ticipating calls. To illustrate the scenario, we can consider a
summation reduction followed by a broadcast of the result,
which could be accomplished by calling allreduce but
here we want to do it explicitly. In P we sum up to the rank
0 process reduce(a,b,+) (i.e. b0 =

∑
ai) followed

by bcast(b) (i.e. bi = b0∀i). The corresponding adjoint
statements in P̄ with a temporary variable t and reversed

control flow are t0 =
∑
b̄i followed by āi+=t0∀i, which,

expressed as MPI calls, are reduce(b̄,t,+) followed
by bcast(t);āi+=t. In short, a reduction becomes a
broadcast and vice versa. Collective operations reduction
and broadcast in P are all connected with bidirectional com-
munication edges among themselves. The adjoint inverts the
control flow but keeps the same bidirectional communication
edges in P̄ .

To expose an efficiency concern, we modify the above
example slightly to perform a product reduction instead
of the summation. The transformation remains the same
except for the increments āi+=(∂b0/∂ai)t0∀i that follow
the bcast in P̄ . The above formula for the āi does not
suggest how exactly to compute the partials ∂b0/∂ai. In
principle, the partials could be explicitly computed by using
prefix and suffix reduction operations during the recording
sweep [4]. Alternatively one could record the ai per process
in P+ and then in P̄ first restore the ai, then compute all
the intermediate products from the leaves to the root in the
reduction tree, followed by propagating the adjoints from
the root to the leaves [12]. This approach requires only two
passes over the tree and thus is less costly than any approach
using the explicit computation of the partials. Unlike the
explicit partials computation using pre- and postfix reduc-
tions, MPI does not provide interfaces facilitating the two-
pass approach; consequently, one would have to implement
it from scratch.

3.3. Grouping wait Operations

The grouping of sets of wait operations into a call to
waitall or waitsome can increase the communication
efficiency by removing the often artificial order among the
requests. The completion waitall has multiple commu-
nication in-edges, see Fig. 4(a), that make a simple vertex
based adjoint transformation impossible. For simplicity we
assume all processes have the same behavior, and we show
only the condensed MPI CFG [8]. Typically, more than
one or even all of these in-edges are traversed, thereby
distinguishing the scenario from the wildcard receive case
we considered in Sec. 3.2. A transformation solely based
on the rules in Table 1 would require first modifying P
such that all the grouped wait operations are split into
individual waits. While they could then be transformed into
the respective isend and irecv calls shown in Fig. 4(b),
we would in the process lose the potential performance
advantage that prompted the use of waitall in the first
place. Without loss of generality we consider a sequence
of isend calls, followed by a sequence of irecv calls,
followed by a waitall. While there are no communication
edges directly between the isends and irecvs, we know
that in principle we want to turn send into receive operations
and vice versa. Replacing isends and irecvs in P with
irecvs and isends in P̄ begs the question of where in
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P̄ the corresponding waits should go. This gives us the
rationale to introduce a symmetric counterpart to waitall
into P that we call awaitall, which stands for anti-
waitall. We illustrate the scenario in Fig. 5(a). In P no
semantics are assigned to awaitall, and the vertex and
the communication edges can be considered nonoperational.
The adjoint transformation shown in Fig. 5(b) makes them
operational, the awaitall turns into a waitall and
in symmetrical fashion it renders nonoperational the out-
edges of the awaitall vertex in P̄ that corresponds to
the waitall in P . The final X at the top of Fig. 5(b)
denotes the adjoint buffer updates b̄j+=tj , j = 1, . . . , i and
b̄j = 0, j = i+1, . . . that have to wait for completion of the

nonblocking calls. The rationale for symmetrically extending
the restrictions on writing and reading the isend and
irecv buffers to the entire section between the awaitall
and the waitall follows from the prove of the correctness
of this transformation that can be done using a framework
described in [11].

3.4. Placement Flexibility and Implementation
Choices

In the program section between the awaitall and the
waitall our augmented restriction on the isend and
irecv buffers is symmetric. Just like the waitall, the
placement of the awaitall will have to be done by the
MPI programmer who wishes to use the AD transformation.
While the main goal of this paper is a transformation via
recipes applied at the level of a subroutine call, we note
that the restrictions in turn permit some flexibility to move
the isend and irecv calls within this program section
to the respective ends. This would afford the maximal
time the message-passing system can spend to process
communication requests before further computation in the
participating processes is halted pending the return of the
respective waitall. Unlike the transformation recipes we
proposed so far, such a modification of the original program
requires detailed data dependency information. With a few
exceptions, practical message-passing programs will likely
not be amenable to an automatic program analysis that can
provide the data dependencies with sufficient accuracy. On
the other hand, it is perfectly reasonable to consider as a
starting point that communication channels in the program
are identified by pragmas. Together with pragmas that serve
as semantic placeholders for the awaitall position, all
the information required to apply the adjoint transformation
recipes would be present. Obviously, standard program anal-
yses still are required to establish data dependencies for all
the other parameters in the MPI calls, their position in the
control flow graph, and so forth.

From the above it is obvious that an approach based
on pragma-identified communication channels would be
the most beneficial for general purposes. It is clearly also
a rather complicated choice for something that can also
be implemented with a set of subroutines that wrap the
MPI calls and supply all the required context information
via parameters and context-specific versions. An example,
mentioned in Sec. 3.1, is a specific swait, which takes
as an additional parameter the corresponding isend call’s
sendbuffer. The wrapper routines then can switch their
behavior, perhaps via some global setting, between the
original and the respective adjoint semantics indicated by
the recipe. Some additional bookkeeping for the delayed
buffer operations to be executed by the adjoint semantic for
awaitall is in principle all that is needed to accomplish



the task. More details on this can be found in Sec. 4 related
to our wrapper-based prototype implementation.

4. Case Study: MITgcm

The MIT General Circulation Model (MITgcm) is an
ocean and atmosphere geophysical fluids simulation code
[13], [14] that is widely used for both realistic and idealized
studies and runs on both serial desktop systems and large-
scale parallel systems. It employs a grid-point based, time-
stepping algorithm that derives its parallelism from spatial
domain decomposition in two horizontal dimensions. Co-
herence between decomposed regions, in both forward and
reverse mode adjoint computations, is handled explicitly
by a set of hand-written communication and synchroniza-
tion modules that copy data between regions using either
shared-memory or MPI-based messaging. The MITgcm code
supports arbitrary cost functions [15], [16], [17], [18] for
which adjoints can be generated with the AD tools TAF
and OpenAD/F. Until now, however, the automatic adjoint
transformation did not extend to the MPI communication
layer. Instead, hand-written “adjoint forms” of the MITgcm
communication and synchronization modules have to be
maintained [19], [7] and substituted into the code generated
automatically for the other parts of the MITgcm. The lack
of tool support required other ocean model developers to
adopt the same strategy [10]. Creating and maintaining
these hand-written adjoint sections are arduous and highly
error-prone tasks, particularly when multiple discretization
and decomposition options require many variants of the
communication logic. This situation provided the impetus
to investigate to what extent automatic transformation might
support communication patterns that are more sophisticated
than plain send-recv pairs.

The communication pattern is an east-west/north-south
exchange of ghost cells between neighbors in the domain
decomposition. The communication graph for the data ex-
change for receiving the data from the western neighbor P1
into P2’s ghost cells is shown in Fig. 6(a). In P̄ the adjoint
of this operation is to increment the adjoint data in P1 by the
adjoint ghost cell data from P2. In practice the data exchange
is of course symmetric, periodic, and two dimensional. In
order to avoid issues of buffer overflow and deadlock, we use
isend(). The subsequent waitall covers the isend
calls to all neighbors. Note that many lines of ancillary code
may occur between the posting of the isend operations
and the call to the balancing waitall. Without automatic
transformation capabilities those program section will have
to be manually adjoined as well.

To apply our recipe to the waitall operation requires
the insertion of the awaitall. In Fig. 6(b) we show
the wrapper routines inserted into the code in place of
the original calls. To reach a correct solution we again
consider inverting the edge direction in the communication
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Figure 6. Ghost cell exchange graph (a) and user code
snippet for the adjoinable MPI interface (b).

pattern made symmetric by the insertion of the awaitall.
Consequently the recv is transformed into isend, and the
isend into a recv. Regarding the recv turned isend
we could either impose restrictions on the recv buffer
that are identical to the restrictions imposed on an irecv
buffer in the awaitall - waitall section or accept
the spatial overhead of using a temporary buffer instead.
Because the restrictions would have required considerable
code changes we employed the temporary buffer option. As
part of the symmetric pattern the user code passes a request
parameter to the originally blocking call. The primary reason
is of course the need to accommodate the passing of the
actual request in the adjoint but one will observe that
adding these parameters to the interface reflects the very
same symmetry that is the basis of our adjoining recipe.
At this point it may be worthwhile to point out that the
superficially similar sequence irecv - send - waitall
would not permit bypassing additional restrictions by means
of introducing a temporary buffer. Here, the irecv as
the adjoint counterpart of the send will have to rely on
restrictions which in essence in the original code permit a
replacement of the send with an isend; see also [11].
Clearly, this “limitation” has to be weighed against the less
efficient fall back option of manually splitting the waitall



call into individual waits on the one hand, or writing the
code in P to satisfy the isend restriction which in turn can
improve communication performance in P . The fact that the
pairing of isends with irecvs is not only preferable from
the overall message-passing performance point of view but
also permits an easier program transformation is a rather
neat confluence of concepts.

The additional buffer parameters are not strictly necessary.
The wrapper could internally associate requests with buffers.
On the other hand, the parameters are a simple reminder
to the user how far the scope of the buffer must extend.
The wrapping approach permits a source transformation
with a simple recipe that directly applies to the wrapped
calls and does not require additional pragma information.
Consequently it does not have the same utility for MPI-
aware data-flow analysis. Aside from the extra subroutine
call, another source of overhead is the need to retain separate
receive buffers.

5. Related Work and Outlook

Most of what has been published regarding message
passing in the AD context relates to the conceptually simpler
forward mode starting with [3]. The correct association
between program variables and their respective derivatives
under MPI might be considered a negligible implementation
issue but has been a practical problem for the application
of AD in the past [4], [5] and is an issue for the ad-
joint transformation as well. Regarding the adjoint mode
in particular, one finds statements restricted to plain send
- recv pairs [6], [10] or descriptions of the hand-written
program sections that “manually” adjoin the communication
[19], [7] without an automatic generation concept for more
sophisticated communication patterns.

The aim of our paper is to show an approach to the
programming of message-passing logic that guarantees an
automatic adjoint transformation can be carried out by
applying rules to subroutine calls. Whether the rules are
identified by pragmas or by a specific set of modified
interfaces is an implementation issue. We have as of yet not
covered all communications patterns supported by the MPI
standard. One frequently used MPI call is barrier, for
instance in the context of an rsend. The standard requires
that a recv has to be posted by the time rsend is called,
which typically necessitates a barrier, see Fig. 7(a). In a
logically correct program we can leave the barrier call in
place for the adjoint transformation. Similarly to the cases
in Table 1, a vertex transformation recipe for the rsend
adjoint requires context information and a nonoperational
counterpart to make the pattern symmetric. For instance,
we can introduce an anti rsend or an appropriate com-
munication channel pragma. The adjoint pattern is shown in
Fig. 7(b).

irecv(b,r)

wait(r)

barrier

P2

rsend(a)

barrier

P1

(a)

barrier barrier

rsend(b);b=0

P2

wait(r);a+=t

irecv(t,r)

P1

(b)

Figure 7. Graph for rsend (a) and its adjoint (b).

We cannot claim to have a prototype with complete
coverage of all constructs provided by the current MPI
standard. However, just like the MPI standard itself evolves
to meet user demands we can expand the coverage of an ad-
joinable MPI paired with AD tools based on the techniques
explained in this paper. The prototype implementation done
for the MITgcm use case can serve as a starting point but
reaching a consensus among the main tool developers how
an adjoinable MPI should be implemented is the eventual
goal.

6. Summary

Automating the adjoint transformation of message-passing
programs is necessary for efficient gradient computation
via AD and is difficult to achieve by other means. The
paper discusses the options for automatically generating an
adjoint program for frequently used communication patterns
in message-passing programs. We show necessary and suf-
ficient requirements to ensure a subroutine call based set
of transformation recipes yields a correct result. The basis
for deriving the recipes are communication graphs. The
adjoining semantics requires the inversion of the commu-
nication edge direction and we need to keep the resulting
program deadlock free and efficient. To achieve both goals
we introduce additional edges and vertices which make
the communication graph symmetric with respect to the
edge direction. The automatic transformation tool has to
be able to recognize the communication calls participating
in a particular pattern. Because we want to guarantee the
automatic adjoinability of the message-passing program in
question we do not want to rely on program analysis that
may or may not be able to discern the patterns correctly.
Instead, we propose to let the application programmer either
distinguish patterns by means of pragma-identified commu-
nication channels or via using a set of specific wrapper
routines that distinguish message-passing operations (oth-
erwise identical in MPI) based on their pattern context.
Compared to the alternative of having to hand-code the
adjoint communication the added effort required from the
application programmer is rather negligible. Pursuing the
approach of identifying communication channels permits
improved data flow analysis and opens opportunities of
program modifications beyond the generation of adjoints.



A use case for our approach was the communication logic
implemented in the MITgcm ocean model. We demonstrated
the ability to replace the hand-written adjoint communication
layer with an automatically generated one. Our future work
will concentrate on exploring the implementation options
and provide a comprehensive solution that can be used with
multiple AD tools.
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