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Abstract

Continuois mesh adapbation modelE can be derived from @ prrom esttor =shimates. They are 1im=d
for sp=cifring a betber me==h, and poe=mibly the best mesh i some sens=, by looking for the minimim
of this error model. [n the caz= of bocal stror, this i= done by ecchibiting analybically the mmimom.
In the cass of ghbal approcdmation stror, an Oplimal Control problem is solved. Applcation o
Computational Fluid Dynamics |Eiuler compressible fowr) is considered.

ey Words

1 INTRODTICZTION

With modem “controlled™ mesh generators, is it rel-
atirely =azy o build avbomatically a mesh that con
forre with a preciss prescripbion of mesh density and
stretching. Complemenkatily, betbetr sttor evaliiation
allws for better spedfication of the adapted mesh.
Lat 1= commider an optimal design problem:

iP): Find the design parameter jom for which a hinec-
tional § i= minimim.

Symbal 4 holds for an airoraft shape parameter,
and the funchional i= evaluated after the solubion of a
state sysbem relyving on a uid mode], Euler or Mavdier-
Shokes.

In scienkific compubing, ; i=s evaluated Hom a dis-
crefized CFD solitbion and thiz sifferz fom the di=
cretizabion error. We express this fact by inboducng
a meeh patamet=r M in the different ingredients of
the Ophimal Design problem:

M) = JM DM, )
[ spete| M, 7, UM, 7)) =10 (L)

Bemide conmdering the standard Ophkimal Design
probleim:
- tninitrize the fiunckional with tespect bo shape 7,
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mesh adapbation, a pricti errors, compressible Homr

ciir goal is to address the acciracy issie a= follows:
- mimmize the =iror on funchional with respect bo
a mesh paramet=r, M.

Thete ate z=veml] ways W minimizing that =rror.

In the came wher= meshes are fine =ncugh to be
siute that asympbobic comrregience apples o the
compittation, then the high=r the thectetical crder
of cotrretgence, the smallest the emor. For ecample
the imual evahiation of the functional can be greatly
improved by inbtedicing an adjoinb-bassd correction
t=tm which =il make the new fAinchonal e-aluation
a superconvergent one, with tpically fath-crder
cofrret@ence when the shandard oplion is only second-
crder. We refer o [1].

Heorerer, thi=s assitmes that a=sympbobic convergence
iz also mimerical, 1= that it =il be athained for
the meshes imad in prachice. Otherwize high=r-order
t=re maybe latger than low order.

A second standpoint, see [2], gives gemiine estimates
of the eftor on a given mesh afber a compubation
on it Ib also debects, thanks to the inbroduckion of
the mame adjcink, the region= of the compubational
domain wher= a local ertor measiite is latger than a
given prescribed toletance. The region of boo large
ettor fmiet be tefined and thetefode this latbet oplion
iz a abo a mesh adaptabion principle.

Ancthetr mesh adaptation approach cotmists in tring
to find the best ide=al mesh densilby minimizing a
contimious mode] of the error, s=e [3], and {].

An impotbant advanbage of mesh adapbation relies
ol the betler comrrergence order for coarser meshes,
when the solubion & smooth snoiggh, or a higher order
even for dimonbimious solubons. Bee for eccample [El]
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The =mubject of thiz paper & to =xamme how a
confimious mode] can be combined with an adjoink in

order bo define adaptsd meshes for CFD models.

2 NMUMERICAL MODEL
21 Governing eguations

The Eiuletr aquations, which express the comm=ration
of ma==, moimentiim, and energy for the Bow of s
cid, compressible fuids, may be wiibben in the followr-
ig inbegral conservation law form

%J{_ [-Lﬂ'+£F-nds=a (2)

where [7 iz the vecbor of cone=tred variables and F the
Pz of [7 actoss the bounding surface £ with ouberard

imit notmal n ofa any conbrol rolume= V7. The colimn
vecbor [7 and Hitc vector F are given by
2 pu
pu pun + piy
i o F I:[-:I = fur + ]-ﬁj-' IEII
puw puw + pis
pE pul

Here pp, and E tepresent the flind demsity, therme-
-:hmn'n-:pm and bobal energy per umit mass. ©,
v, and w are the Carbesian component=s of the =
locity wechor u and H iz the tobal enthalpy given by
H= _E_+E Iﬂ:]:cﬂu::'lm.:munn:]h:be.:i:hcmaﬂl-.
petfect n:]m.l ga=, then the closirs equabion lnkinmg
the pressiite p and the commeived quiankibes o and E
iz prorrided by the squation of skat=

1 Lo} L ] My i o2
p=ply - 1)[E — 3w+ v +w)] i)

in which v shands for the mbo of specific heatz at
comstant pressuare and wolume.

2.2 Spatial discretization

The Eulkr system is solved by meams of a verbex-
cenmtered hlize dElement-Voluime approcdmation on
unstruchired meshes, usng a Foe Fiemamn solver
cotmnbine with a MUSCL meonstriction with Van Al-
bada Eype limiters in crder b obiain a space accir
tacy of otder toro.  An explict Hime sbepping alge-
rithm i= tiz=d and a thres—skage Fiinge-Fitha scheme
for pesidotime inb=gration is appli=d.

2 AMALYEIS OF THE ERROR

Lat u=s simplify the approcdmation error by comsider-
igg the first term of its Taylor expamsion. The srror
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minimization problm writes a=z an Ophimal Combrol
problem:
(M) =

jl: [-r.'n-_:l'

—iMn =
| Jemaet (D=5 (U= — U (M) (8
M= Arglin j(M)
with TraaazlM,y, U™ -0 =0.

3.1 DMMesh asymptotics

Thiz section reskricts bo isobropic meshes for the zake
of smplicity, We commider a conbimious positive fime-
teon d defined on the compubational domain. To d
cottesponds the clams of izcbropic meshe= which hxee
d a= local mesh densty

100
oL
0ol

M=d

From d we dettre a set of propoibional densities:
dy = R4

for any posibive small sncigh r=al number 2. In the
s=qiiel, making = tend bo zeto will mean that we re-
strict to meshes with densibies proporbional o the
same mode]l d, and we examine how i thom condi
tHore the mimerical srror hehares.

3.2 A wvariational model for Buler eguations
The propomed analrsis is performesd m this paper for
pire Galetkin formillation, which means that we do
not consider the eflect of Godunor-trpe stabilization.
" & a nomrecalar field on the computbational dotmain
2 and mH.EF_'.'I ﬁ:nr.:l.n:.' ton-mea lat besk fitnckion o in the
fanctichal space HY(7).

J,f ST F(W)dn — J,f SF ().ndd2 =
a =]

In the cottesponding decrebizabion, the test funchion
is faken inbo a Ty included in 7
_.'I VL FL (T, 1a — _,l‘l d Fa (T nd 80 =
a 3]
wr hate :-'-'-,[H'] iz the in'h&ol.:h of I. i=. _“-'-'-.[II'-. :I =
IIa FTh ), and samme for Fp (T3],
Beplacimg o by oy in the conbimions sysbem and choos-
ing then v = [y in both systems we get:
j T Fu(W)d0 — J,f o Fn (T3).ndd0 =
a =%}

_,'II ST F(T AR — _.I{ & F (W) .nddi
Q &0
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In the abore systemes, the boundary data are mobed
immide the F (117) and F, (11"7) boundary terms. For
the mle of smplicity, we assiime that thess tetmscan
be split iIn W-dependant tetms, denoted respechively
by Foud{T7) and Fy == (1T, ), and consbant berme, de-

nobed ™ and Fi ™. Therefore:
}( oy VL F (T )d — f Py ST, ) ndd =
0 &1

_{ V. F(W 0 — j iy F W) nd 82
a a0

3.3 Error estirmate
We asmiime nowr that both 717 and @ are several Hme
conbmicusly differentiable. In crder to eskimate the
ettor, we inbrodice on both sides the mamme scopresmion
with terpolations:
f o (P (W) — I F(W))d2 —
n
f [y ) = I, Ao (11 ndd2 =
L]
j ex T (F(W) - M F(W))dn2 -
0
_{ o [ F ) — I F = (117 a0,
L=y

The left-hand side will ke imretrbed and the right-hand
side will be expanded to get the error esbmats.

34 Interpolation emwors

We recall that HJ,.F[H':I = .ﬁ.[“':l. The left-hand =ide=
writes:

LHE = f @u V. (Fu(y) — Fu(W)Jal2 -
Ly ]
j (T (W) — F 94 (1)) mddin.
&0
We libmadze it as follows:

ar
LHE = e VT, —— (7T, — 117402 —
}{1 | hmtt h i
T oud

Sy
Iy .
.’;1 ML

Whete the derivatives 25 and #2277 are evaluated
fromm verbec values of 1. We denobe this in short:

(1 — 7)) nd 802,

LHS = Au(W)(Wy - D7)

We amsitme that the corresponding linearized operator,
which i= the Jacobian 4, (11 of the discretized Euler
gyst=m iz imvertible. Thiz meamns that the implicit

m1ror Wy — a7 & obisined a=z the uniqie =olublion
of:

Wy — 0 = (A (W) REE.

In the right-hand =ide:
RHE = j ST F(W) — I AW 0 —
f
f e (F (W) — I 77 1)) nd B0
=0

e recall that oy = [l and we add and substract a
o term:

RHE = RHS + REE

wrikh:

RHE = j (TI, —u'al:l"-?.[.?"[ﬂ':l - Hh.?:[ﬂ':l:ldﬂ -
qa

! [Ty — ) (F =447} — I, 7 =417} ) nd 02
&1

Armiming smocthness of ¢ and F(1T17), we dechice
that on 2, miterpolabion errors are of crder o and
th=ir gradients ar= of order one, same on boundary,
and AH £ i= thiz of order thie=.

RHEE < cometh®

The second tetm writes:
RHEy = f SV F() = T F(W7))d -
a
f S| F o (W) = I, F = (W) a2
&0
and we transtorm it as follows:

RHS = — f (Tea). (F(W) = T, F(W))d02
3]
+ f AF(W) = I, F(T ) ndd2 —
&
f S(F (W) = TaF *4(1)) nddi2
80

In AHEq we can a.1:|1:|1:.' the zaime a.:.'_'.'mj_:'b:lH.c e batrsiomn
a= in the elliptic case studied in [8]. The epression of
AHE is in fact very good news. Indesd, dui= to the
smoothness assimphions for o and 1, L7 estimates for
imberpolation error on volume and on boundaty apply,
=0 that this b2t appeats as a second-order one:

RHE. < consbh®.
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Further, using the mme technicques az in 8], this terme
can be ecbended as follows:

RHSE = R FIR, ), e + R

whete the last parenthesi= iz to0 be inderstood a= a
distribution one. The tetm A 5 of kigher ordet:

P
R = o).

3.5 Provisional conclusion

The abore stiidy shows that the implicit error 17, —
II,T iz a linear funchion of the inberpolafion error
W =TI, W,

A first option consists I reducng the imberpolation
ettor. This opbion i=s studied in Sections 4 and 5

In Seckion @ w= shall define hor o tmimitdz= with the
implicit etvor by Imbroducng an adjoint.

4 IMTERFPOLATION ERREOR
REDTICTION

The aborre analy=is motiates the application of skrat=
gies relyvimg on the minimization of L7 and L% mod-
els for inbetpolaticnerror. This & an atbrackiog opbion
sk e anisobiopic meshes are sasily specifisd via the so-
called anizctropic metric parametrization. This kind
of sbrategy iz alteady rather popiilar, we recall its main
featuires. See [T, 10] for more debails.

4.1 DMesh adaptation iteration

For shaticnary problems, the mesh adapabion scheme
aitte at fmding a fixed point for the mesh-sclubion
couple. In other words, the goal i= o comrrerge borards
the staticnary solubion of the problem and simdlarly
tomards the cottesponding itrratiant adapbsd me=h.

At each sbage, a numetical solubion is compubsd on
the current mesh and has bo b= analr==d by means of
an =rtof eshimate. The mesh adapbation is based on
the =dge length compithabion with respect o a discret=
.:.ma:'l:mp:: metric :.pea.ﬁed at the mesh vettices. Thi
metric is defined viz a geoimetic ettor estimat= that
trarmlates the ashibieon variabions inbs slements sz
and ditections. IMext, an adapted m=ch i= gen=rat=d
with respect to this metic. Fmally, the schition &
inberpolated lmeatly on the new mesh. This procediize
iz repeated unkil the comrrergence of the solubkion and
of the mesh iz achiered.

4.2 DMetric computation

We will fociis bere on the consbruckon of the meb-
tic bemmor hased on the inberpolation error in L7 or
L7 potm. On .:.p:.rln-:u].:.r-:‘l.mm'hafﬂ:c mesh, both
norms ate =valiabed in a mimilar way u=ing .:.Ei:q:u:nd:n.-:
ettor estimate. They ate then defined at every mesh
vetbex. For CUFD similabions, we proposs a specific
ettor askimate normalization.

Memrf 2nd A, Derirens

A Teometric error estimabe, As for the =lliphc
problems, we shall assuime bete that comtrolling the
imberpolation error allows 1s bo conbrol the approccima-
tion error Henes, we delibetately bazedour anisobropic
geometric =roor eshimabs on the inbstpolabion error.
The ettor esbimate aimes at defining a discrebs metric
field that presctibes size and strebching requitement=
for the mesh adaptabion procedime. Comsequently, in
an adapted mesh the int=rpolabion stror = aquids-
tributed in all ditections. hlote prece=sly, for =ach
mesh element i, the aniscltopic error inberpolation
bound imrrokres the second detivatires of the ariable

|

NHuz|E =g

(B
whete ¢z is a constant =labsd to the dimem=ion, Ex i=
the set of edges of i and |H,| = 'Rl.il'f-".'_] iz the ab-
solute vahie of the Hemmian of the variable v (R being
the matrix of sigemrectors and 4| = diag(]Ai]) being
the abeclitbe vahie of the matrix of sigen-alues=].

| 2 —Tlye [, 20 £ ca :|:|'.|.:i-: 21;:-:! &

Ii=tric construction, A discets mebric apprecd-
mation which === the mesh erbices az support i=
comidered, Let us denote by B, (tesp. b0 ) the
minimal [Tesp. madmal) mesh elementsize and £ the
desited imbsipolation etror. Then, according to Bela-
ton (), we define at each mesh vertex the anisobropic
m=ttic t2tmor W as=:

M=RAR, where L = diagli;)

and A =:|:r.|:i.1:||::|:r.|.:.:~:|:l-|-llll,,,.,,1 ).,ﬁi jl .

] % £ Tmax Tin
Introdiucing a minimal (resp. mardmal) element size
iz a practical way to avodd unrealiskic metrics. It also
allowrs us b combrol the Hime sbepping in the compu-
tabicmal scheme. In other wonds, in view of equidie-
tribiiting the inberpolabion =tror over the mesh, we
have modifisd the scalar prodiick that imdeties the
nobion of diskance 1==d in me=h geperation algorithmes
{whete the local metric M replaces th= imual Eir
clidean metric).

Error estimate in CFD, Phmical phenomena can
itrrolve latge scale vatiations [miilb-scale phenomena,
recirculabion, weak and sbromg shocks, =bc ). It & thus
difficiilk to captitre the weakest phenomena vic mme=h
adaptation, and even harder to do it when, for in
stance= in CFD, shocks are locab=d m the How. Cap-
turing siuch w=ak phenomena = cridial for obbaimng
an acciate sohition by taking inty accoumt all phe
noimena inbetackions in the man Aor area
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A local ertor esbimation can ovetcome this prob-
lem [8]. Felation (8) & normalized wsing the local
abzaliibs value of the vatiable © :

0 max max | e
=K FeE,

|Hu iz —

w—Ilyu
|2
(7

where |u|, = maz(fu|,«|uf|wn) with ¢ < 1 acon
ehant. T]:ei:me"L"mpmhu&Jmacu‘haﬂ'hjmmd

mimerical problems.

Horrerret, in the conbedt of aniscbropic mesh adapha-
tion fof compressible fowr, caphifring weak phenomena
by means of Belation (7)) leads to me=sh isctropically
stromg shocks, This is die o the discretization of the
salittion that inbroduces "virbual™ cecdllabions in the
patall=l ditection of the shock. These cecillations have
a magnitude of the zame crder of weak phenomena.
To pres=tve the aniscbropy, we propose bo filker thess
oecillabions with the local gradient of the solution. To
thiz end, == siggest the following ettor eshimate:

- [e(x)]e

p—Iyw
ele + (1 =)k [[Vull=ll, -

S
=

F=ES] —

e+ (L= R [Velz]e
2]

whete 71 i= the diamebsr (ie.. the length of it largest
edge| of element K and 4 is a paramebsr belongs to
[0,1] that will be conmidered close bo zero if strong
shocks are imrnolved in the o
4.2 Anisctropic mesh adapkation
In our approach, the adaptation of the current mes=h
iz based on the specification of a discrete amiscbropdc
metric tensor ab each verbex. For these purposes, the
standard Euclidean scalar product is modified accord
ing toa proper metric tensor field M. The aim = then
to generabs a mesh much that all edge= hare a length
of I:-\_'nr cliome ‘b:h:l chie i the Prheu-:r.i.'b-ed tmettic and =siich
that all ekmeints ate almost regillar. Sich a me=h &
called & unit mesh. Let P b= a verbex and let M F)
be the metric at P, the lemgth of the =dge PX with
respect to M P) is defined a=:

cimax max | e
=&l T eE.

sl PX)=IPX PX, mm_ -II,*P.‘LH[P]ﬁ.
.-'Ls'l:]:eme&icium‘l:u:ﬁ.ﬂmmﬂerﬂ:e d:h:l:ﬂ.!l:i.‘nl"i‘r\e
teed o commider the metrice at the edge endpoinks
az well ax all inbermediate metrics alomg the edge. To

achiz+e this, we azsiime that an edge PY ha= a local
patametrization PX = P4+ FPY and == mbrodice i=

average length a=:

— r] i — — —
LuPX) = J{ VEPX M(P+PX)PX &t (9)
[x]

Arsiming that the metric iz botmalized, the desited
adapted mesh i= then a anid mesh, a= all edges mmast
have a kogth cdos= bo one.

Here, we commider the generation of adapted meshes
in thres difmemsiots ax a tro-sbepe process, At fitsk the
surface mesh i adapted using local modifications [9],
then the wolume mesh is adapbed vsing a constramed
Delaunay algorithm [11]. IMobice that, durimg the
point insethion phass of the volume mesh generation,
most of the verbices of the previous mesh are reused
for cpui concerrs. This oould redice mterpolation er-
tors bitk in prackice kept verbices ate mosly in non
cribical atea.

4.4  Solution int=rpolation

Solubion inkerpolation iz a key point in the mesh adap-
tabion algorithm. The aim is $o tecover the solubion
field aftet genetating a new adapbed meszh. Az we
have adisctets solitbion field, w= nesd an inbetpolation

echeme o fansfer this information from the ciurrent
me=h to the newly adapbsd mesh.

Dhring the inkerpolation skage, tro problems haoe
to be balken inbo accotint. Fimek, locabing the new
verbice= in the backgroiind me=sh by dentifyrmg the
elements conbaiming them. Thi= can be solved by
moring insde the [orenbsd ) mesh by uming its topol
gy thanks to a batvesntie coordinates based algo-
rithm [10]. Once the kocalization has been solved, an
inberpolation scheme is vsad fo ecbract the inbormation
from the solubion field. In our came, a= the solubion is
cofeidated P:l.e-:em.ue libear 'b}' ele e b= |.-|:iEC.11JEE the
solibich & defined only at the me=h vetbices) we= i a
clasmical P ink=tpolabion schetne.

5 SOME NMUMERICAL RESULTS

To illistrats the efidency of the propos=d approach,
we will nowr present o application ecamples of three
ditmensional CFD simuilations.

5.1 Supersonic business )=t

The fist ecample concerms the =mmilabion of super-
sonic fowr for a Aihire business j=t at Mach 1.8 wih
an angle of incidence of 3 degress at an altitide of
15, 300 meters. The design and conceplion of this b
tiire biminess plane (Dassault Avistion) has led fo in-
vestizabe the control of the zonik boom phenomenon.
Beside claz=ical shiidies aitmed a t eduding the drag and
at increasitgg the lift of the airplane, the chape= ophe
mizabkion proces for sifpe tsonic civil aitcrafls inchides
ancther component: the ne=ed to redhice the noi= at
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th= groimd kvel. [noir case | the goal was to analyz=
th= impact on the somic boom of the optimization of
the front patt of the airtplane geometsy. Muimerically,
this shudy combine agood near field o compubation
(mcluding the compubation of the aircraft mgnatire:
pressitte fields) and a good sonie boom predickion [(far
field PI\JPﬂEﬂhEml In the Prel'hn:in.:.r_'.' E.'l'.!EE of this
project, me=h adaptation already proved to be a very
efficient ool

The wvariable tiz=d to adapt the mesh &= the hlach
mimbet. The mesh ha=z he=n adapbed 9 bimes, =~
ety 280 Hime steps. Figittes 1 and 2 present {-.]:u: fi-
nal adapted me==h with the corresponding Mlach mim
ber disbibubion for this similation. In this Figire,
th= hlach cone= are clatly idenbified in font of the
fiselage on the adapbed me=sh. The imtal mesh con
tains 41, 13T verbices, 20, 388 boundary triangles and
218, 918 tetrahedra. The final mesh [(iberabion 9)
contains T8, THR verbices, 32 492 boundary briangles
and 4,714, 182 tetrabedra. The CPU fimes t=quired
to complibe the whole similation is 44 hotits on a
GOOMH= workstation with 1GE of memory. Hobice
that the meshing Hine repressmts cily 255 of the solver
CPT Himes.

5.2 Ansotropic ONERA ME Wing

The s=cond ewamples conceths a classic mimerical sim-
tlation of trarmonic air fowr areimd the OITEEA LA
witg. A Eulet ashition is compitbed for Blach nimmber
aqiial fo 05298 with an amgle of athack of 300 degre=s.
Thi ttareonic similabion case featittes a well-knewn
lambdashock . The imbial me=sh is a relabively coatse
mesh conbaiming 7,818 verbces, 8 848 boundary fri-
agles and A7,922 tetrabedra. The variable umed bo
adapt the mesh &= the hlach mimber. The mesh ha=
bieen adapbed 9 Hires, =very 280 Hime sbepe Figure 2
|1'EE.P -ll shoms the .:.d:.P‘h:.'h.q:u: in the m:-‘l:rup:l.n: |:I.'EHP
.:.mn:-'l:m-p::l cam. The fnal motropic mesh (itetation
A} combaire 231, 113 verbices and 1, 316, 331 tetrabedra
and theﬂml.:.niﬁ:htmpicmsh DJ:IJ":!.:iIIE 23 518 verbices
and 122, BT tetrabedra. o this eccample, H:u: maximal
azpect I.l‘h.l\:i of the ansctropic elements is about 10
Hevertheless, the anisctropic metric leads o a dra-
mabic rediickion of the mmmber of degrees of Fe=dom,
roiighly ofe ofdet le== than in the imobopic cas=, for
the zame ettor kevel. The CPU fimes requiited o gen-
etats the final sirface (resp. vohime ) mesh is 21 (re=p.
122) s=conds, and to compitb= the Euler schition orer
280 e sbepe 15 2, TE2 seconds i the iscbiopic cas=,
onn a Penbium 4 Mvh: machine. Similatly, the CPU
times required to genetabs the siaface (tesp. volume)
mesh iz 3 (remp. 28) seconds, and bo compube the B
ler schibion orer 250 Hime :.-hepu iz 218 seconde in the

amsobtopic case.
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6§ TOWARDS IMPLICIT ERROR
REDTICTION

The analyes propossd in Sec. 3 of the implicit appros-
imabion ettor 17 leads 1= to modelize it a= the solubion
of the following sysbem:
gtll (17,411 =&, ),

whete 1" represents the Ao variables the accuracy of
which we optimize. At the moment when we optimize
the mesh parameber (density or mebric), 7 & fozen.
Symbol d skands for the mesh local demmity b0 be
ajiusted for mimmi=ing the artor Aimckenal 7.

The optimality sysbem for the optimal mesh prob-
letn wibes:

o (W, d)Y — G(W,d)=0

! ar
[m_uu .i.) M- o (¥,d)=0

a7 i
A —1 -G T
SR B ik P 87 .
j= i iW,d) | T+ ﬂdl_llni_l—lzl

In [B, 12], we show that for an ellipbic linear mode], the
assembly of the residiial of the optimalily equations
can be obtined by Automatic Differentiation [14] of
procediires from the inikal solver for 17, Specfically,
thiz s the reverss mode of AD, which & available in
AD tools much az TAPENATE [13]. To briefly mamma-
tize AD, consider a rotitine that compiites an cuibpiit

array v from an input array ©,
v =Dul

the fengent mode of AD prodices a retibine computing
the ditectonal detirative:
i

I, I'_I—_|L|L.

du’
The rrverse modeof AD prodiices a rotibine computing
fom v and any atray © of the pame dimemmon as ©
the followring prodict which has the dimension of ©

|I'. i
u, v —Ir_I .

For example, wre can apply this process o the resalu-
tom for II. We firsk nobice that the assembly for the
trro betirm of the aquation for IT in the ophbimal me=h
system both resuilt from reverse diffetentiation of the
exdsbing procedittes for T and J . Furthetimore, the
solubon algorithm is the same for anmy adjoint =kat=



Contianons models for mesh ad=ptation

cottesponcing o the prese=nt state equation. Thi
allerrs s for even mote code te-lime.

Let 1w now focis on the thitd equation of the ophi-
mality sysbem. [k recuires to azsemble in parbicular:

F a F ﬂ]'_' ) 4

i&_au [_au-" )) =
We can s== that thiz t=tm can b= natirally assembled
in two sbeps, “revemmeor-tangent fazhion™. First ap-
ply tangent mode AD bo T with respect to 117, sebbing
W t3 Y. Then apply reverss mode AD o 1:]:": remilt-
ig program, with respeck to d, and sebbing the dual
direckion o I1. Thi= t=tm m.nln:heqmlb:h

8 faD
R H)*

which can be assembled n tmo sbeps, “bangent-co
teverse fashion”™. First apply reverse mode AD fo T
with respect to d, s=tbing T £oI1. Then applr bangent
mode AD o the resilbing program, with respect o
17, s=tting the bngent ditection to 1.

The tro methods are squialent and prodice codes
that perform the =zame operabions although m a
slighty diffetent cider. Ths &= not the zame= =hia-
tion as the compitation of Hessian mattices, for which
it has beenn obsetved that the tangentom-rererss ap-
proach vields a more efficient program. In our cas=,
m-erue-q:nn—{-.:.ngcni: eren allows 1= bo re-tize a1 edsking
pi=ce of code.

T CONCLTISIONM

O proposiions for mesh adapbation concern rather
sophisticated algonthme imralAdng How solver, local e1-
tot evaliation, sensibivity analrsis by Auvtommabed Dif
ferentiabion, adjciot and gradient bassd optimization,
controlled geperation of nect mesh, mterpolation of
solubion kil a comrremgence of a global loop is athained.
Our experience on thi=s war showed that when wrell
jistified, sophiskic atsd algorithm do not bring only 1o
bustness, but also eficiency. We expect bo demorstats
thi= fitkher in futitre sk=ps.
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Fig.l: Supersonic kusiness jet test cose: sofropic surfoce mesh of ttermdion ¥ of the cdoplobtion scheme. FAight,
isosurfoce of Mach number for the fincl soludion. Mack cones are clearly idenkfied

Fig.2: Supersonic business jeit ltest cose: cul thmough the isobopic volume mesh ot derotion 9 of the adeplation
soheme. fight. wsoline of Mack namber in the cul plane.
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Fig.d: Onera M aing lest cose: wsolropic surfoce end cut through dhe volume mesh ol ddermiton 9 of Hie

cdeptation scheme.

Fig.d: Onerc ME wing dest cose: onisolropic sarfoce ond cut through the volume mesh ot iterckon P of the
edaptation scheme.



