
TAPENADE for C

Valérie Pascual and Laurent Hascoët

INRIA, TROPICS team, 2004 route des Lucioles 06902 Sophia-Antipolis, France
{Valerie.Pascual,Laurent.Hascoet}@sophia.inria.fr

Summary. We present the first version of the toolTAPENADE that can differentiate C pro-
grams. The architecture ofTAPENADE was designed from the start to be language indepen-
dent. We describe how this choice made adaption to C easier. In principle, it needed only a
new front-end and back-end for C. However we encountered several problems, in particular
related to declarations style, include files, parameter-passing mechanism, and extensive use of
pointers. We describe how we addressed these problems, and how the resulting improvements
also benefits to differentiation of Fortran programs.

Key words: Automatic Differentiation, Software Tools, Program Transformation, TAPE-
NADE, C

1 Introduction

We present the first version of the toolTAPENADE [?] that can differentiate C programs [?, ?].
TAPENADE is an Automatic Differentiation (AD) tool [?] that produces differentiated pro-
grams by source analysis and transformation. Given the source of a program, along with a
description of which derivatives are needed,TAPENADE creates a new source that computes
the derivatives.TAPENADE implements tangent differentiation and reverse differentiation.

Right from the start in 1999,TAPENADE was designed as mostly independent from the
source language, provided it is imperative. Figure 1 summarizes this architecture. The differen-
tiation engine is built above a kernel that holds an abstractinternal representation of programs
and that runs static analysis (e.g. data-flow). This composes TAPENADE strictly speaking. The
internal representation does not depend on the particular source language. This architecture
allows the central module to forget about mostly syntactic details of the analyzed language,
and to concentrate on the semantic constructs. Programs arerepresented as Call Graphs, Con-
trol Flow Graphs [?], and Basic Blocks linked to Symbol Tables. Syntax Trees occur only at
the deepest level: elementary statements.

In addition to theTAPENADEkernel, for any source language there must be separate front-
and back-end. They exchange programs withTAPENADE’s kernel via an abstract Imperative
Language called IL. Initially, there was only a front- and a back-end for Fortran77. These were
followed by a front- and a back-end for Fortran95 [?]. Now is the time for C.

2 Valérie Pascual and Laurent Hascoët

Differentiation Engine

Imperative Language Analyzer

 (IL)

C parser
Fortran95 parser

Fortran77 parser

 (IL)

C printer
Fortran95 printer

Fortran77 printer

Fig. 1. Architecture sketch ofTAPENADE

There are other AD tools that differentiate C programs e.g. ADOL-C [?], ADIC [?], or
TAC++ [?]. Some of these tools, e.g. ADOL-C, have no Fortran equivalent as they rely on
operator overloading. For the others, the idea of sharing a part of their implementation with
a Fortran equivalent came gradually. As a C equivalent of ADIFOR, ADIC did mention this
possibility. The architecture ofTAPENADE was explicitly designed for this objective since its
start in 1999. The XAIF concept [?] at the basis of the OpenAD [?] environment also aims at
promoting this sharing. OpenAD contains a new version of ADIC as its component for C. To
our knowledge, TAC++ shares algorithms but no implementation with TAF.

The architecture ofTAPENADE should make extension for C relatively easy. Ideally one
should only write a new front- and back-end. In reality things turned out to be slightly more
complex. Still, our revision control tool tells us that, on 120 000 lines ofJAVA code ofTAPE-
NADE, less than 10% of the total have been modified for C handling. We consider this a very
positive sign of the validity of the architecture. In particular C structured types came for free,
as they were already handled by the type representations needed by Fortran95. The same holds
for the C variable scoping mechanism, and for most control structures. Pointers are already
present in Fortran95, but only with C are pointers used at such a large scale so we feel this is
the right context to present our alias analysis.

This paper discusses the features of C that required choices, improvements, and new de-
velopments inTAPENADE. We emphasize that many of the improvements actually concern
erroneous design choices inTAPENADE, that often resulted from having implicitly Fortran in
mind when making these choices. We believe the new choices are more general, make the tool
more abstract and safe, and benefit even to the differentiation of Fortran. In the sequel, we will
refer to theTAPENADE just before considering C as “the oldTAPENADE”, whereas the cur-
rent version resulting from this is called “the newTAPENADE”. The changes that we describe
fall into the following categories: Section 2 briefly describes the external front- and back-
end for C. Section 3 deals with the new handling of declaration statements, yielding a major
change regarding include files. Section 4 discusses the parameter-passing mechanism. Sec-
tion 5 describes the flow-sensitive alias analysis for a precise pointer destinations information.
In section 6, we summarize the current status ofTAPENADE for C, discuss some remaining
limitations, and evaluate the cost of the more distant extension to object-oriented languages.

2 Front-end and Back-end for C

The new front-end for C is composed of three successive parts:

TAPENADE for C 3

1. a preprocessor (actually the standardCPP preprocessor for C) inlines#include di-
rectives, and processes macro definitions#define and conditional inclusions#if,
#ifdef. . . However we keep placeholders for the beginning and end ofinclude files.
These placeholders are kept through the complete differentiation process, allowingTAPE-
NADE to generate shorter code that explicitly makes#include calls. On the other hand
the other directives e.g.#define, #ifdef, are not reinstalled in the differentiated pro-
gram.

2. a parser performs the true lexical and syntactic analysisof the preprocessed source. It is
based on theantlr parser generator [?]. It supports the StandardC language [?, ?]. It
returns an abstract syntax tree.

3. a translator turns the syntax tree into a serialized IL tree, ready to be transferred into
TAPENADE using the same protocol as the other front-ends.

The back-end for C translates IL trees into C source code, using pretty much the same al-
gorithm as the Fortran back-ends. For spacing and indenting, it implements the recommended
style for C [?]. In contrast, it does not alter the naming conventions (e.g. capitalization) of the
original program. The back-end uses the include placeholders to reinstall#include direc-
tives whenever possible. This mechanism also benefits to theFortran back-ends.

Unlike the Fortran front- and back-ends, those for C are compiled into JAVA code exclu-
sively, thus making the distribution process easier on mostplatforms.

3 Declaration Statements

In the old TAPENADE, the internal representation held the type information only as entries
in the symbol tables. The original declaration statements were digested and thrown away by
the analysis process. Therefore on the way back, the produced programs could only create
declarations in some standard way, unrelated to the order and style of the original source.
Consequently, differentiated declarations were harder toread, comments were lost or at best
floated to the end of the declaration section, and include calls were systematically expanded.

This model is not acceptable for C. Include files are commonplace, and they are long and
complex. Inliningstdio.h is not an option! Also, declarations may contain initializations,
which need to be differentiated as any other assignment statement. Like for e.g.JAVA source,
declarations can be interleaved with plain statements and the order does matter.

In the newTAPENADE, the syntax trees of declaration statements are kept in the Flow
Graph as for any other statement. They are used to build the symbol tables but are not thrown
away. During differentiation, declaration statements aredifferentiated like others. The order
of declarations in the differentiated source matches that of the original source. The same holds
for the order of modifiers inside a declaration, like inint const i.

Relative ordering of differentiated statements is worth mentioning. In tangent differentia-
tion mode, the differentiation of plain assignments is systematically placedbeforethe original
assignment. This is because the assignment may overwrite a variable used in the right-hand
side. This never happens for declarations, though, becauseassignments in declarations are
only initializations. This ordering constraint is relaxed. On the other hand, one declaration can
gather several successive initializations that may dependon one another. The differentiated
initialization may depend on one of the original initializations, and in this case the differenti-
ated declaration statement must be placedafter. In the reverse mode of AD, differentiation of a
declaration with initialization cannot result in a single statement: the differentiated declaration
must go to the top of the procedure, and the differentiated initialization must go to the end of

4 Valérie Pascual and Laurent Hascoët

the procedure. There is no fixed rule for ordering and we resort to the general strategy already
present inTAPENADE namely, build a dependency graph between differentiated statements,
including declarations and initializations.

Given for instance the following procedure:

void test(float x, float y, float *z)
{

/* comment on declaration */
float u = x * 2, v = y * u;
u = u * v;
float w = *z * u;
/* comment on statement */

*z = w * (*z);
}

the newTAPENADE produces the following tangent differentiated procedure:

void test_d(float x, float xd, float y,
float yd, float *z, float *zd)

{
/* comment on declaration */
float u = x*2, v = y*u;
float ud = 2*xd, vd = yd*u + y*ud;
ud = ud*v + u*vd;
u = u*v;
float w = *z*u;
float wd = *zd*u + *z*ud;
/* comment on statement */

zd = wd(*z) + w*(*zd);

z = w(*z);
}

whereas the reverse differentiated procedure has split differentiation of declarations with ini-
tialization:

void test_b(float x, float xb, float y,
float yb, float *z, float *zb)

{
/* comment on declaration */
float u = x*2, v = y*u;
float ub, vb;
/* ... code stripped out for clarity ... */
ub = y*vb + v*ub;
yb = yb + u*vb;
xb = xb + 2*ub;

}

Preserving declarations order allowsTAPENADE to reinstall most#include directives
in the generated code. The example in Fig. 3 illustrates thisfor C. We already mentioned that
the preprocessor keeps track of the include files, so thatTAPENADE can label declarations
with their origin and propagate these labels through differentiation. This new development
takes place inTAPENADE kernel. As such, although not absolutely necessary for Fortran, it

TAPENADE for C 5

benefits to differentiated programs in Fortran too. Things may prove harder in Fortran, due
to strange situations coming from scattered declaration ofa single object among a subroutine
and its includes. Think of aimplicit declaration in a subroutine header that influences
variables declared in some included file. In such weird cases, it is sometimes impossible to
reuse the original include file. The fallback strategy is then to build a new include file. More
generally, we consider the partial order that links all declarations, original and differentiated.
When the order allows for it, we prefer to generate an includeof the original include file
followed by an include of a differentiated include file. Otherwise, our fallback strategy is to put
all declarations, original and differentiated, into the differentiated include file. This strategy
can be compared to what we did for differentiated modules in Fortran95, which need to keep
a copy of the original module’s components.

When a program uses external subroutines,TAPENADE expects the user to give some
information on these externals via some “black-box” mechanism. In C, the “forward dec-
laration” constraint makes sure that any external subroutine is declared with its arguments
number and type before it is used. A similar mechanism existsin Fortran95 with the inter-
face declaration, but it is not compulsory. These forward declarations ease the burden of the
“black-box” mechanism. However information on Use/Def, Outputs/Inputs dependencies, and
provided partial derivatives is still required.TAPENADE lets the user do so through an ad-hoc
file, although an alternative mechanism based on dummy procedures might work just as well.

4 Parameter-Passing Mechanism

The assumptions of the oldTAPENADE regarding parameter-passing were inspired solely from
Fortran. In Fortran, call by value-result is generally usedfor values such as scalars that fit into
registers and call by reference is generally used for arraysand structures [?].

In C, call by value is the only parameter-passing mechanism. Oneemulates a call by
reference, i.e. an input/output parameter by passing a pointer to this parameter. This parameter-
passing mechanism is central for all data-flow analysis suchas Use/Def, Activity, Liveness,
and TBR. With call by reference, the output status of a parameter must be propagated back to
the actual parameter inside the calling procedure. With call by value, this propagation must be
turned off. Consider for instance the following procedureF with formal argumenty, together
with a call toF:

void F(float y) {
...
y = 0.0;

}

F(x) ;

If x has a data-flow property e.g., is active just before the call,then so isy at the beginning
of F. Theny becomes passive. However in the call by value case, this property must not
be propagated back tox upon exit fromF, andx remains active after the call. With call
by reference or call by value-result,x becomes passive after the call. The parameter-passing
mechanism used by the language must be stored as an environment variable ofTAPENADE.

Incidentally, this also influences the header of differentiated procedures. In several cases
the additional arguments to a differentiated procedure must be output arguments, even when
their corresponding non-differentiated argument is just an input. This is commonplace in the

6 Valérie Pascual and Laurent Hascoët

reverse mode. It also occurs when transforming a function into a procedure with an extra
argument for the result, which is often necessary during differentiation. While this was all too
easy in Fortran, now in a call by value context we must pass a pointer to these extra arguments
in order to get a result upon procedure exit.

5 Alias Analysis

The data-flow analysis inTAPENADE already dealt with pointers for Fortran95. However, only
with C do pointers occur with their full flexibility. Therefore theInternal Language IL that
TAPENADEuses as a common representation of any source program, handles pointers with no-
tations and constructs that are basically those ofC specifically,malloc,free, the address-of
operator&, and the dereference operator*. Actually it’s the Fortran side that need be adapted:
at a very early stage during the analysis, typically during type-checking, each use of a variable
which turns out to be a pointer is explicitly transformed into an explicit address-of or derefer-
ence operator whenever required. Conversely, it’s only in the Fortran back-end that address-of
and pointer-to operations are removed, re-introducing theFortran pointer assignment notation
“=>” to lift ambiguities.

The principal tool for handling pointers is theAlias Analysis, which finds out the set of
possible destinations for each pointer for each location inthe program. Like most static data-
flow analysis, Alias Analysis must make some (conservative)approximations. In particular
one must choose to what extent the analysis isflow sensitive, i.e. how the order of statements
influences the analysis output, and to what extent it iscontext sensitive, i.e. how the various
subroutine call contexts are taken into account. Specifically for Alias Analysis, most imple-
mentations we have heard of are flow insensitive, and partly context sensitive.

In TAPENADE, we made the choice of aflow sensitiveandcontext sensitiveanalysis. By
context sensitivewe mean that this interprocedural analysis considers only realizable call-
return paths. However, the called procedure in analyzed only once, in the envelope context
of all possible call sites. We made the same choice for the other data-flow analysis such as
In-Out or Activity, and we are satisfied with this trade-off between complexity of the analysis
and accuracy of the results. Our strategy splits the Alias Analysis in two phases:

• The first phase is bottom-up on the call graph, and it computeswhat we callPointer
Effects, which arerelative. For instance thePointer Effectof a procedure tells the desti-
nations of the pointers upon procedure’s exit, possibly with respect to their destinations
upon procedure’s entry. In other words at the exit point of a procedure, each pointer may
point to a collection of places that can be plain variables, or NULL, or destinations of some
pointers upon procedure’s entry. APointer Effectcan be computed for every fragment of
the program, provided it is a standalone flow graph with a unique initial point and a unique
end point. Figure 2 shows two examples ofPointer Effects. Computing thePointer Effect
of a procedure only requires thePointer Effectsof the procedures recursively called, and
is therefore context-free.

• The second phase is top-down on the call graph, and it computes what we callPointer
Destinations, which areabsolute. At any location in the program, thePointer Destination
tells the possible destinations of each pointer, which can be any collection of variables in
the program plusNULL. This information is self-contained and does not refer to pointer
destinations at other instants. On a given procedure, thePointer Destinationsanalysis
collects the contexts from every call site, builds aPointer Destinationsand propagates it
through the flow graph. When the analysis runs across a call, it does not go inside the

TAPENADE for C 7

called procedure. Instead, it uses thePointer Effectof this procedure to build the new
Pointer Destinationsafter the call. ThesePointer Destinationsare the final result of alias
analysis, that will be used during the rest of differentiation.

When the program is recursive, each phase may consist of several sweeps until a fixed point is
reached. Otherwise, only one sweep per phase is enough, and the overall complexity remains
reasonable.

Pointer EffectsandPointer Destinationsare represented and stored as matrices of Booleans,
using bitsets. For both, the number of rows is the number of visible pointer variables. For
Pointer Destinations, there is one column for each visible variable that can be pointed to, plus
one column forNULL. In addition to this, forPointer Effects, there is one extra column for
each visible pointer. ATrueelement in these extra columns means that the “row” pointer may
point to whatever the “column” pointer pointed to at the initial point.

At the level of each procedure, Alias Analysis consists of a forward propagation across the
procedure’s flow graph. When the flow graph has cycles, the propagation consists of several
forward sweeps on the flow graph until a fixed point is reached.Otherwise only one sweep is
enough. The propagation is very similar for the first and second phases. Each basic block is
initialized with its localPointer Effect. The entry block receives the information to propagate:
during the first, bottom-up phase, this is an “identity”Pointer Effect, each pointer pointing
to its own initial destination. During the second, top-downphase, this is the envelope of the
Pointer Destinationsof all call sites. Actual propagation is based on a fundamental composi-
tion rule that combines the pointer information at the beginning of any basic block with the
Pointer Effectof this basic block, yielding the pointer information at theend of this basic
block. At the end of the top-down phase, each instruction is labeled with a compact form of
its final Pointer Destinations.

We thus need only two composition rules for propagation:

Pointer Effect⊗Pointer Effect→ Pointer Effect
Pointer Destinations⊗Pointer Effect→ Pointer Destinations

Let’s give an example of the first composition, which is used by the first phase. The second
composition is only simpler. Consider the following code

Part A

Part B

void foo(float *p1, float *q1, float v)

{

float **p2, *r1 ;

r1 = &v ;

p2 = &q1 ;

if (...) {

p2 = &p1 ;

}

*p2 = r1 ;

p2 = NULL ;

...

in which we have framed two partsA andB. PartA starts at the subroutine’s entry. Suppose
that the analysis has so far propagated thePointer Effectat the end ofA, relative to the entry.
This Pointer Effectis shown on the left of Fig. 2. Notice thatr1 (resp.p2) points no longer
to its initial destination upon procedure entry, because ishas certainly been redirected tov
(resp.q1 or p1) insideA. PartB is a plain basic block, and itsPointer Effecthas been pre-
computed and stored. It is shown on the right of Fig. 2, and expresses the fact that pointersp2

8 Valérie Pascual and Laurent Hascoët

and*p2 have both been redirected, while the other pointers are not modified. The next step

p1

q1

r1

p2

*p2

p
1

q
1

r
1

p
2

*
p
2

v N
U
L
L

*
p
1

*
q
1

*
r
1

*
p
2

*
*
p
2

p1

q1

r1

p2

*p2

p
1

q
1

r
1

p
2

*
p
2

v N
U
L
L

*
p
1

*
q
1

*
r
1

*
p
2

*
*
p
2

Fig. 2. Pointer Effectsfor partA (left) and partB (right)

in the analysis is to find out thePointer Effectbetween subroutine entry andB’s exit point.
This is done by composing the twoPointer Effectsof Fig. 2, which turns out slightly more
complex than say, ordinary dependence analysis. This is dueto possible pointers to pointers.
For instance the pointer effect of partB states that the destination ofp2, whatever it is, now
points to the address contained inr1. Only when we combine with the pointer effect of partA
can we actually know thatp2 may point top1 or q1, and thatr1 points tov. It follows that
bothp1 andq1 may point tor1 in the combined result. ThePointer Effectfor the part(A;B)
is therefore:

p1

q1

r1

p2

*p2

p
1

q
1

r
1

p
2

*
p
2

v N
U
L
L

*
p
1

*
q
1

*
r
1

*
p
2

*
*
p
2

Although still approximate, these pointer destinations are more accurate than those returned
by a flow insensitive algorithm. Figure 3 is a minimal exampleto illustrate our flow sensi-
tive Alias Analysis (as well as regeneration of declarations andinclude files discussed in
Sect. 3). A flow-insensitive Alias Analysis would tell that pointerp may point to bothx and
y, so that statement*p = sin(a) makesx andy active. Therefore the differentiated last
statement would become heavier:

bd = bd + (*pd)*y + (*p)*yd;

6 Conclusion

The newTAPENADE is now able to differentiate C source. Although this required a fair amount
of work, this paper shows how the language-independent internal representation of programs
insideTAPENADE has greatly reduced the development cost. Less that one tenth of theTAPE-
NADE has required modifications. The rest, including the majority of data-flow analysis and
the differentiation engines, did not need any significant modification.

In its present state,TAPENADE covers all the C features, although this sort of assertion
always needs to be precised further. Obviously there are a number of corrections yet to be
made, and this will improve with usage. This is especially obvious with the parser, that still
rejects several examples. Such a tool is never finished. To put it differently, there are no C
constructs that we know of and thatTAPENADE does not cover.

Most of the developments done represent either new functionality that may progressively
percolate into Fortran too, in the same way that pointers did. Other developments were mostly

TAPENADE for C 9

Original Code Tangent Differentiated Code

#include <math.h>

void test(float a, float *b)

{
#include "locals.h"

*b = a;
/* pointer p is local */
float *p;

if (*b > 0) {

p = &y;
} else {

p = &x;
/*p doesn’t point to y*/

*p = sin(a);
}
/* y is never active */

*b = *b + (*p)*y;
}

#include <math.h>

void test_d(float a, float ad,
float *b, float *bd)

{
#include "locals.h"
#include "locals_d.h"

*bd = ad;

*b = a;
/* pointer p is local */
float *p;
float *pd;
if (*b > 0) {

pd = &yd;
p = &y;

} else {
pd = &xd;
p = &x;
/*p doesn’t point to y*/

*pd = ad*cos(a);

*p = sin(a);
}
/* y is never active */

*bd = *bd + (*pd)*y;

*b = *b + (*p)*y;
}

Original Include File locals.h Generated Include File locals d.h

float x = 2.0;
float y = 1.0+x;

float xd = 0.0;
float yd = 0.0;

Fig. 3. Tangent differentiation of a C procedure. Include directives are restored in the differ-
entiated file. Flow-sensitive Alias Analysis allowsTAPENADE to find out thaty is not active

missing parts or misconceptions that the application to C have put into light. But indeed very
little has been done that is purely specific to C. In other words, adaptingTAPENADE for C has
improvedTAPENADE for Fortran.

Obviously the main interest of the structure ofTAPENADE is that it remains a single tool,
for both Fortran and C. Any improvement now impacts differentiation of the two languages at
virtually no cost. Even the remaining limitations ofTAPENADE, for example the differentiation
of dynamic memory primitives in reverse mode, or a native handling of parallel communica-
tions primitives, apply equally to Fortran and C. In other words, there is no difference in
the differentiation functionalities covered byTAPENADE, whether for Fortran or C. The same

10 Valérie Pascual and Laurent Hascoët

holds probably for the performance of differentiated code,although we have no measurements
yet.

There remains certainly a fair amount of work to makeTAPENADE more robust for C.
However, this development clears the way towards the next frontier for AD tools namely,
differentiating Object-Oriented languages. There is already a notion of module for Fortran95,
but we foresee serious development in the type-checker to handle virtual methods, as well as
problems related to the systematic use of dynamic allocation of objects.

All practical information onTAPENADE, its User’s Guide and FAQ, an on-line differen-
tiator, and a copy ready for downloading can all be found on our web address
http://www.inria.fr/tropics.

