TAPENADE for C

Valérie Pascual and Laurent Hascoét

INRIA, TROPICS team, 2004 route des Lucioles 06902 Sophitipalis, France
{Val eri e. Pascual , Laurent . Hascoet } @ophi a.inria.fr

Summary. We present the first version of the toDAPENADE that can differentiate C pro-
grams. The architecture ahPENADE was designed from the start to be language indepen-
dent. We describe how this choice made adaption to C easieririciple, it needed only a
new front-end and back-end for C. However we encounteredrakeproblems, in particular
related to declarations style, include files, parametssipg mechanism, and extensive use of
pointers. We describe how we addressed these problemspanthé resulting improvements
also benefits to differentiation of Fortran programs.

Key words: Automatic Differentiation, Software Tools, Program Treorsation, TAPE-
NADE, C

1 Introduction

We present the first version of the toglPENADE[?] that can differentiate C program®,[?].
TAPENADE is an Automatic Differentiation (AD) toolq] that produces differentiated pro-
grams by source analysis and transformation. Given theceonira program, along with a
description of which derivatives are needgdPENADE creates a new source that computes
the derivativesTAPENADE implements tangent differentiation and reverse diffeegiun.

Right from the start in 1999TAPENADE was designed as mostly independent from the
source language, provided itis imperative. Figure 1 sunmeathis architecture. The differen-
tiation engine is built above a kernel that holds an abstraetnal representation of programs
and that runs static analysis (e.g. data-flow). This congpDSRENADE strictly speaking. The
internal representation does not depend on the particalacs language. This architecture
allows the central module to forget about mostly syntacétais of the analyzed language,
and to concentrate on the semantic constructs. Programemesented as Call Graphs, Con-
trol Flow Graphs ?], and Basic Blocks linked to Symbol Tables. Syntax Treesipoaly at
the deepest level: elementary statements.

In addition to therAPENADE kernel, for any source language there must be separate front
and back-end. They exchange programs WRRENADE'S kernel via an abstract Imperative
Language called IL. Initially, there was only a front- andeeck-end for Fortran77. These were
followed by a front- and a back-end for Fortran@3. [Now is the time for C.

2 Valérie Pascual and Laurent Hascoét

Differentiation Engine

()

Imperative Language Analyzer

(L)

Fortran77 parser
Fortran95 par ser

Fortran77 printer |
Fortran95 printer |
C printer |

Fig. 1. Architecture sketch ofAPENADE

There are other AD tools that differentiate C programs e 9QA-C [?], ADIC [?], or
TAC++ [?]. Some of these tools, e.g. ADOL-C, have no Fortran equitades they rely on
operator overloading. For the others, the idea of sharingragf their implementation with
a Fortran equivalent came gradually. As a C equivalent of DR, ADIC did mention this
possibility. The architecture afAPENADE was explicitly designed for this objective since its
start in 1999. The XAIF concep®] at the basis of the OpenA] environment also aims at
promoting this sharing. OpenAD contains a new version of @@k its component for C. To
our knowledge, TAC++ shares algorithms but no implemeatatvith TAF.

The architecture ofAPENADE should make extension for C relatively easy. Ideally one
should only write a new front- and back-end. In reality thingrned out to be slightly more
complex. Still, our revision control tool tells us that, 0801000 lines oflavAa code of TAPE-
NADE, less than 10% of the total have been modified for C handlingc@sider this a very
positive sign of the validity of the architecture. In padiiar C structured types came for free,
as they were already handled by the type representationeddsy Fortran95. The same holds
for the C variable scoping mechanism, and for most controicttires. Pointers are already
present in Fortran95, but only with C are pointers used &t sularge scale so we feel this is
the right context to present our alias analysis.

This paper discusses the features of C that required chofopsovements, and new de-
velopments inTAPENADE. We emphasize that many of the improvements actually cancer
erroneous design choicesTAPENADE, that often resulted from having implicitly Fortran in
mind when making these choices. We believe the new choieasare general, make the tool
more abstract and safe, and benefit even to the differemiafiFortran. In the sequel, we will
refer to theTAPENADE just before considering C as “the ofdPENADE", whereas the cur-
rent version resulting from this is called “the newPENADE". The changes that we describe
fall into the following categories: Section 2 briefly des&&s the external front- and back-
end for C. Section 3 deals with the new handling of declanasimtements, yielding a major
change regarding include files. Section 4 discusses thenedaeapassing mechanism. Sec-
tion 5 describes the flow-sensitive alias analysis for aipeggointer destinations information.
In section 6, we summarize the current statusa®ENADE for C, discuss some remaining
limitations, and evaluate the cost of the more distant esttgnto object-oriented languages.

2 Front-end and Back-end for C

The new front-end for C is composed of three successive:parts

TAPENADE for C 3

1. a preprocessor (actually the standaml preprocessor for C) inlinegi ncl ude di-
rectives, and processes macro definitigidef i ne and conditional inclusiongi f,

#i f def ... However we keep placeholders for the beginning and eridatdide files.
These placeholders are kept through the complete diffiatént process, allowingarPE-
NADE to generate shorter code that explicitly makésicl ude calls. On the other hand
the other directives e.gtdef i ne, #i f def , are not reinstalled in the differentiated pro-
gram.

2. a parser performs the true lexical and syntactic anabfsilse preprocessed source. It is
based on thant | r parser generator?]. It supports the Standard language P, ?]. It
returns an abstract syntax tree.

3. a translator turns the syntax tree into a serialized lle,tready to be transferred into
TAPENADE using the same protocol as the other front-ends.

The back-end for C translates IL trees into C source codaegysietty much the same al-
gorithm as the Fortran back-ends. For spacing and inderitimgplements the recommended
style for C [?]. In contrast, it does not alter the naming conventions. @gitalization) of the
original program. The back-end uses the include placem®ldereinstall#i ncl ude direc-
tives whenever possible. This mechanism also benefits tBditean back-ends.

Unlike the Fortran front- and back-ends, those for C are dladpnto JAvA code exclu-
sively, thus making the distribution process easier on rplagforms.

3 Declaration Statements

In the old TAPENADE, the internal representation held the type informatioryas entries
in the symbol tables. The original declaration statememsevdigested and thrown away by
the analysis process. Therefore on the way back, the prddmagrams could only create
declarations in some standard way, unrelated to the ord#rseyte of the original source.
Consequently, differentiated declarations were hardeeao, comments were lost or at best
floated to the end of the declaration section, and include wadre systematically expanded.

This model is not acceptable for C. Include files are commexgland they are long and
complex. Inliningst di 0. h is not an option! Also, declarations may contain initialiaas,
which need to be differentiated as any other assignmergrstatt. Like for e.gJAvA source,
declarations can be interleaved with plain statementslamdrider does matter.

In the newTAPENADE, the syntax trees of declaration statements are kept in lihe F
Graph as for any other statement. They are used to build thealtables but are not thrown
away. During differentiation, declaration statementsdifterentiated like others. The order
of declarations in the differentiated source matches thideooriginal source. The same holds
for the order of modifiers inside a declaration, likeint const i.

Relative ordering of differentiated statements is wortmtimning. In tangent differentia-
tion mode, the differentiation of plain assignments iseysitically placedbeforethe original
assignment. This is because the assignment may overwr€eable used in the right-hand
side. This never happens for declarations, though, becassignments in declarations are
only initializations. This ordering constraint is relaxé&gh the other hand, one declaration can
gather several successive initializations that may deendne another. The differentiated
initialization may depend on one of the original initializans, and in this case the differenti-
ated declaration statement must be plagieer. In the reverse mode of AD, differentiation of a
declaration with initialization cannot result in a singtatement: the differentiated declaration
must go to the top of the procedure, and the differentiatéalization must go to the end of

4 Valérie Pascual and Laurent Hascoét

the procedure. There is no fixed rule for ordering and we tdsdhe general strategy already
present inTAPENADE namely, build a dependency graph between differentiataesients,
including declarations and initializations.

Given for instance the following procedure:

void test(float x, float y, float *z)

{
/* comrent on declaration */
float u =x » 2, v =y * u;
u=u=*v;
float w =z * u;
/* comment on statenent */
*7Z = W * (*Z);

}

the newTAPENADE produces the following tangent differentiated procedure:

void test_d(float x, float xd, float vy,
float yd, float »z, float xzd)

{
/* comrent on decl aration */
float u = x*2, v = y*u;
float ud = 2xxd, vd = yd+xu + y=*ud;
ud = ud*v + uxvd;
u = u*v;
float w = xz+u;
float wd = *zd*u + xz*ud;
/* comrent on statenent */
*zd = wdx(*z) + w(xzd);
*Z = we(*2);

}

whereas the reverse differentiated procedure has sgirdiftiation of declarations with ini-
tialization:

void test_b(float x, float xb, float vy,
float yb, float »z, float xzb)

{
/* comrent on decl aration */
float u = x*2, v = y*u;
float ub, vb;
[+ ... code stripped out for clarity ... */
ub = yxvb + vxub;
yb = yb + uxvb;
xb = xb + 2xub;
}

Preserving declarations order allomsPENADE to reinstall mos#i ncl ude directives
in the generated code. The example in Fig. 3 illustratestii€. We already mentioned that
the preprocessor keeps track of the include files, so theENADE can label declarations
with their origin and propagate these labels through difféiation. This new development
takes place imAPENADE kernel. As such, although not absolutely necessary for&orit

TAPENADE for C 5

benefits to differentiated programs in Fortran too. Thingsy/rprove harder in Fortran, due
to strange situations coming from scattered declaraticamsihgle object among a subroutine
and its includes. Think of anpl i cit declaration in a subroutine header that influences
variables declared in some included file. In such weird Gasés sometimes impossible to
reuse the original include file. The fallback strategy isnthe build a new include file. More
generally, we consider the partial order that links all deafions, original and differentiated.
When the order allows for it, we prefer to generate an inclafi¢he original include file
followed by an include of a differentiated include file. Otivese, our fallback strategy is to put
all declarations, original and differentiated, into th&etientiated include file. This strategy
can be compared to what we did for differentiated modulesoitir&n95, which need to keep
a copy of the original module’s components.

When a program uses external subroutines?ENADE expects the user to give some
information on these externals via some “black-box” medran In C, the “forward dec-
laration” constraint makes sure that any external submeui$ declared with its arguments
number and type before it is used. A similar mechanism existortran95 with the inter-
face declaration, but it is not compulsory. These forwardalations ease the burden of the
“black-box” mechanism. However information on Use/Deft@uis/Inputs dependencies, and
provided partial derivatives is still requiretdaPENADE lets the user do so through an ad-hoc
file, although an alternative mechanism based on dummy guwes might work just as well.

4 Parameter-Passing M echanism

The assumptions of the oithPENADE regarding parameter-passing were inspired solely from
Fortran. In Fortran, call by value-result is generally ugadvalues such as scalars that fit into
registers and call by reference is generally used for amagsstructures].

In ¢, call by value is the only parameter-passing mechanism. @nelates a call by
reference, i.e. an input/output parameter by passing dgrdimthis parameter. This parameter-
passing mechanism is central for all data-flow analysis sichise/Def, Activity, Liveness,
and TBR. With call by reference, the output status of a patammust be propagated back to
the actual parameter inside the calling procedure. Withbgabalue, this propagation must be
turned off. Consider for instance the following procedBreith formal argumeny, together
with a call toF:

void F(float y) {

y = 0.0;
}

F(x)

If x has a data-flow property e.g., is active just before the tadh so isy at the beginning

of F. Theny becomes passive. However in the call by value case, thisspggopust not

be propagated back to upon exit fromF, andx remains active after the call. With call

by reference or call by value-resukt,becomes passive after the call. The parameter-passing

mechanism used by the language must be stored as an envirovaniable of TAPENADE.
Incidentally, this also influences the header of differatetil procedures. In several cases

the additional arguments to a differentiated procedureteutput arguments, even when

their corresponding non-differentiated argument is justrgout. This is commonplace in the

6 Valérie Pascual and Laurent Hascoét

reverse mode. It also occurs when transforming a functiém énprocedure with an extra
argument for the result, which is often necessary durinfgghtiation. While this was all too

easy in Fortran, now in a call by value context we must passragrdo these extra arguments
in order to get a result upon procedure exit.

5 AliasAnalysis

The data-flow analysis inAPENADE already dealt with pointers for Fortran95. However, only
with ¢ do pointers occur with their full flexibility. Therefore tHaternal Language IL that
TAPENADEUSES as a common representation of any source programgelsgraihters with no-
tations and constructs that are basically those specifically,mal | oc, f r ee, the address-of
operator&, and the dereference operatorActually it's the Fortran side that need be adapted:
at a very early stage during the analysis, typically durypetchecking, each use of a variable
which turns out to be a pointer is explicitly transformedinin explicit address-of or derefer-
ence operator whenever required. Conversely, it's onlhéRortran back-end that address-of
and pointer-to operations are removed, re-introducind-ttréran pointer assignment notation
“=>"to lift ambiguities.

The principal tool for handling pointers is tidias Analysis which finds out the set of
possible destinations for each pointer for each locaticthénprogram. Like most static data-
flow analysis, Alias Analysis must make some (conservatmroximations. In particular
one must choose to what extent the analysftois sensitivei.e. how the order of statements
influences the analysis output, and to what extent @istext sensitiye.e. how the various
subroutine call contexts are taken into account. Spedifiéaf Alias Analysis, most imple-
mentations we have heard of are flow insensitive, and paothyext sensitive.

In TAPENADE, we made the choice offlow sensitiveand context sensitivanalysis. By
context sensitiveve mean that this interprocedural analysis considers cedjizable call-
return paths. However, the called procedure in analyzey onte, in the envelope context
of all possible call sites. We made the same choice for therathta-flow analysis such as
In-Out or Activity, and we are satisfied with this trade-offttveen complexity of the analysis
and accuracy of the results. Our strategy splits the Aliaalysis in two phases:

e The first phase is bottom-up on the call graph, and it compwtest we callPointer
Effects which arerelative. For instance th&ointer Effectof a procedure tells the desti-
nations of the pointers upon procedure’s exit, possibhhwéspect to their destinations
upon procedure’s entry. In other words at the exit point of@pdure, each pointer may
point to a collection of places that can be plain variable®W L, or destinations of some
pointers upon procedure’s entry.Pointer Effectcan be computed for every fragment of
the program, provided it is a standalone flow graph with awaigitial point and a unique
end point. Figure 2 shows two examplesRaiinter EffectsComputing thePointer Effect
of a procedure only requires thointer Effectof the procedures recursively called, and
is therefore context-free.

e The second phase is top-down on the call graph, and it computbat we callPointer
Destinationswhich areabsolute At any location in the program, tHeointer Destination
tells the possible destinations of each pointer, which @ary collection of variables in
the program pluNULL. This information is self-contained and does not refer tmiso
destinations at other instants. On a given procedurePtinter Destinationsanalysis
collects the contexts from every call site, build®@inter Destinationsand propagates it
through the flow graph. When the analysis runs across a talbds not go inside the

TAPENADE for C 7

called procedure. Instead, it uses tainter Effectof this procedure to build the new
Pointer Destinationgfter the call. Thes@ointer Destinationgre the final result of alias
analysis, that will be used during the rest of differentati

When the program is recursive, each phase may consist alseveseps until a fixed point is
reached. Otherwise, only one sweep per phase is enoughheuwddrall complexity remains
reasonable.

Pointer EffectandPointer Destinationsre represented and stored as matrices of Booleans,
using bitsets. For both, the number of rows is the number siblg pointer variables. For
Pointer Destinationsthere is one column for each visible variable that can batpdito, plus
one column foNULL. In addition to this, forPointer Effectsthere is one extra column for
each visible pointer. Arueelement in these extra columns means that the “row” poinsr m
point to whatever the “column” pointer pointed to at theiadipoint.

At the level of each procedure, Alias Analysis consists afravrd propagation across the
procedure’s flow graph. When the flow graph has cycles, thpggation consists of several
forward sweeps on the flow graph until a fixed point is reacktierwise only one sweep is
enough. The propagation is very similar for the first and sdgohases. Each basic block is
initialized with its localPointer Effect The entry block receives the information to propagate:
during the first, bottom-up phase, this is an “identiB8inter Effect each pointer pointing
to its own initial destination. During the second, top-doplhrase, this is the envelope of the
Pointer Destination®f all call sites. Actual propagation is based on a fundaalestmposi-
tion rule that combines the pointer information at the begig of any basic block with the
Pointer Effectof this basic block, yielding the pointer information at teed of this basic
block. At the end of the top-down phase, each instructioaliglled with a compact form of
its final Pointer Destinations

We thus need only two composition rules for propagation:

Pointer Effectz Pointer Effect— Pointer Effect
Pointer Destinations Pointer Effect— Pointer Destinations

Let's give an example of the first composition, which is usgdhe first phase. The second
composition is only simpler. Consider the following code

voi d foo(fl oat »pl, float xql, float v)
{
float **xp2, *rl ;
rl = &v ;
p2 = &1 ; Part A
if (...) {
p2 = &pl ;
}

*p2 =rl ; Part B
p2 = NULL ;

in which we have framed two parsandB. PartA starts at the subroutine’s entry. Suppose
that the analysis has so far propagatedRbimter Effectat the end ofA, relative to the entry.
This Pointer Effectis shown on the left of Fig. 2. Notice thatl (resp.p2) points no longer
to its initial destination upon procedure entry, becauseais certainly been redirected vo
(resp.ql or pl) inside A. PartB is a plain basic block, and ifBointer Effecthas been pre-
computed and stored. It is shown on the right of Fig. 2, andesges the fact that pointgy&

8 Valérie Pascual and Laurent Hascoét

and+* p2 have both been redirected, while the other pointers are walifrad. The next step

~ 5~
by o g 4. & [EsSRE by o g 8 & [EESRE
pli o - . pl|
ql . . e . ql °
rl . 'Y . . rl °
pP2| @ @ . P2 °
*p2 - . *p2 .

Fig. 2. Pointer Effectdor partA (left) and partB (right)

in the analysis is to find out theointer Effectbetween subroutine entry a8k exit point.
This is done by composing the twRpinter Effectsof Fig. 2, which turns out slightly more
complex than say, ordinary dependence analysis. This isalpessible pointers to pointers.
For instance the pointer effect of p&tstates that the destination p2, whatever it is, now
points to the address contained ih. Only when we combine with the pointer effect of part
can we actually know thai2 may point top1 or q1, and that 1 points tov. It follows that
bothp1 andgl may point tor 1 in the combined result. Theointer Effecffor the part(A; B)

is therefore:

o
by 0§ &s & [RELES

pl . °

ql . - e

rl °

p2 - e

*p2 .

Although still approximate, these pointer destinatiors rmiore accurate than those returned
by a flow insensitive algorithm. Figure 3 is a minimal examfaéllustrate our flow sensi-
tive Alias Analysis (as well as regeneration of declaratiandi ncl ude files discussed in
Sect. 3). A flow-insensitive Alias Analysis would tell thatipterp may point to bothx and
y, so that statementp = si n(a) makesx andy active. Therefore the differentiated last
statement would become heavier:

bd = bd + (xpd)*y + (*p)=*yd;

6 Conclusion

The newTAPENADEIS now able to differentiate C source. Although this regdiadair amount
of work, this paper shows how the language-independentiateepresentation of programs
insideTAPENADE has greatly reduced the development cost. Less that ortedétite TAPE-
NADE has required modifications. The rest, including the majaitdata-flow analysis and
the differentiation engines, did not need any significandification.

In its present statefTAPENADE covers all the C features, although this sort of assertion
always needs to be precised further. Obviously there arensbau of corrections yet to be
made, and this will improve with usage. This is especiallyiobs with the parser, that still
rejects several examples. Such a tool is never finished. Tt glifferently, there are no C
constructs that we know of and thefPENADE does not cover.

Most of the developments done represent either new furadftgrthat may progressively
percolate into Fortran too, in the same way that pointers@ttier developments were mostly

TAPENADE for C 9

Original Code Tangent Differentiated Code
#i ncl ude <mat h. h> #i ncl ude <mat h. h>
void test(float a, float *b) [void test_d(float a, float ad,
float b, float xbd)
{ {
#i ncl ude "l ocal s. h" #i ncl ude "l ocal s. h"
#i ncl ude "l ocal s_d. h"
*bd = ad;
*b = a; *b = a;
[+ pointer p is |ocal =*/ [+ pointer p is |ocal =/
float *p; float *p;
float *pd;
if (*b > 0) { if (xb > 0) {
pd = &yd;
p = &; p = &;
} else { } else {
pd = &xd;
p = &; p = &;
[+*p doesn’t point to y*/ /+*p doesn’t point to y*/
*pd = ad+cos(a);
*p = sin(a); *p = sin(a);
} }
/* y is never active */ /* y is never active */
x*bd = *bd + (*pd)=*y;
*b = xb + (*xp)*y; *b = xb + (*p)*y;
} }
Original IncludeFilel ocal s. h Generated IncludeFilel ocal s_d. h
float x = 2.0; float xd = 0.0;
float y = 1. 0+x; float yd = 0.0;

Fig. 3. Tangent differentiation of a C procedure. Include direetivare restored in the differ-
entiated file. Flow-sensitive Alias Analysis allowsPENADE to find out thaty is not active

missing parts or misconceptions that the application to & lpaut into light. But indeed very
little has been done that is purely specific to C. In other wpadiaptingrAPENADE for C has
improvedTAPENADE for Fortran.

Obviously the main interest of the structureT@fPENADE is that it remains a single tool,
for both Fortran and C. Any improvement now impacts difféiation of the two languages at
virtually no cost. Even the remaining limitationsofPENADE, for example the differentiation
of dynamic memory primitives in reverse mode, or a nativedfiag of parallel communica-
tions primitives, apply equally to Fortran and C. In otherrdsy there is no difference in
the differentiation functionalities covered by PENADE, whether for Fortran or C. The same

10 Valérie Pascual and Laurent Hascoét

holds probably for the performance of differentiated calthough we have no measurements
yet.

There remains certainly a fair amount of work to matkerENADE more robust for C.
However, this development clears the way towards the nexttiér for AD tools namely,
differentiating Object-Oriented languages. There isagea notion of module for Fortran95,
but we foresee serious development in the type-checkerntdldairtual methods, as well as
problems related to the systematic use of dynamic allocati@bjects.

All practical information ONTAPENADE, its User's Guide and FAQ, an on-line differen-
tiator, and a copy ready for downloading can all be found arveeb address
http://ww.inria.fr/tropics.

