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ABSTRACT.The present study focuses on multi-level approaches in the context of discrete
gradient-based methods for aerodynamic shape design. Moreprecisely, the minimisation is
done alternatively on different control subspaces according to multigrid-like cycles, providing
at each sub-level a particular gradient preconditioning. Starting from an existing multi-level
gradient-based formulation associated to shape grid-points coordinates, a possible generalisa-
tion to more compact shape representations is proposed through the construction of adequate
sets of embedded shape sub-parametrisations. The behaviour of the new formulation is illus-
trated on different 2D inverse problems for inviscid flows.

RÉSUMÉ.Cette étude est consacrée aux stratégies multiniveaux pourles méthodes de descente
utilisant le calcul d’un gradient discret, dans le cadre de l’optimisation de formes aérodyna-
miques. Plus précisement, la minimisation s’effectue sur différents sous-espaces de contrôle uti-
lisés cycliquement, imitant ainsi les stratégies multigrilles. A chaque sous-niveau correspond
un spécifique préconditionnement du gradient. Partant d’une formulation basée sur l’utilisa-
tion comme variables de contrôle des coordonnées des pointsdu maillage sur la frontière, on
propose la généralisation à des représentations plus compactes de la forme, ceci grace à la
construction d’adéquates sous-paramétrisations de formeemboitées. Le comportement des mé-
thodes proposées est illustré sur différents exemples de problèmes inverses bidimensionels pour
écoulements non visqueux.
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1. Introduction to multi-level approaches in aerodynamic shape design

Due to the ripeness reached by computational fluid dynamics (CFD) combined
with the rapid advances of computational power, research inthe field of aerodynamic
shape design has experienced a large development in the lastyears, allowing to deal
with more and more complex optimisation problems. However,shape optimisation
for aerodynamic applications remains a costly task since the system of governing flow
equations (as, for instance, Euler or Navier-Stokes equations) should be solved, many
a time during the whole procedure. Thus, even if significant progress have been done
for optimisation tools and related techniques (as, for instance, the use of adjoint ap-
proaches in the context of gradient-based methods), the improvement of optimisation
algorithm efficiency still appears as an important goal.

On another hand, to deal with complex engineering design optimisation, different
multi-level or multi-scale approaches, in which the whole problem is decomposed in
several simpler sub-problems to be solved in a predetermined sequence, have been
developed (see e.g. (Migdalaset al., 1997; Schwabacheret al., 1998)). Each opti-
misation sub-problem can differ according to objective function, constraints, design
space and/or optimisation algorithm allowing a better treatment of complex systems
(multidisciplinary design, multiple local optima, large-scale system, multi-objective
optimisation, ...). Alternatively, efficiency can be also increased using various degrees
of fidelity, i.e. varying the complexity of the physical modelling and/or the accuracy
of the numerical approach (see e.g. (Alexandrovet al., 2001)). Note that a particu-
lar case of low fidelity model can be obtained through the use of coarse meshes, in
which the flow solution is computed more easily and at a lower cost. For instance,
in the field of aerodynamic design optimisation, in (Fenget al., 1995), a reduced
Hessian SQP algorithm is combined with a solution refinement, while in (Dadone
et al., 2000), a progressive optimisation is proposed in which starting from a low
accurate computation of the sensitivity derivatives (using coarse mesh and partially
converged flow solutions) the degree of accuracy is progressively increased during
the optimisation process. A similar idea is proposed in (Pironneauet al., 2002) (see
also Chapter 6 of (Mohammadiet al., 2001)), in which mesh refinement is combined
with approximate gradients in order to speed up the convergence on the finest mesh of
the descent algorithm. Methods based on multigrid principles can be the successive
step; some works can be found in literature in which multigrid-like techniques have
been applied to optimal control problems involving partialdifferential equations. For
instance, the MG/Opt algorithm (Nash, 2000) recursively uses coarse resolution prob-
lems (coarse mesh) to generate search directions at a cheaper cost for finer resolution
problems. For further examples, we refer, for instance, to (Gelmanet al., 1990; Dreyer
et al., 2000; Borzi, 2003; Grattonet al., 2004). In the context of aerodynamic design
optimisation, in (Kuruvilaet al., 1994) a one-shot method, in which the flow and the
sensitivities are simultaneously solved, is coupled with amultigrid approach. In this
formulation, the design variables corresponding to low-frequencies of the shape are
updated on a coarse level (i.e., a coarse mesh) while the other design variables are
updated on a finer level. Finally, in (Catalanoet al., 2005; Catalanoet al., 2007),
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the progressive optimisation, introduced in (Dadoneet al., 2000), is coupled with a
multigrid-aided finite-difference approach, in which the gradient is obtained through
finite-difference sensitivities computed using only flow solutions on a coarse mesh.

Another approach, also based on multi-level concepts and ideated for gradient-like
methods, has been introduced in (Beuxet al., 1994). In this preconditioned gradient
method, the minimisation is done alternatively on different subsets of control param-
eters according to multigrid-like cycles. More particularly, using shape grid-point
coordinates as design variables, a hierarchical parametrisation was defined consid-
ering different subsets of parameters extracted from the complete parameterisation,
which can be prolongated to the higher level by linear mapping. This approach acts
as a smoother and, on another hand, makes the convergence rate of the gradient-based
method low dependent of the number of control parameters. The good behaviour ob-
served in different numerical experiments (Beux, 1994; Beux et al., 1994), have been
also corroborated by a theoretical view point in (Guillard,1993; Guillardet al., 1995).
Note that, contrary to the other approaches based on multigrid concepts, only one
computational mesh is employed since the coarseness acts only on the number of de-
sign parameters. The increase of efficiency is only related to the faster convergence
obtained considering less degrees of freedom and to the improvement on convergence
rate typical of multigrid techniques. Different extensions of the original approach have
been, successively, proposed: in (Heldet al., 2002) the same hierarchical parametrisa-
tion is associated with a finite-difference/one-shot formulation, in (Marcoet al., 1997)
the generalisation to 3D case involving unstructured meshes is done through the use
of agglomeration technique while an additive multi-level preconditioner has been also
defined in (Koobuset al., 1997; Courtyet al., 2006).

Another multi-level approach based on a family of embedded parametrisations has
also been proposed in (Désidéri, 2003) (see also successiveworks, as e.g. (Abou El
Majd et al., 2004; Désidéri, 2007; Abou El Majdet al., 2007)). However, contrary to
the method introduced in (Beuxet al., 1994) and its different extensions, this approach
is based on a polynomial representation of the shape throughthe use of Bézier curves,
and is not specifically focused on gradient-based methods.

2. Optimum shape design problem in aerodynamics

2.1. The Optimal shape problem in a fully discrete context

The optimal shape problem consists in minimising a cost functional j with re-
spect to some control variables�, which should characterise the shape. Moreover, for
aerodynamic shape optimisation,j can not be expressed directly in a explicit way as
a function of� since it also depends on the flow variables. Indeed, for each shape
configuration, and thus, for each choice of�, a particular flow is obtained by solving
the governing equations, i.e typically Euler or Navier-Stokes equations. Note that we
consider an optimisation in a discrete context in which the optimisation algorithm is
applied to the problem already fully discretised, i.e. withboth the discrete govern-
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ing equations and the discrete cost functional. Then, the unconstrained optimal shape
problem can be written as follows:

Find �opt 2 IRp such thatj(�opt) = min�2IRp j(�) [1]

in which the cost functionalj can be defined introducingJ : IRp � IRN ! IR such
that: 8� 2 IRp j(�) = J(�;W (�)) [2]

where� is a discrete set of parameters (see Sec. 2.3) whileW represents the values
of the flow variables at each point of the computational mesh.

Furthermore, the discretised shape is fully determined by the coordinates of the
grid-points localised on the shape. Thus, the control variables influence the discrete
cost functional only through these coordinates, which can be introduced as intermedi-
ate variables. More precisely, let us considerL : IRp ! IRq , the operator which, for
each set of control parameters, furnishes the corresponding set of shape grid-points
coordinates. Then, instead of [2] the cost functional can beexpressed as follows:8� 2 IRp j(�) = I(L(�)) = I�L(�);W (L(�))� [3]

in which I : IRq ! IR andI : IRq � IRN ! IR are defined byj = I Æ L andJ = I Æ L respectively.

2.2. Computation of the sensitivity derivatives

If a gradient-based method is used as optimisation strategy, then, the computation
of cost functional derivatives with respect to control variables is required. The sensi-
tivity derivatives can be obtained by the differentiation of [2] (or [3]). This task can
be highly tedious since the governing equations are also involved through the flow
variables. To avoid this exact differentiation, the sensitivity derivatives can be approx-
imated by finite differencing in which the flow solver is used only as a black box.
Thus, the resulting approach is very easy to implement and can be applied in a rather
general context. Nevertheless, this approach requires a careful parameter monitoring
in order to obtain an accurate gradient approximation, and on the other hand, gives
dramatic low computational performances as soon as not onlya very low number of
control variables is used. Alternatively, in the direct differentiation or flow sensitivity
approach, the Gâteaux derivatives with respect to each component direction are ex-
actly computed. But, the computational cost problem for a large number of control
variables is still present, since, for one gradient computation,p (p being the number of
design parameters) linearised systems of large dimension should be solved. Finally, an
efficient computation of the exact discrete gradient can be achieved through an adjoint
formulation (see, e.g. (Gileset al., 2000; Jameson, 2003)). Indeed, the gradient eval-
uation requires to solve only one extra linear system (the adjoint system), and thus,
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is independently of the number of design variables. Consequently, at present, this
formulation seems to be the more suitable way to solve complex aerodynamic shape
optimisation problem in the context of gradient-based methods. Nevertheless, to avoid
the very hard task of a differentiation implementation by hand-coding, automatic dif-
ferentiation tools have been also developed (see e.g. (Giering et al., 2005; Hascoëtet
al., 2005)). An alternative or additional approach, often usedin presence of complex
physical models and numerical discretisation (Navier-Stokes equations with a turbu-
lent model, high-order schemes, non-structured meshes, ...), is to freeze or approxi-
mate some steps in the differentiation of the flow solver (seee.g. (Nemecet al., 2002)).
We refer to (Dwightet al., 2006; Carpentieriet al., 2007) for a study on the effect on
the gradient accuracy of the various approximations of the discrete adjoint computa-
tion. A more drastic approach has been introduced in (Mohammadi, 1997), in which
the adjoint computation is dropped out, on the one hand, by adding some intermediate
geometrical quantities in the differentiation, and on the other hand, by neglecting the
flow derivatives. This incomplete gradient formulation is based on the fact that when
the objective functional is defined as a boundary integral ofquantities evaluated on the
shape, sensibilities with respect to the geometrical quantities give the main contribu-
tion to the gradient value. In (de’ Michieli Vitturiet al., 2006) this approach has been
coupled with a multi-level method allowing to consider a completed gradient com-
putation in which the flow derivatives are also (at least partially) taken into account.
Moreover, efficient approaches based on finite-difference sensitivities have been also
proposed; indeed, in (Catalanoet al., 2005) a progressive optimisation coupled with
a multigrid-aided finite-difference is considered while anone-shot method coupled
with a multi-level strategy is used in (Heldet al., 2002). Finally, for more details and
references on sensitivity analysis for aerodynamic shape optimisation, we refer, for
instance, to (Newman IIIet al., 1999) and (Mohammadiet al., 2001).

In the present study, an exact hand-coding discrete adjointapproach is used for a
Euler stationary flow solver based on an unstructured finite-volume first-order spatial
discretisation and a pseudo-unsteady approach associatedwith a linearised implicit
algorithm. Finite-difference sensitivities through the formulation proposed in (Heldet
al., 2002) are also considered in Sec. 6.

2.3. Parametrisations for aerodynamic shape representation

An important ingredient which should be also specified in theoptimisation process
is the representation of the shape, which is defined through the choice of the control
parameters. Indeed, the shape parametrisation plays a crucial role for the shape opti-
misation since it directly acts on the accuracy of the final solution and on the efficiency
of the particular optimisation strategy.

The use of shape grid-point coordinates as design variablesappears the more nat-
ural approach since, in this case, the parameterisation is directly correlated with the
explicit representation of the discrete shape. Furthermore, for optimisation algorithms
based on an exact discrete gradient, the computation of the sensitivity derivatives are



6 1re soumission àREMN

simplified since, in this case, [2] and [3] coincide. Nevertheless, since the geome-
try is modified by moving individual grid points, non-smoothprofiles are often ob-
tained, particularly during intermediate phases of the convergence to optimum (see,
e.g. (Beuxet al., 1992)). Moreover, the large number of variables involved in this
case has a negative effect on the computational cost (slow convergence and, possi-
bly, large number of cost functional evaluations). As a matter of fact, the multi-level
strategy introduced in (Beuxet al., 1994) and described in Sec. 3.2 was defined ex-
actly in order to reduce these drawbacks. Note that the lack of shape smoothness,
particularly critical for shape grid-points parametrisation, can be also linked with a
regularity loss of the gradient with respect to the control variables, already verified in
the continuous case (see, e.g. (Courtyet al., 2006)). To avoid oscillations, in many
works dealing with a shape grid-point parameterisation, a smoothing is applied (see
e.g. (Mohammadiet al., 2001; Reutheret al., 1995)).

On the other hand, a classical approach for the parameterisation of the shape is to
use a polynomial representation which permits a compact description of the shape with
only few parameters. For instance, Bézier control points, i.e. coefficients in a basis of
Bernstein polynomials, can be used as design variables. TheBézier representation has
suitable properties at an algorithmic level (efficient recursive algorithms), but also,
with regard to geometrical aspects. In particular, this shape representation is well
adapted to deal with geometric constraints since a convex hull property is verified and
the curve derivates are easily available (see, e.g. (Farin,1990)). Furthermore, the
Bézier curves act as a basic tool to define other representations as B-splines and non-
uniform rational B-spline (NURBS) more suitable for high-degree polynomial and
non smooth geometries respectively.

Another possible choice, frequently considered in the context aerodynamic shape
design (typically, for airfoil or wing design), is to represent the shape through a linear
combination of given geometric shapes. The control variables are, then, the coeffi-
cients in this basis of shape functions. In this case, few parameters are sufficient to
obtain a good shape representation, but, on the other hand, the final solution is highly
related to the choice of the particular basis. Thus, this representation yields a priori a
smaller design space with respect to the parametrisations based on shape grid-points
or polynomial control points. The basis is, in general, composed of existing geometric
shapes or alternatively, a given base shape and a set of modified shapes obtained from
the first one through some perturbation functions, such as the Hicks-Henne analytical
functions (see (Hickset al., 1978)). Moreover, in order to improve the completeness
of the design space and thus, avoid the presence of nearly linear dependent functions,
some authors use orthogonal functions obtained through a Gram-Schmidt orthogo-
nalisation (see, (Kuruvilaet al., 1994; Changet al., 1995; Catalanoet al., 2005))
or analytically (e.g., through the use of Chebychev polynomials in (Carpentieriet
al., 2007)).

The three kinds of parametrisations, described here, represent a large range of
widely used approaches, and, have been considered in this study in the framework of
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multi-level methods. For a more complete overview of possible shape parametrisa-
tions, we refer, as example, to (Samareh, 2001) or (Selmin, 2007).

3. Multi-level gradient-based approaches for shape design

3.1. Change of Hilbert control space

Multi-level methods in the context of optimum shape design,as initially proposed
in (Beux et al., 1994), are based on a change of control space. More precisely, let
us consider the optimisation of a differentiable functional j : U ! IR in a Hilbert
spaceU . Then, instead of a direct minimisation ofj in U , one can also envisage a
minimisation ofj in the subsetf(V ) � U , in whichV is a second Hilbert space andf an application fromV toU . It can be formulated, equivalently, as the minimisation
of J = j Æ f in V , i.e.:

Find �opt 2 V such thatJ (�opt) = min�2V [j Æ f ℄(�) [4]

The Fréchet derivative ofJ at� 2 V can be expressed as follows:8h 2 V J 0(�)(h) = [j Æ f ℄0(�)(h) = j0 (f(�)) (f 0(�)(h))
Sincef 0(�) 2 L(V; U), i.e is a linear continuous application fromV to U , the fol-
lowing relation can be also obtained in terms of gradient foranyh 2 V :hgradV J (�); hiV = hgradU j(
); f 0(�)hiU= h(f 0(�))� gradUj(
); hiV [5]

where
 = f(�), (f 0(�))� 2 L(U; V ) is the adjoint off 0(�) andh:; :iU andh:; :iV
are the inner products associated toU andV respectively.

Furthermore, let us consider the particular case in whichf affine, and thus, it
existsb 2 U andP 2 L(V; U) such thatf : � ! P� + b. Then, since in this casef 0(�) = P for any� 2 V , solving the minimisation problem [4] through a gradient
descent method corresponds to the following iterative algorithm:�0 2 V given, for r � 0 �r+1 = �r � !rP �gradU j(f(�r))
Nevertheless, applying the operatorf permits to go back to spaceU , and thus, to
obtain: f(�r+1) = P�r+1 + b = f(�r)� !rPP �gradU j(f(�r))
Thus, considering as initial solution
0 = f(�0), the following iterative algorithm is
finally defined inU :

for r � 0 
r+1 = 
r � !rPP �gradU j(
r) [6]
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The resulting algorithm is a weak descent method inU (see (Beuxet al., 1994; Mar-
tinelli et al., 2007b) for a proof), and can be also interpreted as a preconditioned
gradient method.

Furthermore, since we are interested to the shape optimisation problem [1] in a
discrete context,U = IRp while the second Hilbert space is, typically,V = IR�p.
Then, the linear operatorP and its adjointP � are associated to a matrixM 2 IRp��p
and its transpose respectively, and thus, the algorithm canbe simply rewritten as:

for r � 0 
r+1 = 
r � !r MMT gr [7]

with gr = gradj(
r) 2 IRp.

3.2. A hierarchical parametrisation based on shape grid-points

An optimisation algorithm based on control space change as presented in Sec. 3.1
has been initially proposed in (Beuxet al., 1994) for the case of a linear operator,
i.e. for f = P . In this study, the ordinates of the grid-points, localisedon the shape
which should be optimised, have been chosen as control variables
. Then, a set of
points, extracted from the complete set of shape grid-points, is considered as sub-
parametrisation�. For this choice of shape parametrisation and sub-parametrisation,
it seems natural to define the linear prolongation operatorf through interpolation. It
has been shown that taking an Hermitian interpolation of degree 3, an enough smooth
parametrisation is then obtained with satisfying numerical results.

Moreover, instead of considering a single spaceV , the cost functional is minimised
alternatively on different control subspaces of decreasing dimension. More precisely,
a family of embedded sub-parametrisations is considered, in which for each increase
of level the number of points is doubled. At a particular level l, the prolongation
operator from levell to the finest oneL, i.e. to the complete parametrisation, is defined
by P (l) = PLL�1 Æ � � � Æ P l+2l+1 Æ P l+1l
in which P i+1i is the cubic interpolation used for the prolongation from level i to
the next one. In practice, at each optimisation iterationr corresponds a particular
level l, and following [6], minimising on this coarse levell corresponds to replace
the gradientgr by the descent directionp(l)r = P (l)(P (l))� gr. This means that the
gradient is projected on a coarse level and then prolongatedback to the fine level,
which is equivalent to the addition of a high frequency filter. Note that, only the
gradient on the finest level is computed while the effects of the minimisation on a
coarse level are taking into account by the preconditionerP (l)(P (l))�. The choice
of the particular subspace, at each optimisation iteration, is determinate by a strategy
of level changes similar to multi-level/multigrid strategies used for the resolution of
partial differential equations (as, for instance, V-cycles).

Note that the multi-level approach elaborated in (Beuxet al., 1994) is strongly
linked to the particular type of parametrisation used. Nevertheless, the formulation
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described in Sec. 3.1 is rather more general since, providing that the prolongation
operator be affine, any type of design variables and sub-parametrisations can be pro-
posed.

3.3. Generalisation to other kinds of parametrisation

The multi-level method, as described in the previous sections, is based on the idea
of control space change. Moreover, it also need the definition of a family of sub-
parametrisations and the corresponding prolongation operators. In Sec. 3.2, a set of
sub-parametrisations has been found in a natural way considering shape grid-points as
control parameters.

More generally, let us, now, consider an optimal shape design associated to�, a
generic set of control variables. Nevertheless, as pointedout in Sec. 2, the shape
grid-points coordinates can be used as intermediate variables. Then, since the cost
functional can be expressed asj = I ÆL, the following relation between the gradients
of j andI can be obtained in a similar way as done to obtain [5]:8� 2 IRp grad�j(�) = (L0(�))� grad
I (L(�))
where the subscript� and
 denote, here, that the gradient is inIRp andIRq respec-
tively. Thus, the gradient descent method for the minimisation of j with respect to�
corresponds to the following iterative algorithm:�0 2 IRp given, for r � 0 �r+1 = �r � !r�L0(�r)��grad
 I(L(�r))
After the computation of�r+1, the shape grid-points coordinates should be also up-
dated. This updating is done throughL, which lies the control variables to the shape
grid-points coordinates
, in the following way:

for r � 0; 
r+1 = L(�r+1) = L��r � !r�L0(�r)��grad
 I(
r)� [8]

with 
0 = L(�0).
Note that, if the shape parametrisation is relied to the coordinates of the shape grid-

points by an affine application, and thus, in particular, it exists a matrixM 2 IRq�p
such that for anyh 2 IRp we have[L0(�r)℄ (h) = Mh, then [8] can be rewritten as
follows: 
r+1 = 
r � !rMMTgrad
 I(
r)
In this case, a descent direction is obtained considering ascontrol variables� as well
as
. From the point of view of an optimisation with respect to
, � acts as a sub-
parametrisation, and, we exactly recover the formulation of Sec. 3.1 taking, here,f = L, j = I andJ = j. Thus, the approach proposed in (Beuxet al., 1994)
corresponds to choose as control parameters the coordinates of a subset of the shape
grid-points.
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On another hand, if it is possible to find an affine applicationfrom IR�p to IRp
(associated to a matrixD 2 IRp��p), then, as done in Sec. 3.1, a preconditioned
gradient method can be also defined for the optimisation ofj with respect to�. It
corresponds to the following iterative algorithm:�0 2 IRp given, for r � 0 �r+1 = �r � !rDDTgrad� j(�r) [9]

Thus, two possible ways can be envisaged to generalize the multi-level approach:
considering� as control variables as done in [9], or alternatively, considering
 as
control variables ifL is affine. In this last case, one can also combined the two kinds
of preconditioners. Indeed, [9] can be expressed in terms ofshape grid-points as
follows: 
r+1 = L��r � !rDDT �L0(�r)��grad
 I(
r)�
Then, ifL is an affine application, it can be also rewritten as:
r+1 = 
r � !rMD(MD)T grad
 I(
r) [10]

In this case, the same algorithm can be interpreted as a preconditioned gradient
method considering as control variables� (through [9]) as well as
 (through [10]).
In particular, let us consider a parametrisation� with L affine and an adequate set
of sub-levels associated to the matricesD(l), l = 1; � � � ; L. Then, [10] furnishes
a practical way to define the different preconditioning matrices for the optimisation
with respect to
 takingM (l) = MD(l).

Note that, in order to really define a multi-level strategy, one should also introduce
a notion of coarseness for the sub-levels. In particular, weshould be able to define a
family of sub-parametrisations with a decreasing number ofparameters. Furthermore,
a coarser level should correspond to a representation of theshape with lower frequen-
cies. Finally, it will be also interesting to define, as done for the original formulation
(Beuxet al., 1994), a family of embedded parametrisations in which the passage from
a given level to the finest one, can be done progressively considering successively the
different intermediate sub-levels.

4. Examples of alternative multi-level approaches

In the framework of the formulation defined in Sec. 3.3, we propose, here, to elab-
orate alternative multi-level approaches based on some classical shape parametrisa-
tions. More precisely, parameters, which can be related by linear or affine application
to the set of shape grid points, are individualized, and then, used to define an adequate
family of sub-parametrisations. Note that, as done in (Beuxet al., 1994), we consider
the case in which the design control acts only on the ordinates of the shape grid points
whereas the abscissasx�0 ; � � � ; x�m are defined by the knowledge of the initial mesh
and frozen during the optimisation process. In the context of aerodynamic shape op-
timisation, this approach is often chosen, and does not appear so restrictive as long as
only slender bodies are considered.
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4.1. Formulation based on Bézier control points

4.1.1. Shape representation through Bézier curves

A Bézier curve of degreen can be defined as follows:S(t) = (x(t); y(t))T = nXq=0Bnq (t)Sq with t 2 [0; 1℄ [11]

whereSq = (xq ; yq)T is theq-th Bézier control point whileBnq (t) corresponds to theq-th Bernstein polynomial of degreen.

Thus, for a given set of parameters(tk)k=0;m with t0 = 0 < t1 < � � � < tm = 1,
the ordinates of the Bézier control points are directly related through a linear appli-
cation with the ordinates of the shape grid-points,y�0 ; � � � ; y�m. Indeed, applying [11]
with y(tk) = y�k , we obtain:8>>><>>>: y�0 = y(0) = y0y�k = y(tk) = n�1Xq=1 Bnq (tk)yq + sn(tk) for k = 1;m� 1y�m = y(1) = yn [12]

in whichsn(tk) = Bn0 (tk)y0 +Bnn(tk)yn.

Nevertheless, geometrical constraints are often imposed at the extremities of the
shape which should be optimised. For instance, the shape extremities are in general

fixed; it corresponds, here, to freezey�0 andy�m. Then,� = �
y1; � � � ; yn�1�T are

related to
 = (y�1 ; � � � ; y�m�1)T by the following affine operator1:f : IRn�1 �! IRm�1� 7�! 
 =M�+ b b 2 IRm�1;M 2 IRm�1�n�1
where 8<: Mkq = Bnq (tk); for q = 1; n� 1 and k = 1;m� 1bk = sn(tk) = (1� tk)ny�m + (tk)ny�0 ; for k = 1;m� 1
Thus, according to Sec. 3.1, it can be envisaged to define a strategy similar to the
original multi-level approach (Beuxet al., 1994). Indeed, if the ordinates of the shape
grid-points are taken as control variables, each sub-parametrisation is chosen as a
set of Bézier control points instead of a subset of boundary grid-points. Then, the
following descent direction is obtained at iterationr and levell:d(l)r =M (l)(M (l))T gr with M (l)ij = Bnlj (t(l)i ): [13]1. note that we choose, here, to follow the notations introduced in Sec. 3.1 of instead of the
ones used in Sec. 2.1 and 3.3, i.e. to call the affine operatorf instead ofL.
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To fully describe the different sub-parametrisations, at each sub-levelX(l) =(x(l)0 ; � � � ; x(l)nl)T with nl > nl�1 andT (l) = (t(l)0 ; � � � ; t(l)m )T should be defined.
Furthermore, this definition should be done consistently with [11], i.e.:x�k = x(t(l)k ) = nlXq=0Bnlq (t(l)k )x(l)q for k = 0; � � � ;m [14]

in which the abscissas of shape grid-points (fx�kgk=0;m) are given.

Note that the definition of the different sub-parametrisations is not dependent of
the particular optimisation iterationr, and thus, should be done as a preprocessing.

4.1.2. Sub-parametrisations based on the degree-elevation property

In order to define an adequate parametrisation at levell, the classical degree-
elevation property of the Bézier curves (see, e.g. (Farin, 1990))), which allows to
increase the degree and the number of control points, is usedhere. Note that the
good features of the degree-elevation property have been pointed out, and, already,
employed to construct an embedded parametrisation in (Désidéri, 2003) .

Given a Bézier curve of degrees associated to thes + 1 control pointsSq =(xq; yq)T , the same geometrical curve can be also understood as a Bézier curve of
degrees + 1 considering a new set ofs + 2 control points�Sq = (�xq; �yq)T obtained
from Sq as follows (with the conventionS�1 = Ss+1 = (0; 0)T ):�Sq = qs+ 1Sq�1 +�1� qs+ 1�Sq for q = 0; � � � ; s+ 1 [15]

An interesting feature is that the distribution of the parameterst over the Bézier curve
does not change by degree elevation, and thus:sXq=0Bsq (t) xq = s+1Xq=0Bs+1q (t) �xq 8t 2 [0; 1℄ [16]

Consequently, if the parametrisation on the coarsest levelhas been yet defined withX(0) andT (0) consistent, i.e. with [14] verified forl = 0, then, thanks to [16],
keeping the parameterstk unchanged on all the levels, i.e.T (l) = T (0) for all l > 0,
the consistency is preserved by applying successively the degree-elevation algorithm
starting fromX(0). More precisely,X(l) is obtained fromX(l�1) by applyingnl �nl�1 times the degree-elevation algorithm, and thus, we obtain afamily of embedded
sub-parametrisations with a progressive increase of the number of control points.

Note that, the conditions at the endpoints x(l)0 = x�0 and x(l)n = x�m are automati-
cally verified at each level if these relations occur forl = 0. Furthermore, additional
geometrical constraints are often imposed on the shape: forinstance, a vertical tan-
gent at the origin is a standard constraint at the leading edge for airfoil profiles. With a
Bézier curve, the derivatives at the endpoints can be easilymanaged, and in particular,
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a vertical tangent at the origin can be enforced by the condition x0 = x1. It is easy to
see that the degree elevation also preserves this condition.

Using the present procedure, the different sub-levels are fully determined by the
construction of a consistent coarsest sub-level. For instance, if the(x�k )k=0;m are uni-
formly distributed, a consistent coarsest level can be easily obtained by simply choos-
ing an uniform distribution for bothX(0) andT (0). More generally, let us consider
the case in which a vertical tangent should be imposed at the origin with a generic
distribution of the shape grid-points abscissas. Then,~X0 = (x�0 ; x�0 ; x�m)T gives the
simplest initial set of abscissas for Bézier control points. ~X0 is associated to the fol-
lowing distribution of the parameterstk:tk =s x�k � x�0x�m � x�0 for k = 0; � � � ;m: [17]

A consistent coarsest level is then obtained consideringT (0) defined by [17] andX(0)
being any~Xl obtained from~X0 by applying successively the degree-elevation process.

4.2. Formulation based on shape functions basis

4.2.1. Shape representation through analytical shape functions

As pointed out in Sec. 2.3, another classical choice of parametrisation for aero-
dynamic shape design is to consider the curve coefficients insome basis of shape
functions. Then, given(x�k )k=0;m, the shape grid-points abscissas and the particular
basis(fq)q=1;n, the basis coefficients�(n) = (�1; � � � ; �n)T can be easily related to
the ordinates of the shape grid-points
 by:y(x�k ) = nXq=1 �qfq(x�k ) 8k = 1; � � � ;m� 1 [18]

Then, thanks to the linearity between�(n) and
, it is still possible to define a
multi-level strategy as done previously for the Bézier points, i.e. considering
 as
control variables. Here, a sub-level is simply obtained considering only a subset of
the basis shape functions. More precisely, taking the firstl coefficients, i.e.,�(l) =(�1; � � � ; �l)T , the preconditioning matrixM (l)(M (l))T to apply in [7] is determinate
by: M (l)ij = fj(x�i ) for j = 1; l andi = 1;m� 1: [19]

4.2.2. Sub-parametrisations based on orthonormal shape functions

As pointed out in Sec. 3.3, the number of freedom degrees considered is not
enough to well define the notion of level coarseness. More specifically, to define a
coarser level by taking less shape functions as done previously, does not make sense
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Figure 1. Orthonormal shape functions: the 1-2-3 (left) and the 4-6-8(right) basis
functions.

if a hierarchy between the different shape functions can notbe established. This diffi-
culty can be avoided by considering orthonormal shape functions since these functions
are increasingly oscillatory (see Fig. 1), and consequently, each shape function can be
arranged with respect to its degree of high-frequency. The interest of using orthonor-
mal functions associated to multigrid approach has been pointed out in (Kuruvila
et al., 1994) in which four orthogonal functions have been defined starting from a
NACA 0012 airfoil (this set of shape functions has been successively extended to ten
by (Changet al., 1995) in order to represent a supercritical wing). More recently,
in (Catalanoet al., 2005) a family of orthonormal shape functions based on Bézier
curves has been defined and associated to a multigrid-aided finite-difference method.

Let us, here, consider the following family of functions which just corresponds to
consider the functions defined by (Kuruvilaet al., 1994) for any degree:g1(x) = px� x and gq = xq�1(1� x) for q � 2
Then, the orthonormal shape functions (with respect toL2�[0; 1℄� scalar product)(fq)q=1;n are obtained by applying a classical Gram-Schmidt procedure. Note that,
here, the orthonormalisation is not done numerically but analytically through sym-
bolic calculus. In this way, we have access possibly to the exact derivatives, which
can be useful, for instance, for imposing some geometrical constraints.

5. Reinterpretation of the new multi-level approaches

5.1. Parametrisation based on Bézier control points

In the present formulation, even if each sub-parametrisation corresponds to the or-
dinates of a set of Bézier control points, these control points do not explicitly appear
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in the definition of the descent direction since only the parameters(tk)k=0;m are di-
rectly involved in [13]. Thus, the knowledge of the particular position of the Bézier
control points is not required in the practical algorithm implementation. Neverthe-
less, an explicitly dependence on these control points can be, also, reintroduced in the
formulation.

Let us consider a particular levell, with 0 � l < L, L corresponding to the finest
level of Bézier control points.

for k = 1;m� 1 y�k = nl�1Xq=1 Bnlq (tk) y(l)q + b(l)k = nL�1Xq=1 BnLq (tk)y(L)q + b(L)k
The last equality is due to the fact that(y(L)q )q=0;nL is obtained from(y(l)q )q=0;nl by
a degree-elevation process, i.e. using iteratively the relation [16] for the ordinates.
Thus, the prolongation operator at levell, i.e. f (l) : � 7�! 
 =M (l)�+ b(l), verifiesf (l) = f (L) Æ dLl
in which f (L) : � 7�! 
 = M (L)� + b(L) is the operator relating the finest level of
Bézier control points to the shape grid-points whiledLl corresponds to the prolongation
operator from levell to levelL.

Note that the degree-elevation process is linear, and thus,excluding the endpoints,
the applicationds, which furnishess internal control points froms� 1 ones, is affine.
More precisely,ds is defined by:ds : IRs�1 �! IRs� 7�! Ds�+ �s with

8>>><>>>: �s = 1s+ 1(y�0 ; 0; � � � ; 0; y�m)T(Ds)ij = 1s+ 1�(s+ 1� i)Æij + iÆ(i�1)j�
Consequently, the prolongation operator from levell to the finest levelL of Bézier
control points can be expressed asdLl = dnL�1 Æ � � � Æ dnl , and thus, is an affine
application associated to the matrixDLl = DnL�1 � � �Dnl+1Dnl . In conclusion, at a
particular levell, one can directly relate the current set of Bézier control points with
the shape grid-points throughf (l), or alternatively, apply successively the operatorsdLl andf (L). The two ways are equivalent from a theoretical view point, even if they
can differ in the implementation. Thus, the following algorithm can be used instead
of eqs. [7] and [13]:
r+1 = 
r � !rM (L)DLl (DLl )T (M (L))T gr [20]

The algorithm [20] exactly corresponds to [10] of Sec. 3.3, in whichM = M (L)
andD(l) = DLl . Thus, the approach described in Sec. 4.1 can be also interpreted as
a multi-level gradient-based method in which the Bézier control points (on the finest
levelL) are taken as control variables. Then, [9] corresponds, in this specific case, to
the following iterative algorithm (expressed, here, at iterationr + 1 and sub-levell):�r+1 = �r � !rDLl (DLl )T Gr [21]
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where� = �(L) = (y1; � � � ; ynL�1)T andGr = (M (L))T gr is the functional gradient
with respect to� at iterationr.

Note that this pointed out a strong analogy with the approachproposed in
(Désidéri, 2003) since, in the both algorithms, the degree-elevation property is directly
used to prolongate from a coarse level to the complete set of design variables, which
are Bézier control points (a more detailed comparison between the two approaches is
proposed in Sec. 7).

5.2. Parametrisation based on shape functions

The degree-elevation property, which has been used as prolongation operator for
the Bézier-based embedded parametrisation, allows to consider the same geomet-
rical curve as an element of a larger space, An analogous operation can be done
here; indeed, the curve with coordinates(�1; � � � ; �l)T in the basis(f1; � � � ; fl)T
is exactly equal to the curve with coordinates(�1; � � � ; �l; 0; � � � ; 0)T in the basis(f1; � � � ; fn)T . This simple way to prolongate an element ofIRl in IRn corresponds
to consider the linear prolongation operator, which is associated with the rectangular
matrixNnl 2 IRn�l defined by�Nnl �ij = Æij for i = 1; n and j = 1; l
Then, taking� = �(n) as control variables, a multi-level preconditioned gradient
method can be defined as follows:�r+1 = �r � !rNnl �Nnl �T grad�j(�r)
and the corresponding updating of the shape grid-points is expressed as:
r+1 = 
r � !rM (n)Nnl �M (n)Nnl �Tgrad
j(
r)
in whichM (n) is defined by [19] withl = n.

Thus, as for Bézier-based parametrisation, a direct correlation between the differ-
ent sub-level has been established allowing the definition of an algorithm as [10].

6. Computation of an approximate gradient

As previously pointed out, an adjoint approach seems to be the more suitable
way to compute the sensitivities. However, an approximate gradient, computed using
finite-differences sensitivities, remains interesting asfar as the exact differentiation is
a too complex task or some problems of non-differentiability are present. Note that a
multi-level method, as described in this study, isa priori independent of the way in
which the discrete gradient is computed. Nevertheless, in the case of an approximate
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gradient, the computational cost can be noticeably reducedby coupling with a multi-
level approach in which the finite differences are applied onthe coarser levels (see
(Beuxet al., 1994)). This multi-level/finite-differences formulation has been used in
(Heldet al., 2002) coupled with a one-shot approach while, in (de’ Michieli Vitturi et
al., 2006), a multi-level adjoint-free gradient formulation is proposed in which finite
differences are used to approximate the flow sensitivities.

Sections 3.3 and 5 show that there are two possible ways to prolongate from a
particular levell to
, the shape grid-points ordinates. Indeed, it can be directly appliedf (l) or, alternatively, used successively the affine operatorsdLl andf (L), i.e. in terms
of functional, it signifies thatJ (l) = j Æ f (l) can be also expressed asJ (L) Æ dLl .
Consequently, there are also two possible ways to compute its Gâteaux derivative.
More precisely, for allh in IRnl�1, we have:hJ (l)i0 (�)(h) = j0(
)�M (l)h� = lim�!0+ j �
 + �M (l)h�� j(
)� [22]

and hJ (l)i0 (�)(h) = �J (L)�0 (�) �DLl h� = lim�!0+ J (L) �� + �DLl h��J (L)(�)�
[23]

with 
 = M (l)� 2 IRm�1 and� = DLl � 2 IRnL�1 respectively.

Consequently, two different algorithms can be proposed in the context of an ap-
proximate gradient. The first one is obtained considering the ordinates of the shape
grid-points as design variables, and can be expressed as follows:
r+1 = 
r � !rM (l) ~g(l)r (�) [24]

in which ~g(l)r (�) is an approximation of
�M (l)�T gr obtained using [22], and thus, is

defined by:8i = 1; � � � ; nl � 1 �~g(l)r (�)�i = 1� �j�
r + �M (l)ei�� j(
r)�
in which ei is thei-th element of the canonical basis ofIRnl�1 and� a small given
parameter.

On another hand, from [21] the following algorithm is obtained if the ordinates of
the Bézier control points2 are directly used as design variables:�r+1 = �r � !rDLl ~G(l)r (�) [25]2. note that the notations are, here, coherent with the ones used in Sec. 3.1 and successively in
Sec. 5.1. Obviously, the results of this section are also true for the case of a parametrisation
based on shape functions as described in sections 4.2 and 5.2.
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Figure 2. Convergence histories forj(
r) (left) andd(l)r (right) (shape grid-points
and Bézier-based parametrisations): comparison between the exact adjoint gradient
computation and the gradient approximated by divided differences associated with a
one-shot approach.

in which ~G(l)r (�) approximates
�DLl �T Gr using [23], and thus:8i = 1; � � � ; nl � 1 � ~G(l)r (�)�i = 1� �J (L)��r + �DLl ei��J (L)(�r)�

SinceM (l) = M (L)DLl , applying the affine operatorf (L) to [25] one can easily
recover algorithm [24] in which
r = f (L)(�r). Thus, according to what happens for
an exact gradient computation, the two algorithms are equivalent, and moreover, in
the both cases, at levell, onlynl � 1 evaluations of the cost function are needed.

In order to illustrate the interest of the multi-level approximate gradient formu-
lation, some results presented in (Martinelliet al., 2007a) are reported in Fig. 2.
For an inverse problem similar to the one presented in Sec. 8.2.1, V-cycle three-
levels approaches are applied both for the adjoint method and the finite-differences
one associated with a one-shot approach (as described in (Held et al., 2002)). The
good behaviour of the one-shot approach without adjoint, already obtained in (Held
et al., 2002), is also confirmed for the Bézier-based parametrisation. Moreover, the
same improvement obtained by using the Bézier parametrisation instead of the shape
grid-points is observed with the multi-level/finite-differences one-shot approach.

7. Reinterpretation of the approach proposed in (Désidéri,2003)

As previously pointed out, the present Bézier-based multi-level approach has
strong similarities with the approach proposed by (Désidéri, 2003). This approach
has been defined independently of the specific optimisation algorithm, and thus, isa
priori gradient-free. Nevertheless, in order to try to better see the analogies, let us con-
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sider a two-level algorithm, in which a steepest-descent-like method is used both for
the finest level and for the sub-level (see (Désidéri, 2007; Abou El Majdet al., 2007)).
It consists in alternate a relaxation phase on the upper-level of Bézier parametrisation
(few shape optimisation iterations) with a coarse-level correction phase, in which the
shape perturbation is parametrised on a coarse Bézier sub-parametrisation. Then, the
cycle
 of the algorithm can be rewritten with the notations used in the present study
as:

1) Upper level: given�(
)0 2 IRnL�1 from the previous cycle, iterate:

for r = 1; rL �(
)r = �(
)r�1 � ~!rgrad�(�(
)r�1) [26]

2) Solve the following minimisation problem on the coarser level:

Find �Æ(
)� = ArgminÆ� I(
)(Æ�) [27]

in whichI(
)(Æ�) = J (L) ��(
)rL + ~dLl (Æ�)� for Æ� 2 IRnl�1.
3) A new cycle can be, then, computed starting from�(
+1)0 = �(
)rL + ~dLl ��Æ(
)� �

on
the upper level.~dLl is the prolongation operator from levell to L based on degree-elevation property,
which depends on the particular choice ofT (l) andX(l). Furthermore, since we are
working, here, on shape perturbations, the conditions at the endpoints are(Æ�)0 = 0
and(Æ�)nl = 0, and consequently,~dLl is linear, i.e.~dLl (Æ�) = ~DLl Æ�.

To solve [27] and obtain an approximation of�Æ(
)� , sl (sl � rL) iterations of a
steepest-descent method are performed starting from a given initial solution(Æ�)0:s = 1; sl (Æ�)s = (Æ�)s�1 � ~!s�1 gradÆ�I(
)�(Æ�)s�1�
Furthermore, let us define'(
)rL by'(
)rL (Æ�) = �(
)rL + ~DLl Æ�, sinceI(
) = J (L) Æ'(
)rL
with '(
)rL affine, we have:

gradÆ�I(
)(Æ�) = ( ~DLl )Tgrad�J (L)�'(
)rL (Æ�)�:
Consequently, the Bézier control points on the finer level are obtained at the end of
the cycle by:�(
+1)0 = �(
)rL + ~DLl �Æ��sl= �(
)rL � ~DLl � ~DLl �T sl�1Xi=0 ~!i grad�J (L)��(
)rL + ~DLl (Æ�)i�� ~DLl (Æ�)0

Let us consider, now, the approach defined in sections 4.1 and5.1, associated
with a two-level algorithm withrl andsl iterations for the upper and coarser levels
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respectively. From [21], the following expression is obtained for the Bézier control
points on the finest level are obtained at the end of the cycle
:��(
+1)0 = �[r0(
)+sl℄ = �r0(
) �DLl �DLl �T sl�1Xi=0 !i G[r0(
)+i℄
with r0(
) = (
� 1)(rL + sl) + rL.

Proposition With an adequate choice of the parameters which characterize the two-
level algorithms, the two strategies coincide at the end of each cycle, i.e.�(
+1)0 = ��(
+1)0 for each cycle

Proof Let us consider that the same choice of family of embedded sub-
parametrisations, i.e. the same choice ofT (l) andX(l) at each sub-level, is done,
and thus, in particular~DLl = DLl .

– If the two algorithms start from the same shape configuration, then�(1)0 = ��(1)0 .

– Let us suppose, now, that�(
)0 = ��(
)0 for 
 � 1.
If the same 1D search strategy (i.e., the same scalar parameter !) is employed, the
iterative algorithms on the upper level, i.e. [21] and [26],coincide, and thus, we have
that�r0(
) = �(
)rL . Moreover, choosing(Æ�)0 = 0 and supposing that~!i = ![r0(
)+i℄
at each iteration on the lower level, we obtain that�[r0(
)+i℄ = '(
)rL �(Æ�)i� for i = 0; sl
and consequently �(
+1)0 = ��(
+1)0�
8. Numerical experiments

8.1. Parametrisation and shape representations

Since in a multi-level approach, different levels of coarseness are involved, it
should be interesting to evaluate the capability of shape representation of each level.
For instance, let us investigate on the accuracy in which a cambered RAE2822 pro-
file can be represented by the parametrisations previously defined. At a levell, the
Bézier curvefit, at the discrete least-squares sense, is obtained minimising with re-

spect to�(l) = �
y1; � � � ; ynl�1�T the Euclidean norm inIRm�1 of the residualRes��(l)� = �M (l)�(l) � b(l)� � 
target. On another hand, for the parametrisation

defined in Sec. 4.2.2, since we consider an orthonormal basis, the reconstruction of a
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Figure 3. Curvefit error (log kRes(��(l))�k1) with respect to the number of param-
eters for the two kinds of parametrisations.

given shapef , known atx�0 ; � � � ; x�m, on a sub-levell is obtained as
Pli=1hf; fii fi in

which h:; :i is an adequate discrete approximation of theL2�[x�0 ; x�m℄� scalar product.

The curvefit error with respect to the number of parameters3 is plotted in Fig. 3. A
very similar behaviour is observed for the two kinds of parametrisation. A rather good
representation of the RAE2822 profile is already furnished with few degrees of free-
dom (as, also, shown in Fig. 4 with the plot of profiles for small number of parameters)
whereas for more than8 parameters a plateau is obtained with an error value of about2 10�4. Obviously, the capability of shape representation is strongly correlated to the
choice of the particular configuration (e.g. for the case of asymmetric NACA0012
profile, a Bézier curvefit error minor than10�8 is obtained). Note that, an increase
of the number of Bézier control points amplifies the irregularity of the control poly-
gon (see Fig. 5). Consequently, a very small variation in thesolution space (shape)
can correspond to a large variation in the design space (Bézier control points). This
depends on the particular shape (with the NACA0012, very regular control polygons
are obtained), but also, on the particular construction of the sub-parametrisations, i.e.
on the choice ofT (l) andX(l). This problem has been already pointed out in (Tanget
al., 2002; Abou El Majdet al., 2004), in which a procedure of parametrisation adap-
tation is also proposed which acts dynamically during the optimisation procedure.3. Two different curves are considered (for a Bézier curve as well as for a linear combination
of orthonormal shape functions): one for the upper side and one for the lower one. Thus, the
number of variables really involved is two times more. In particular, 30 parameters are globally
used on the finest level of parametrisation.
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8.2. Numerical experiments on 2D inverse problems

8.2.1. Test-case 1: a 2D nozzle inverse problem

The first test-case, already used for the multi-level approach associated to shape
grid-point coordinates parametrisation (Beux, 1994; Beuxet al., 1992; Beuxet al.,
1994; Heldet al., 2002), is a 2D convergent-divergent nozzle inverse problem for
inviscid subsonic flows (the flow is modelled, here, by the Euler equations). Here,
the particular inverse problem is characterised by an initial constant-section nozzle
and a target sine shape. For the considered mesh of 1900 nodes(see Fig. 6), 63
shape grid-points are available. Since, the abscissas of the shape grid-points points
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Figure 6. Test-case 1: computational mesh (target configuration)
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Figure 7. Test-case 1: Convergence history for one-level and V-cyclethree-level
strategies (a) shape grid-points (b) Bézier-based parametrisation.

are uniformly distributed, an uniform distribution is alsotaken for the abscissas of the
Bézier control points at each level. Fig. 7a shows the convergence history obtained
using the original shape grid-points parametrisation. It clearly shows the effect of each
level, indeed, the lower is the number of control parametersinvolved, the lower is the
accuracy of the solution, but also, the faster is the convergence to the solution. Note
that, the one-level method with 31 parameters already corresponds to a preconditioned
gradient method since 63 degrees of freedom are available for the present mesh. Then,
advantaging of the speed-up on the coarser levels, the multi-level approach largely
improves the convergence rate to reach an accurate solutiongiven by the higher levels.
Concerning the new set of sub-parametrisation based on Bézier control points (see Fig.
7b), even the one-level approach with 10 or 15 parameters gives interesting results.
The corresponding multi-level strategy yields ulterior improvements in the final part
of the convergence history. Nevertheless, interpreted as an optimisation with respect to
the Bézier control points, this multi-levelling appears less impressive. Indeed, it seems
that the principal gain is due to the use of a Bézier-based parametrisation more than
the change of control subspaces. This can be explained by thelack of convergence
speed-up of the coarser level as shown in Fig. 7b.
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Figure 8. Target configuration for test-case 2: (left) computationalmesh and (right)
Mach contours plot (equidistant iso-contours from0:1 to 1:1 with �M = 0:05).

8.2.2. Test-case 2: an airfoil inverse problem

In this second test-case, starting from a symmetric NACA0012 airfoil, the cam-
bered RAE2822 should be rebuilt. The initial flow conditionsare characterised by
a far-field Mach number of0:734 and an angle of incidence of2:79o. Furthermore,
as in the previous test-case, only inviscid flows are considered. A mixed unstruc-
tured/structured mesh of 3282 nodes has been generated on a circular computational
domain centred on the airfoil (see Fig. 8). The definition of the Bézier-based sub-
parametrisations have been done, here, imposing a verticaltangent at the leading edge,
and thus, following the procedure proposed in Sec. 4.1.2.

The direct use of the parametrisation based on shape grid-points seems more dif-
ficult for this optimisation problem, in particular, near the training edge where the
upper and lower profiles may be crossed over. This problem canbe solved by impos-
ing geometrical constraints, considering only coarser sub-levels in order to increase
the smoothing or/and modifying the criterion for the choiceof the descent step!r.
Nevertheless, we choose, here, to consider only the other sub-parametrisations. Fig.
9a shows the convergence behaviour for one-level strategies as well as a V-cycle
multi-level strategy on three sub-levels (5, 10 and 15 parameters) in the case of a
Bézier-based parametrisation. The behaviour observed with the previous test-case is
magnified, here, since the finer is the level, the more accurate is the solution but with-
out any lost in convergence speed. Consequently, a very goodbehaviour is obtained
with the one-level approach with 15 parameters, but on another hand, the multi-level
algorithm does not improve the convergence rate. Fig. 9b shows the convergence be-
haviour obtained with the parametrisation based on the orthonormal shape functions.
As expected from the results obtained in Sec. 8.1, the same kind of behaviour is ob-
tained between the two kinds of parametrisation in terms of solution accuracy, for the
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Figure 9. Test-case 2: Convergence history for one-level and V-cyclethree-level
strategies (a) Bézier-based parametrisation (b) parametrisation based on orthonor-
mal shape functions.

one-level approaches. However, since, here, the increase of number of parameters
corresponds to a decrease of terms of convergence, the multi-level strategy yields an
important improvement of the convergence behaviour.

9. Conclusion

In the present study, the description of multi-level gradient-based methods for
aerodynamic shape design is addressed. Starting from an existing formulation (Beux
et al., 1994) based on an embedded parametrisation of shape grid-points and on in-
terpolation operators, a possible generalisation to otherkinds of parametrisations is
described. This extension requires the elaboration of an adequate family of sub-
parametrisations, possibly embedded, associated to affineprolongation operators.
Two particular examples are then presented, and since the shape grid-points are yet
used as control variables, the resulting approaches can be interpreted as multi-level
strategies as defined in (Beuxet al., 1994), in which a particular prolongation operator
(i.e. with a particular preconditioning) is applied. However, it can also be reinterpreted
directly as multi-level approaches with respect to the new family of shape parametrisa-
tion. In the first example, the sub-levels are defined throughthe use of Bézier control
points, and starting from a consistent coarsest level, the degree-elevation property of
Bézier curves is applied to successively define the different finer levels. In this context,
even if, in practice, the Bézier control points do not need tobe explicitly computed,
the proposed algorithm can be also interpreted as a descent method for Bézier con-
trol points as control variables. Thus, the present descentmethod seems very close
to the approach proposed in (Désidéri, 2003), even if, this last one has been defined
independently of the specific optimisation algorithm. Indeed, we prove that, under
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specific conditions, the two approaches can be equivalent. In this way, it has been
built up an explicit link between two kinds of multi-levelling: on the one hand, the
preconditioned gradient-based method initially defined in(Beuxet al., 1994), and on
the other hand, the multi-level algorithm for parametric shape optimisation presented
in (Désidéri, 2003) and its successive extensions. In the second example, the definition
of the set of sub-parametrisations is based on the use of an orthonormal basis of shape
functions as shape representation. As for the case of Bézier-based parametrisation,
a descent direction is obtained considering as control parameters the ordinates of the
shape grid-points as well as the finest sub-parametrisation.

The numerical experiments shows that the new families of sub-parametrisations
have suitable effects, if there are understood as an alternative gradient precondition-
ing for the optimisation with respect to the shape grid-points. Nevertheless, to extend
the range of interest of this kind of methods, it should be interpreted as a descent
method in which the control variables are taken through the new set of parameters.
Note that, in this case, we start with a less inefficient non preconditioned algorithm4

since the lack of shape smoothness, typical of shape grid-points parametrisation, has
been avoided. Nevertheless, for the parametrisation basedon orthonormal shape func-
tions, the multi-level strategy still yields an interesting speed-up of the convergence.
Concerning the Bézier-based parametrisation, the resultsare more disappointing since
the multi-levelling seems poorly efficient. This is due, here, to a good convergence
behaviour on the finest levels while the coarsest levels do not yield any additional
speed-up, and thus, the basic conditions are not present to apply effectively the multi-
level/multigrid principles. Thus, such additional investigation should be performed
in order to better understand the present behaviour, which is also inconsistent with
the results obtained by J.-A. Désidéri and collaborators. If more attractive results can
be obtained for Bézier-based parametrisation, since the Bézier curves act as a basic
tool for polynomial shape representation, one can also envisage to extend the formu-
lation to more complex shape representation as B-splines (which also have proper-
ties of degree-elevation), and also, to 3D case through, forinstance, tensorial Bézier
parametrisation. In the both examples of parametrisationspresented in this study, the
shape parameters are related by linear or affine applicationto the set of shape grid-
points. Even if it appears the simplest way to behave, alternative approaches can be
also envisaged since the algorithm should not be obligatorya descent direction with
respect to the shape grid-points. Finally, note that, even if the multi-levelling has been
used, in the present study, only associated with a steepest descent approach, other
gradient-based methods can be also considered as, for instance, BFGS-type formu-
lation. In this case, the use of an additive multi-level preconditioner, which can be
defined as soon as a set of embedded sub-parametrisations is available, seems more
suitable (see (Courtyet al., 2006)).4. indeed, with respect to the shape grid-points, it can be viewed as a method already precondi-
tioned but associated to a one-level strategy.
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