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ABSTRACT.The present study focuses on multi-level approaches in dmext of discrete
gradient-based methods for aerodynamic shape design. le@sely, the minimisation is
done alternatively on different control subspaces acewdb multigrid-like cycles, providing
at each sub-level a particular gradient preconditioningaring from an existing multi-level
gradient-based formulation associated to shape grid-zoteordinates, a possible generalisa-
tion to more compact shape representations is proposedigfiréhe construction of adequate
sets of embedded shape sub-parametrisations. The behafithe new formulation is illus-
trated on different 2D inverse problems for inviscid flows.

RESUME .Cette étude est consacrée aux stratégies multiniveaux |peunéthodes de descente
utilisant le calcul d'un gradient discret, dans le cadre deptimisation de formes aérodyna-
miques. Plus précisement, la minimisation s’effectue Bf@rdnts sous-espaces de contrdle uti-
lisés cycliqguement, imitant ainsi les stratégies mulligsi A chaque sous-niveau correspond
un spécifique préconditionnement du gradient. Partant €'tormulation basée sur I'utilisa-
tion comme variables de contrble des coordonnées des phintsaillage sur la frontiére, on
propose la généralisation a des représentations plus categade la forme, ceci grace a la
construction d’adéquates sous-paramétrisations de fa@mkoitées. Le comportement des mé-
thodes proposées est illustré sur différents exemplesatdgmes inverses bidimensionels pour
écoulements non visqueux.

KEyworDsmulti-level methods, aerodynamic shape parametrisatbptimum shape design

MOTS-CLES méthodes multiniveaux, parameétrisation de forme aéroahygae, conception op-
timale de forme
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1. Introduction to multi-level approaches in aerodynamic siape design

Due to the ripeness reached by computational fluid dynan@&®j combined
with the rapid advances of computational power, researthdrield of aerodynamic
shape design has experienced a large development in thgekast, allowing to deal
with more and more complex optimisation problems. Howesbhgpe optimisation
for aerodynamic applications remains a costly task sinesyistem of governing flow
equations (as, for instance, Euler or Navier-Stokes egustishould be solved, many
a time during the whole procedure. Thus, even if significangpess have been done
for optimisation tools and related techniques (as, foransg, the use of adjoint ap-
proaches in the context of gradient-based methods), theoirement of optimisation
algorithm efficiency still appears as an important goal.

On another hand, to deal with complex engineering desigimigattion, different
multi-level or multi-scale approaches, in which the wholelgem is decomposed in
several simpler sub-problems to be solved in a predetedrseguence, have been
developed (see e.g. (Migdalasal, 1997; Schwabacheat al, 1998)). Each opti-
misation sub-problem can differ according to objectivediion, constraints, design
space and/or optimisation algorithm allowing a bettertireant of complex systems
(multidisciplinary design, multiple local optima, largeale system, multi-objective
optimisation, ...). Alternatively, efficiency can be alsatieased using various degrees
of fidelity, i.e. varying the complexity of the physical mdliteg and/or the accuracy
of the numerical approach (see e.g. (Alexandebal., 2001)). Note that a particu-
lar case of low fidelity model can be obtained through the dssarse meshes, in
which the flow solution is computed more easily and at a lovest.c For instance,
in the field of aerodynamic design optimisation, in (Fextgal., 1995), a reduced
Hessian SQP algorithm is combined with a solution refinemehtle in (Dadone
et al, 2000), a progressive optimisation is proposed in whicltis from a low
accurate computation of the sensitivity derivatives (gsinarse mesh and patrtially
converged flow solutions) the degree of accuracy is progregsincreased during
the optimisation process. A similar idea is proposed inqRieatet al, 2002) (see
also Chapter 6 of (Mohammaeit al., 2001)), in which mesh refinement is combined
with approximate gradients in order to speed up the convexgen the finest mesh of
the descent algorithm. Methods based on multigrid priesidan be the successive
step; some works can be found in literature in which multidikke techniques have
been applied to optimal control problems involving partldferential equations. For
instance, the MG/Opt algorithm (Nash, 2000) recursivesusoarse resolution prob-
lems (coarse mesh) to generate search directions at a cteempéor finer resolution
problems. For further examples, we refer, for instance@®lihanet al,, 1990; Dreyer
et al, 2000; Borzi, 2003; Grattoat al,, 2004). In the context of aerodynamic design
optimisation, in (Kuruvileet al,, 1994) a one-shot method, in which the flow and the
sensitivities are simultaneously solved, is coupled withudtigrid approach. In this
formulation, the design variables corresponding to loegfrencies of the shape are
updated on a coarse level (i.e., a coarse mesh) while the désign variables are
updated on a finer level. Finally, in (Catalapbal, 2005; Catalanet al., 2007),
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the progressive optimisation, introduced in (Dadetal., 2000), is coupled with a
multigrid-aided finite-difference approach, in which thadjent is obtained through
finite-difference sensitivities computed using only floiusimns on a coarse mesh.

Another approach, also based on multi-level concepts azatéd for gradient-like
methods, has been introduced in (Babal, 1994). In this preconditioned gradient
method, the minimisation is done alternatively on différeubsets of control param-
eters according to multigrid-like cycles. More particlyarusing shape grid-point
coordinates as design variables, a hierarchical parasadth was defined consid-
ering different subsets of parameters extracted from threpdete parameterisation,
which can be prolongated to the higher level by linear magpifhis approach acts
as a smoother and, on another hand, makes the convergemoétta gradient-based
method low dependent of the number of control parameters.gbod behaviour ob-
served in different numerical experiments (Beux, 1994;Betal, 1994), have been
also corroborated by a theoretical view point in (Guillak893; Guillardet al., 1995).
Note that, contrary to the other approaches based on nidltigmcepts, only one
computational mesh is employed since the coarseness dgtsrothe number of de-
sign parameters. The increase of efficiency is only reladeithé faster convergence
obtained considering less degrees of freedom and to theireprent on convergence
rate typical of multigrid techniques. Different extenssaf the original approach have
been, successively, proposed: in (Hetdl., 2002) the same hierarchical parametrisa-
tion is associated with a finite-difference/one-shot folatian, in (Marcoet al,, 1997)
the generalisation to 3D case involving unstructured meshdone through the use
of agglomeration technique while an additive multi-levedgonditioner has been also
defined in (Koobust al,, 1997; Courtyet al., 2006).

Another multi-level approach based on a family of embeddadmetrisations has
also been proposed in (Désidéri, 2003) (see also successiks, as e.g. (Abou El
Majd et al, 2004; Désidéri, 2007; Abou EI Majet al., 2007)). However, contrary to
the method introduced in (Bewet al, 1994) and its different extensions, this approach
is based on a polynomial representation of the shape thritneglse of Bézier curves,
and is not specifically focused on gradient-based methods.

2. Optimum shape design problem in aerodynamics
2.1. The Optimal shape problem in a fully discrete context

The optimal shape problem consists in minimising a costtfanal j with re-
spect to some control variables which should characterise the shape. Moreover, for
aerodynamic shape optimisatigh¢can not be expressed directly in a explicit way as
a function ofa since it also depends on the flow variables. Indeed, for ehapes
configuration, and thus, for each choicecgfa particular flow is obtained by solving
the governing equations, i.e typically Euler or Navierd&te equations. Note that we
consider an optimisation in a discrete context in which thenoisation algorithm is
applied to the problem already fully discretised, i.e. withth the discrete govern-
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ing equations and the discrete cost functional. Then, tltenstrained optimal shape
problem can be written as follows:

Find a,,: € IR? such thatj(a,y:) = m%l j(a) [1]
ac R?P

in which the cost functional can be defined introducing : IR? x RY — IR such
that:

Vae R? j(a)=J(a,W(a)) [2]

wherea is a discrete set of parameters (see Sec. 2.3) Whilepresents the values
of the flow variables at each point of the computational mesh.

Furthermore, the discretised shape is fully determinedngydoordinates of the
grid-points localised on the shape. Thus, the control eminfluence the discrete
cost functional only through these coordinates, which aamtroduced as intermedi-
ate variables. More precisely, let us consider IR? — IR?, the operator which, for
each set of control parameters, furnishes the correspgraginof shape grid-points
coordinates. Then, instead of [2] the cost functional caeXmessed as follows:

Vae B j(a) = T(L() = I(L(a), W(L(a))) [3]

inwhichZ : R —» IR andI : IR x RN — IR are defined by = Z o £ and
J = I o L respectively.

2.2. Computation of the sensitivity derivatives

If a gradient-based method is used as optimisation strategy, the computation
of cost functional derivatives with respect to control edles is required. The sensi-
tivity derivatives can be obtained by the differentiatid{2j (or [3]). This task can
be highly tedious since the governing equations are alsohied through the flow
variables. To avoid this exact differentiation, the sewisjt derivatives can be approx-
imated by finite differencing in which the flow solver is usealyoas a black box.
Thus, the resulting approach is very easy to implement andeapplied in a rather
general context. Nevertheless, this approach requiressfut@arameter monitoring
in order to obtain an accurate gradient approximation, amthe other hand, gives
dramatic low computational performances as soon as notarsry low number of
control variables is used. Alternatively, in the direcffdi€ntiation or flow sensitivity
approach, the Gateaux derivatives with respect to each eoem direction are ex-
actly computed. But, the computational cost problem forrgdanumber of control
variables is still present, since, for one gradient comipartiap (p being the number of
design parameters) linearised systems of large dimenkmurig be solved. Finally, an
efficient computation of the exact discrete gradient candbéaed through an adjoint
formulation (see, e.g. (Gilest al., 2000; Jameson, 2003)). Indeed, the gradient eval-
uation requires to solve only one extra linear system (theimidsystem), and thus,



Multi-level methods and parametrisations 5

is independently of the number of design variables. Conseily at present, this
formulation seems to be the more suitable way to solve coxrgeeodynamic shape
optimisation problem in the context of gradient-based roésh Nevertheless, to avoid
the very hard task of a differentiation implementation bydtaoding, automatic dif-
ferentiation tools have been also developed (see e.g.if@iet al., 2005; Hascoé&bt
al., 2005)). An alternative or additional approach, often usgoresence of complex
physical models and numerical discretisation (Naviek&soequations with a turbu-
lent model, high-order schemes, non-structured meshgss.to freeze or approxi-
mate some steps in the differentiation of the flow solver ésge(Nemeet al, 2002)).
We refer to (Dwightet al,, 2006; Carpentieret al., 2007) for a study on the effect on
the gradient accuracy of the various approximations of ieerdte adjoint computa-
tion. A more drastic approach has been introduced in (Mohadifd997), in which
the adjoint computation is dropped out, on the one hand, bingdsome intermediate
geometrical quantities in the differentiation, and on ttigeo hand, by neglecting the
flow derivatives. This incomplete gradient formulation &skd on the fact that when
the objective functional is defined as a boundary integrglaintities evaluated on the
shape, sensibilities with respect to the geometrical gtiemgive the main contribu-
tion to the gradient value. In (de’ Michieli Vittugt al., 2006) this approach has been
coupled with a multi-level method allowing to consider a gdeted gradient com-
putation in which the flow derivatives are also (at leastiphy) taken into account.
Moreover, efficient approaches based on finite-differeecsisivities have been also
proposed; indeed, in (Catalaeb al., 2005) a progressive optimisation coupled with
a multigrid-aided finite-difference is considered while @me-shot method coupled
with a multi-level strategy is used in (He#d al,, 2002). Finally, for more details and
references on sensitivity analysis for aerodynamic shagienésation, we refer, for
instance, to (Newman It al,, 1999) and (Mohammadi al., 2001).

In the present study, an exact hand-coding discrete adipimtoach is used for a
Euler stationary flow solver based on an unstructured fivaleme first-order spatial
discretisation and a pseudo-unsteady approach assowiited linearised implicit
algorithm. Finite-difference sensitivities through tleerhulation proposed in (Helet
al., 2002) are also considered in Sec. 6.

2.3. Parametrisations for aerodynamic shape representation

An important ingredient which should be also specified indhgmisation process
is the representation of the shape, which is defined throluglchoice of the control
parameters. Indeed, the shape parametrisation plays ilcmle for the shape opti-
misation since it directly acts on the accuracy of the finaltson and on the efficiency
of the particular optimisation strategy.

The use of shape grid-point coordinates as design varialplesars the more nat-
ural approach since, in this case, the parameterisatioingstty correlated with the
explicit representation of the discrete shape. Furtheeyfor optimisation algorithms
based on an exact discrete gradient, the computation oktistivity derivatives are
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simplified since, in this case, [2] and [3] coincide. Nevel#ss, since the geome-
try is modified by moving individual grid points, non-smogilofiles are often ob-
tained, particularly during intermediate phases of theveagence to optimum (see,
e.g. (Beuxet al, 1992)). Moreover, the large number of variables involvedhis
case has a negative effect on the computational cost (slowecgence and, possi-
bly, large number of cost functional evaluations). As a sratf fact, the multi-level
strategy introduced in (Beuet al., 1994) and described in Sec. 3.2 was defined ex-
actly in order to reduce these drawbacks. Note that the ldchape smoothness,
particularly critical for shape grid-points parametrieat can be also linked with a
regularity loss of the gradient with respect to the contariables, already verified in
the continuous case (see, e.g. (Cowtyl, 2006)). To avoid oscillations, in many
works dealing with a shape grid-point parameterisatiorpacathing is applied (see
e.g. (Mohammadét al, 2001; Reutheet al,, 1995)).

On the other hand, a classical approach for the parameieriss the shape is to
use a polynomial representation which permits a compactifti®n of the shape with
only few parameters. For instance, Bézier control poings,doefficients in a basis of
Bernstein polynomials, can be used as design variablesB&hier representation has
suitable properties at an algorithmic level (efficient nestee algorithms), but also,
with regard to geometrical aspects. In particular, thispgheepresentation is well
adapted to deal with geometric constraints since a conviéplaperty is verified and
the curve derivates are easily available (see, e.g. (FA880)). Furthermore, the
Bézier curves act as a basic tool to define other represensadis B-splines and non-
uniform rational B-spline (NURBS) more suitable for higkgtee polynomial and
non smooth geometries respectively.

Another possible choice, frequently considered in the eéxtraerodynamic shape
design (typically, for airfoil or wing design), is to repezs the shape through a linear
combination of given geometric shapes. The control vagisifalre, then, the coeffi-
cients in this basis of shape functions. In this case, fewapaters are sufficient to
obtain a good shape representation, but, on the other Haméinal solution is highly
related to the choice of the particular basis. Thus, thisasgntation yields a priori a
smaller design space with respect to the parametrisatiassdoon shape grid-points
or polynomial control points. The basis is, in general, cosgtl of existing geometric
shapes or alternatively, a given base shape and a set of etbslifapes obtained from
the first one through some perturbation functions, suchaslibks-Henne analytical
functions (see (Hickst al, 1978)). Moreover, in order to improve the completeness
of the design space and thus, avoid the presence of neaghyrldependent functions,
some authors use orthogonal functions obtained throughaan€@chmidt orthogo-
nalisation (see, (Kuruvilet al., 1994; Changet al, 1995; Catalanat al, 2005))
or analytically (e.g., through the use of Chebychev polyianin (Carpentieriet
al., 2007)).

The three kinds of parametrisations, described here, septea large range of
widely used approaches, and, have been considered in didi ist the framework of
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multi-level methods. For a more complete overview of pdss#hape parametrisa-
tions, we refer, as example, to (Samareh, 2001) or (Selrdid7R

3. Multi-level gradient-based approaches for shape design
3.1. Change of Hilbert control space

Multi-level methods in the context of optimum shape desaminitially proposed
in (Beuxet al, 1994), are based on a change of control space. More prgdisel
us consider the optimisation of a differentiable functiopa U — IR in a Hilbert
spacel/. Then, instead of a direct minimisation pfin U, one can also envisage a
minimisation ofj in the subsef (V) C U, in whichV is a second Hilbert space and
f an application fronV’ to U. It can be formulated, equivalently, as the minimisation
of 7 =jofinV,ie.

Find a, € V such that (ag,) = minj o f](a) [4]

The Fréchet derivative f ata € V' can be expressed as follows:

VheV J'(a)(h) = [jo fl'(a)(h) =j' (f(a)) (f'(2)(R))

Sincef'(a) € L(V,U), i.e is a linear continuous application fromto U, the fol-
lowing relation can be also obtained in terms of gradientfoyh € V':

(grady J (@), h)y = (gradyj(v), f'(a)h)u
= ((f'(a))" gradyj(v), h)v

wherey = f(a), (f'(a))" € L(U,V) is the adjoint off'(a) and(.,.)y and{., .}y
are the inner products associatedit@ndVl” respectively.

(5]

*

Furthermore, let us consider the particular case in whjicaffine, and thus, it
existsh € U andP € L(V,U) such thatf : @« — Pa + b. Then, since in this case
f'(a) = P foranya € V, solving the minimisation problem [4] through a gradient
descent method corresponds to the following iterative ritlym:

ag € Vgiven, forr>0 ap41 =a, —w.P*grad; j(f(a.))

Nevertheless, applying the operatbipermits to go back to spadé, and thus, to
obtain:
flors1) = Porgy + b= f(or) — wp PP grad; j(f(ar))

Thus, considering as initial solutiopy = f(«o), the following iterative algorithm is
finally defined inU:

for r>0 41 =7 —w.PPgrad; j(v) (6]
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The resulting algorithm is a weak descent methoH i(see (Bewet al,, 1994; Mar-
tinelli et al, 2007b) for a proof), and can be also interpreted as a pretoned
gradient method.

Furthermore, since we are interested to the shape optiorisptoblem [1] in a
discrete contextl/ = IRP while the second Hilbert space is, typically, = IRP.
Then, the linear operatd? and its adjointP* are associated to a matri{ € IRP*P
and its transpose respectively, and thus, the algorithnibeasimply rewritten as:

forr >0 v =7 —w, MM"g, [7]
with g, = gradj(y,) € IRP.

3.2. A hierarchical parametrisation based on shape grid-points

An optimisation algorithm based on control space changeesepted in Sec. 3.1
has been initially proposed in (Bewt al, 1994) for the case of a linear operator,
i.e. for f = P. In this study, the ordinates of the grid-points, localisedthe shape
which should be optimised, have been chosen as controlblesia. Then, a set of
points, extracted from the complete set of shape grid-ppistconsidered as sub-
parametrisatiom. For this choice of shape parametrisation and sub-par&attm,
it seems natural to define the linear prolongation operftitrrough interpolation. It
has been shown that taking an Hermitian interpolation ofekeg, an enough smooth
parametrisation is then obtained with satisfying numénesults.

Moreover, instead of considering a single spE¢éhe cost functional is minimised
alternatively on different control subspaces of decrepdimension. More precisely,
a family of embedded sub-parametrisations is consideneathich for each increase
of level the number of points is doubled. At a particular lekethe prolongation
operator from level to the finest ond., i.e. to the complete parametrisation, is defined
by

PO = P571 0---0 Pllif ) Pll+1

in which P/*! is the cubic interpolation used for the prolongation fromelei to
the next one. In practice, at each optimisation iteratiororresponds a particular
level I, and following [6], minimising on this coarse levekorresponds to replace
the gradienty, by the descent directiopl’ = P (P")* g,. This means that the
gradient is projected on a coarse level and then prolondaded to the fine level,
which is equivalent to the addition of a high frequency filtédote that, only the
gradient on the finest level is computed while the effectshef minimisation on a
coarse level are taking into account by the preconditiddér(P())*. The choice
of the particular subspace, at each optimisation iterat®determinate by a strategy
of level changes similar to multi-level/multigrid strateg used for the resolution of
partial differential equations (as, for instance, V-cgjle

Note that the multi-level approach elaborated in (Betal, 1994) is strongly
linked to the particular type of parametrisation used. Ninedess, the formulation
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described in Sec. 3.1 is rather more general since, prayithiat the prolongation
operator be affine, any type of design variables and subapetrasations can be pro-
posed.

3.3. Generalisation to other kinds of parametrisation

The multi-level method, as described in the previous sastis based on the idea
of control space change. Moreover, it also need the defiitioa family of sub-
parametrisations and the corresponding prolongationadpes. In Sec. 3.2, a set of
sub-parametrisations has been found in a natural way cemsifshape grid-points as
control parameters.

More generally, let us, now, consider an optimal shape desggociated ta, a
generic set of control variables. Nevertheless, as pointgdn Sec. 2, the shape
grid-points coordinates can be used as intermediate ‘asalIhen, since the cost
functional can be expressedas: 7 o L, the following relation between the gradients
of j andZ can be obtained in a similar way as done to obtain [5]:

Va € R” grad,j(e) = (£'(a))" grad, I (L(a))

where the subscript and~ denote, here, that the gradient islkP and IR? respec-
tively. Thus, the gradient descent method for the mininisaedf j with respect tax
corresponds to the following iterative algorithm:

ag € RP given, forr >0 a1 = a, —w,(L'(ey)) grad Z(L(e,))

After the computation o, the shape grid-points coordinates should be also up-
dated. This updating is done throughwhich lies the control variables to the shape
grid-points coordinates, in the following way:

for r >0, Vr41 = L:(()zr+1) = [,<()4T — Wy (El(ar))*grady I(%«)) [8]

with Yo = E(Oéo).

Note that, if the shape parametrisation is relied to thedioates of the shape grid-
points by an affine application, and thus, in particularxises a matrix)/ € IR?*P
such that for anyh € IR? we have[L'(a..)] (h) = Mh, then [8] can be rewritten as
follows:

Yr4+1 = Vr — WTMMTgrady Z(yr)

In this case, a descent direction is obtained considerimgasol variablesy as well
as~. From the point of view of an optimisation with respectttpa acts as a sub-
parametrisation, and, we exactly recover the formulatibSec. 3.1 taking, here,
f =L, 7 =7TandJ = j. Thus, the approach proposed in (Beetxal., 1994)
corresponds to choose as control parameters the coorgliobtesubset of the shape
grid-points.
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On another hand, if it is possible to find an affine applicafimm R? to IR?
(associated to a matrik € IRP*P), then, as done in Sec. 3.1, a preconditioned
gradient method can be also defined for the optimisatiop wfth respect ton. It
corresponds to the following iterative algorithm:

ag € R? given, forr >0 a,41 = a, —w,DD grad, j(a,) [9]

Thus, two possible ways can be envisaged to generalize thelewel approach:
consideringa as control variables as done in [9], or alternatively, cdaghg~ as
control variables ifC is affine. In this last case, one can also combined the twoskind
of preconditioners. Indeed, [9] can be expressed in termshape grid-points as
follows:

Yrg1 =L (ar —w,DD" (£’(ar))*grad,y I(’yr))
Then, if £ is an affine application, it can be also rewritten as:
'YT+1 = Vr _WTMD(MD)Tgrady Z(ryr) [10]

In this case, the same algorithm can be interpreted as ampigimmed gradient
method considering as control variablegthrough [9]) as well ag (through [10]).
In particular, let us consider a parametrisationwith £ affine and an adequate set
of sub-levels associated to the matrice¥), | = 1,---,L. Then, [10] furnishes
a practical way to define the different preconditioning ricats for the optimisation
with respect toy taking M V) = M D®.

Note that, in order to really define a multi-level strategyeshould also introduce
a notion of coarseness for the sub-levels. In particularskauld be able to define a
family of sub-parametrisations with a decreasing numb@aohmeters. Furthermore,
a coarser level should correspond to a representation aitiyge with lower frequen-
cies. Finally, it will be also interesting to define, as dooethe original formulation
(Beuxet al, 1994), a family of embedded parametrisations in which tespge from
a given level to the finest one, can be done progressivelyidenmsg successively the
different intermediate sub-levels.

4. Examples of alternative multi-level approaches

In the framework of the formulation defined in Sec. 3.3, wegmse, here, to elab-
orate alternative multi-level approaches based on sonssickl shape parametrisa-
tions. More precisely, parameters, which can be relatedn@at or affine application
to the set of shape grid points, are individualized, and tbsed to define an adequate
family of sub-parametrisations. Note that, as done in (B=tud,, 1994), we consider
the case in which the design control acts only on the ordénaitéhe shape grid points
whereas the abscissa, - - - ,z!, are defined by the knowledge of the initial mesh
and frozen during the optimisation process. In the contéaeoodynamic shape op-
timisation, this approach is often chosen, and does notaagoerestrictive as long as
only slender bodies are considered.
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4.1. Formulation based on Bézier control points

4.1.1. Shape representation through Bézier curves

A Bézier curve of degree can be defined as follows:

S(t) = (z(t),y(t)" = ZBZ}(t)Sq with ¢ € [0, 1] [11]
q=0
whereS, = (xq,yq)T is theg-th Bézier control point whilé3; (¢) corresponds to the
g-th Bernsteln polynomial of degree

Thus, for a given set of parametéts ) ,—o,,m Withtp =0 < t; < -+ <ty =1,
the ordinates of the Bézier control points are directly tedathrough a linear appli-
cation with the ordinates of the shape grid-poinfs,- - - , yL,. Indeed, applying [11]
with y(t4) = yi, we obtain:

o =y(0) = YO

k =y fk ZB” fk + Sn(tk) fork=1,m—1 [12]

in which s, (tx) = Bg(tk)y0 + B (tr)Y,,-
Nevertheless, geometrical constraints are often imposéukaextremities of the

shape which should be optimised. For instance, the shapenges are in general

fixed; it corresponds, here, to freegg andy),. Then,a = (y,,--- ,ynfl)T are
related toy = (yi,--- ,y%, ;)" by the following affine operatol:

fi B — R
a — y=Ma+b beR™ ' MecR™ ¥n!

where
My, = Bj(ty), forg=1,n—-1andk=1m -1

b = Sn(tk) = (1 — tk)nyfn + (tk)nyg, fork = 1,m—1

Thus, according to Sec. 3.1, it can be envisaged to defineategyjr similar to the
original multi-level approach (Beuat al,, 1994). Indeed, if the ordinates of the shape
grid-points are taken as control variables, each sub-petrésation is chosen as a
set of Bézier control points instead of a subset of boundadrgpints. Then, the
following descent direction is obtained at iteratioand level:

d¥) = MOMO)T g, with M) = B "), [13]

1. note that we choose, here, to follow the notations intredua Sec. 3.1 of instead of the
ones used in Sec. 2.1 and 3.3, i.e. to call the affine opefatmstead ofL.
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To fully describe the different sub-parametrisations, athe sub-levelX() =
(@), g™ with ny > n_y andT® = (1, ) should be defined.
Furthermore, this definition should be done consistentth 1], i.e.:

ny
of = 2(t) =Y BME) XD for k=0, ,m [14]
q=0

in which the abscissas of shape grid-poirts}(} o, ) are given.

Note that the definition of the different sub-parametrizagiis not dependent of
the particular optimisation iteration and thus, should be done as a preprocessing.

4.1.2. Sub-parametrisations based on the degree-elevation pippe

In order to define an adequate parametrisation at levéie classical degree-
elevation property of the Bézier curves (see, e.g. (Fa@90})), which allows to
increase the degree and the number of control points, is heesl Note that the
good features of the degree-elevation property have begneuoout, and, already,
employed to construct an embedded parametrisation in ©8s2003) .

Given a Bézier curve of degreeassociated to the + 1 control pointsS, =
(xq,yq)T, the same geometrical curve can be also understood as ar Bérie of
degrees + 1 considering a new set af+ 2 control pointsS, = (Xq,yq)T obtained
from S, as follows (with the conventiof_; = Ss1; = (0,0)%):

g —_9 __9 —0,---
Sq—s+15q1+<l s+1>5q forg=0,---,s+1 [15]

An interesting feature is that the distribution of the paesenst over the Bézier curve
does not change by degree elevation, and thus:

s s+1
S Bit)x, =Y BT (t)x, Vte[0,1] [16]
qg=0 q=0

Consequently, if the parametrisation on the coarsest leaglbeen yet defined with
X©) and T consistent, i.e. with [14] verified fot = 0, then, thanks to [16],
keeping the parametets unchanged on all the levels, i.&) = 7 forall I > 0,
the consistency is preserved by applying successively ¢lgeeg-elevation algorithm
starting fromX (?). More precisely,X () is obtained fromX (‘~1) by applyingn; —
n;_1 times the degree-elevation algorithm, and thus, we obtéaméy of embedded
sub-parametrisations with a progressive increase of thabeun of control points.

Note that, the conditions at the endpoinﬁ‘,@ %=z} and X" = 2! are automati-
cally verified at each level if these relations occur fet 0. Furthermore, additional
geometrical constraints are often imposed on the shapendtance, a vertical tan-
gent at the origin is a standard constraint at the leading &alcpirfoil profiles. With a
Bézier curve, the derivatives at the endpoints can be easilyaged, and in particular,
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a vertical tangent at the origin can be enforced by the cmrdify = X;. It is easy to
see that the degree elevation also preserves this condition

Using the present procedure, the different sub-levelsalhg dletermined by the
construction of a consistent coarsest sub-level. Formestaf the(z},) o, are uni-
formly distributed, a consistent coarsest level can bdyabtained by simply choos-
ing an uniform distribution for botiX () and7(®). More generally, let us consider
the case in which a vertical tangent should be imposed atriggnavith a generic
distribution of the shape grid-points abscissas. Thén= (z}, =],z )7 gives the
simplest initial set of abscissas for Bézier control painfs is associated to the fol-
lowing distribution of the parametets:

.’171_‘7.'171_‘
ty = H fork=0,---,m. [17]
m 0

A consistent coarsest level is then obtained considéFifiydefined by [17] and¥ (*)
being anyX; obtained fromX, by applying successively the degree-elevation process.

4.2. Formulation based on shape functions basis

4.2.1. Shape representation through analytical shape functions

As pointed out in Sec. 2.3, another classical choice of patasation for aero-
dynamic shape design is to consider the curve coefficiensdime basis of shape
functions. Then, giveliz},)r—o,m, the shape grid-points abscissas and the particular
basis(f,),~1.., the basis coefficients™ = (a;, -, a,)” can be easily related to
the ordinates of the shape grid-pointby:

y(:cl,;):i:aqfq(mg) Ve=1,---,m—1 [18]
g=1

Then, thanks to the linearity betwee”) and~, it is still possible to define a
multi-level strategy as done previously for the Bézier pmin.e. consideringy as
control variables. Here, a sub-level is simply obtainedsidering only a subset of
the basis shape functions. More precisely, taking the ficstefficients, i.e.a() =
(a1, ,ay)7T, the preconditioning matrix/ () (M ()T to apply in [7] is determinate
by:

MY = fi@f) forj=11andi=1m- 1. [19]

4.2.2. Sub-parametrisations based on orthonormal shape fungtion

As pointed out in Sec. 3.3, the number of freedom degreesidenesl is not
enough to well define the notion of level coarseness. Moreifigaly, to define a
coarser level by taking less shape functions as done pralyialbes not make sense
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Figure 1. Orthonormal shape functions: the 1-2-3 (left) and the 4-@ight) basis
functions.

if a hierarchy between the different shape functions carbeastablished. This diffi-
culty can be avoided by considering orthonormal shape fonssince these functions
are increasingly oscillatory (see Fig. 1), and conseqyggdich shape function can be
arranged with respect to its degree of high-frequency. Titerést of using orthonor-
mal functions associated to multigrid approach has beentg@aiout in (Kuruvila
et al,, 1994) in which four orthogonal functions have been defirntagting from a
NACA 0012 airfolil (this set of shape functions has been sssigely extended to ten
by (Changet al, 1995) in order to represent a supercritical wing). Moreergty,

in (Catalancet al, 2005) a family of orthonormal shape functions based on &ézi
curves has been defined and associated to a multigrid-aides difference method.

Let us, here, consider the following family of functions whijust corresponds to
consider the functions defined by (Kuruvédaal,, 1994) for any degree:
gi(r)=+vr—2 andg, =2 '(1 —z) forg>2

Then, the orthonormal shape functions (with respecLg[0, 1]) scalar product)
(f4)q=1.n are obtained by applying a classical Gram-Schmidt proedbiote that,
here, the orthonormalisation is not done numerically bulgically through sym-
bolic calculus. In this way, we have access possibly to tletederivatives, which
can be useful, for instance, for imposing some geometrimasiraints.

5. Reinterpretation of the new multi-level approaches

5.1. Parametrisation based on Bézier control points

In the present formulation, even if each sub-parametdeatorresponds to the or-
dinates of a set of Bézier control points, these control {zaite not explicitly appear
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in the definition of the descent direction since only the peeters(t;);—o,m» are di-
rectly involved in [13]. Thus, the knowledge of the partmuposition of the Bézier
control points is not required in the practical algorithmpiementation. Neverthe-
less, an explicitly dependence on these control points eaalbo, reintroduced in the
formulation.

Let us consider a particular levelwith 0 < I < L, L corresponding to the finest
level of Bézier control points.

n;—1 nr—1
fork=1m—1 yp=Y Byt)yl +b" = > Bre(ty)” +b"
g=1

q=1

The last equality is due to the fact tl*(qff))q:o,n,/ is obtained fron(y,(f))q:ml by
a degree-elevation process, i.e. using iteratively thaticel [16] for the ordinates.
Thus, the prolongation operator at levei.e. f(V) : a —s v = M a + b, verifies

O =5 ogl

in which f(X) : g +— v = M) + b1 is the operator relating the finest level of
Bézier control points to the shape grid-points whifecorresponds to the prolongation
operator from level to level L.

Note that the degree-elevation process is linear, and éxat)ding the endpoints,
the applicationd,, which furnishes; internal control points from — 1 ones, is affine.
More preciselyd; is defined by:

1
s = Yoo,o--,0,90)T
P e S 1 Y00 0)

« —— Do + Ag with

1 . .
(Ds)ij = S-}-—l((q +1—1i)dij + Z(s(i*])j)

Consequently, the prolongation operator from lelvéd the finest levell. of Bézier
control points can be expresseddafs = d,,_10---0od,, and thus, is an affine
application associated to the mat@f =Dy, _1---Dy,41Dy,. In conclusion, at a
particular levell, one can directly relate the current set of Bézier contrahfsowith

the shape grid-points througfi”, or alternatively, apply successively the operators
df and f (), The two ways are equivalent from a theoretical view poinéreif they
can differ in the implementation. Thus, the following aliglom can be used instead
of egs. [7] and [13]:

Yr4+1 = VYr — Wr M(L)Df(pf)T(M(L))TgT [20]

The algorithm [20] exactly corresponds to [10] of Sec. 3rBwiich M = M ()
andDW) = D/". Thus, the approach described in Sec. 4.1 can be also iatedpas
a multi-level gradient-based method in which the Bézierte@mpoints (on the finest
level L) are taken as control variables. Then, [9] correspondsighgpecific case, to
the following iterative algorithm (expressed, here, atd@t®nr + 1 and sub-level):

Br+1 = 67“ — Wp DZL(DZL)T Gr [21]



16 1 soumission REMN

whered = o) = (y1,-- ,yn,—1)" andG, = (M) g, is the functional gradient
with respect tg3 at iterationr.

Note that this pointed out a strong analogy with the appropdposed in
(Désidéri, 2003) since, in the both algorithms, the deggleeation property is directly
used to prolongate from a coarse level to the complete setgi§jd variables, which
are Bézier control points (a more detailed comparison betvike two approaches is
proposed in Sec. 7).

5.2. Parametrisation based on shape functions

The degree-elevation property, which has been used asngation operator for
the Bézier-based embedded parametrisation, allows toidemthe same geomet-
rical curve as an element of a larger space, An analogousatipercan be done
here; indeed, the curve with coordinatgs, - -- , ;)" in the basis(fi, -, f;)T
is exactly equal to the curve with coordinatgs;,--- ,a;,0,---,0)7 in the basis
(fi,--, fa)T. This simple way to prolongate an elementl&f in IR" corresponds
to consider the linear prolongation operator, which is aiged with the rectangular
matrix N;* € IR™*! defined by

(Nln) =0;; fori=1,nandj=1,1

ij

Then, takingd = a(™ as control variables, a multi-level preconditioned gratlie
method can be defined as follows:

6r+1 = Br — Wp Nln (Nln)Tgraq?j(BT)

and the corresponding updating of the shape grid-pointgisessed as:
Va1 = 7 — wr MON (M N grad, j(5,)

in which M (") is defined by [19] withH = n.

Thus, as for Bézier-based parametrisation, a direct atioel between the differ-
ent sub-level has been established allowing the definii@malgorithm as [10].

6. Computation of an approximate gradient

As previously pointed out, an adjoint approach seems to benthre suitable
way to compute the sensitivities. However, an approximedeignt, computed using
finite-differences sensitivities, remains interestindaasas the exact differentiation is
a too complex task or some problems of non-differentiabdie present. Note that a
multi-level method, as described in this studyaigriori independent of the way in
which the discrete gradient is computed. Neverthelesqidrcase of an approximate
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gradient, the computational cost can be noticeably redbgembupling with a multi-
level approach in which the finite differences are appliedtmn coarser levels (see
(Beuxet al, 1994)). This multi-level/finite-differences formulatidnas been used in
(Held et al,, 2002) coupled with a one-shot approach while, in (de’ MaditWitturi et
al., 2006), a multi-level adjoint-free gradient formulatianproposed in which finite
differences are used to approximate the flow sensitivities.

Sections 3.3 and 5 show that there are two possible ways torgate from a
particular level to+, the shape grid-points ordinates. Indeed, it can be dirapiplied
£ or, alternatively, used successively the affine operatprand f(*), i.e. in terms
of functional, it signifies that7) = j o f() can be also expressed &%) o d".
Consequently, there are also two possible ways to compmit€ateaux derivative.
More precisely, for alk in IR™ !, we have:

[](l)] (a)(h) = j'(7) (M(z)h) ~ J (7+0M(l)h) T

22
0—0+ 0 [ ]

and

7] @) = (70 (8) (DFn) = g L EEIPIH) =TT

f—0+ 0
[23]
withy = MOa € R™~' andB = D}'a € IR™~" respectively.

Consequently, two different algorithms can be proposedhéndontext of an ap-
proximate gradient. The first one is obtained considerirgdfdinates of the shape
grid-points as design variables, and can be expressedawsol

Yr+l = Vr — WTM(I) .(77(1[) (€) [24]

in which 3" (¢) is an approximation o(M(l))Tg, obtained using [22], and thus, is
defined by:

1
vimtomo 1 (d00) = 2i(5+erte) - i)

in which e; is thei-th element of the canonical basis Bf*~! ande a small given
parameter.

On another hand, from [21] the following algorithm is obtdhif the ordinates of
the Bézier control poinfsare directly used as design variables:

Bry1 = Br — WTDIL gﬁl)(e) [25]
2. note that the notations are, here, coherent with the orebinsSec. 3.1 and successively in

Sec. 5.1. Obviously, the results of this section are alse fou the case of a parametrisation
based on shape functions as described in sections 4.2 and 5.2
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Figure 2. Convergence histories foi(y,.) (left) and a" (right) (shape grid-points

and Bézier-based parametrisations): comparison betwberexact adjoint gradient
computation and the gradient approximated by divided dffees associated with a
one-shot approach.

in which %" () approximate:{DlL)T G, using [23], and thus:
Vi=1,-,m—1 (éﬁ”(a)) _! [J(L) (& +€DlLei> — J“)(m)}
i €

SinceM® = M)DL, applying the affine operatof(”) to [25] one can easily
recover algorithm [24] in which,. = f(")(3,). Thus, according to what happens for
an exact gradient computation, the two algorithms are edgnt, and moreover, in
the both cases, at levklonly n;, — 1 evaluations of the cost function are needed.

In order to illustrate the interest of the multi-level appimate gradient formu-
lation, some results presented in (Martingti al, 2007a) are reported in Fig. 2.
For an inverse problem similar to the one presented in Se2.18V-cycle three-
levels approaches are applied both for the adjoint methaldtlaa finite-differences
one associated with a one-shot approach (as described id @tal, 2002)). The
good behaviour of the one-shot approach without adjoingaaly obtained in (Held
et al, 2002), is also confirmed for the Bézier-based parameimisatMoreover, the
same improvement obtained by using the Bézier paramétnisaistead of the shape
grid-points is observed with the multi-level/finite-difemces one-shot approach.

7. Reinterpretation of the approach proposed in (Désidéri2003)

As previously pointed out, the present Bézier-based nteNe! approach has
strong similarities with the approach proposed by (Désid#03). This approach
has been defined independently of the specific optimisatgorithm, and thus, ia
priori gradient-free. Nevertheless, in order to try to better keanalogies, let us con-
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sider a two-level algorithm, in which a steepest-descietthethod is used both for
the finest level and for the sub-level (see (Désidéri, 20BHWAEI Majdet al., 2007)).
It consists in alternate a relaxation phase on the uppet-shBézier parametrisation
(few shape optimisation iterations) with a coarse-levetextion phase, in which the
shape perturbation is parametrised on a coarse Bézieraaprgtrisation. Then, the
cyclec of the algorithm can be rewritten with the notations usedim present study
as:

1) Upper level: givenﬁ[(f) € IR"t~! from the previous cycle, iterate:
for r=1,r, B9 =8 —&,.grad,(8',) [26]
2) Solve the following minimisation problem on the coarsel:

Find 5,(1”) = Arg Hginl(”) (0a) [27]

in which7(®) (5,,) = J(*) (Bﬁi) ¥ d{/((sa)) for 6, € R™~".
3) A new cycle can be, then, computed starting fréffi™") = 8.7 + dF* (5(”)) on
the upper level.

J,L is the prolongation operator from leveto L based on degree-elevation property,
which depends on the particular choiceTf) and X (V). Furthermore, since we are
working, here, on shape perturbations, the conditionseaetidpoints ar¢j, )o = 0
and(d,),, = 0, and consequently/” is linear, i.e.d" (5,) = D}*da.

To solve [27] and obtain an approximation &f), s; (s1 > rp) iterations of a
steepest-descent method are performed starting from a giiteal solution(d, )o:

s=1,8 (6(1)5 = (611)57] — Ws 1 gradgdz(c) ((6(1)571)
Furthermore, let us defing(’) by ©\%) (5,) = B + D6, sinceZ(®) = J(1) o )
with ¢\ affine, we have:
grad Z')(6a) = (D) grad; 7" (5 (a)).

Consequently, the Bézier control points on the finer level@stained at the end of
the cycle by:

Byt = Bl 4+ Dl (6a)

s1

5‘171
= 85 = DF(D)" Y @igrad, T <5£i) + D,"(éa)i> —Dj (da)g

i=0

Let us consider, now, the approach defined in sections 4.15ahdassociated
with a two-level algorithm withr; ands; iterations for the upper and coarser levels
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respectively. From [21], the following expression is ohtd for the Bézier control
points on the finest level are obtained at the end of the eycle

s;—1

a(e+1 T
S = Brro(yasi) = Brote) = DE(DE) > @i Girg(ey 4

i=0
with rg(c) = (¢ — 1)(rr, + s1) + 71..
Proposition With an adequate choice of the parameters which charaeehie two-
level algorithms, the two strategies coincide at the endashecycle, i.e.

(c+1) _ 7

(c+1)
0 - M0

for each cyclec

Proof Let us consider that the same choice of family of embedded sub
parametrisations, i.e. the same choiceléf and X () at each sub-level, is done,
and thus, in particulab} = D} .

— If the two algorithms start from the same shape configunathnenﬂél) = 781).

— Let us suppose, now, thaf” = ') for ¢ > 1.
If the same 1D search strategy (i.e., the same scalar pazameis employed, the
iterative algorithms on the upper level, i.e. [21] and [26]incide, and thus, we have
that,, ) = 8. Moreover, choosingd, ), = 0 and supposing that; = w{, ()4
at each iteration on the lower level, we obtain that

Biro(e)eil = 9L ((82);)  for i =0, s,

and consequently
C+] C+]

0 =

8. Numerical experiments
8.1. Parametrisation and shape representations

Since in a multi-level approach, different levels of coaess are involved, it
should be interesting to evaluate the capability of shapeesentation of each level.
For instance, let us investigate on the accuracy in whichnabesed RAE2822 pro-
file can be represented by the parametrisations previowipet. At a level, the
Bézier curvefit, at the discrete least-squares sense, &@nelot minimising with re-
spect toal = (y,,--- ,ynH)T the Euclidean norm inR™~ ! of the residual

Res(aV) = [MWa® — p] — Hterset - On another hand, for the parametrisation
defined in Sec. 4.2.2, since we consider an orthonormal thsiseconstruction of a
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Figure 3. Curvefit error (og || Res((a)))]|~) with respect to the number of param-
eters for the two kinds of parametrisations.

given shapgf, known atzl), - - - , 2, on a sub-levelis obtained a§™'_, (f, fi) fi in
which (., .) is an adequate discrete approximation of f#3¢[z{, z},]) scalar product.

The curvefit error with respect to the number of paramétisrplotted in Fig. 3. A
very similar behaviour is observed for the two kinds of pagtiisation. A rather good
representation of the RAE2822 profile is already furnishét vew degrees of free-
dom (as, also, shown in Fig. 4 with the plot of profiles for dmamber of parameters)
whereas for more that parameters a plateau is obtained with an error value of about
210, Obviously, the capability of shape representation isngtlpcorrelated to the
choice of the particular configuration (e.g. for the case sfymmetric NACA0012
profile, a Bézier curvefit error minor thar—? is obtained). Note that, an increase
of the number of Bézier control points amplifies the irregitNeof the control poly-
gon (see Fig. 5). Consequently, a very small variation insthletion space (shape)
can correspond to a large variation in the design space ¢€Béantrol points). This
depends on the particular shape (with the NACA0012, veryleggontrol polygons
are obtained), but also, on the particular constructiomefdub-parametrisations, i.e.
on the choice o' and X (V). This problem has been already pointed out in (Tahg
al., 2002; Abou El Majcet al, 2004), in which a procedure of parametrisation adap-
tation is also proposed which acts dynamically during thénaigation procedure.

3. Two different curves are considered (for a Bézier curve el as for a linear combination

of orthonormal shape functions): one for the upper side amfor the lower one. Thus, the
number of variables really involved is two times more. Intjzalar, 30 parameters are globally
used on the finest level of parametrisation.
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Figure 4. Curvefits of RAE2822 profile by orthonormal shape functiaséng 2 and
3 (left) and 4 and 5 parameters (right) respectively.
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Figure 5. RAE2822 curvefits with Bézier control points (8 (left) andright) param-
eters): profiles and corresponding control polygons.

8.2. Numerical experiments on 2D inverse problems

8.2.1. Test-case 1: a 2D nozzle inverse problem

The first test-case, already used for the multi-level apghaessociated to shape
grid-point coordinates parametrisation (Beux, 1994; Betal, 1992; Beuxet al.,
1994; Heldet al, 2002), is a 2D convergent-divergent nozzle inverse prabier
inviscid subsonic flows (the flow is modelled, here, by theeE@quations). Here,
the particular inverse problem is characterised by anahdbnstant-section nozzle
and a target sine shape. For the considered mesh of 1900 (seke$ig. 6), 63
shape grid-points are available. Since, the abscissaseddtthpe grid-points points
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Figure 6. Test-case 1: computational mesh (target configuration)
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Figure 7. Test-case 1. Convergence history for one-level and V-cijukee-level
strategies (a) shape grid-points (b) Bézier-based parasagion.

are uniformly distributed, an uniform distribution is alsken for the abscissas of the
Bézier control points at each level. Fig. 7a shows the c@amre history obtained
using the original shape grid-points parametrisationleady shows the effect of each
level, indeed, the lower is the number of control parametersived, the lower is the
accuracy of the solution, but also, the faster is the corerrg to the solution. Note
that, the one-level method with 31 parameters already spareds to a preconditioned
gradient method since 63 degrees of freedom are availablledgresent mesh. Then,
advantaging of the speed-up on the coarser levels, the-fevéii approach largely
improves the convergence rate to reach an accurate sogitien by the higher levels.
Concerning the new set of sub-parametrisation based orB&maitrol points (see Fig.
7b), even the one-level approach with 10 or 15 parameteesgiteresting results.
The corresponding multi-level strategy yields ulteriopirmvements in the final part
of the convergence history. Nevertheless, interpreted aptimisation with respect to
the Bézier control points, this multi-levelling appearsdémpressive. Indeed, it seems
that the principal gain is due to the use of a Bézier-baseampaitrisation more than
the change of control subspaces. This can be explained bptheof convergence
speed-up of the coarser level as shown in Fig. 7b.
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Figure 8. Target configuration for test-case 2: (left) computatiomadsh and (right)
Mach contours plot (equidistant iso-contours frOm to 1.1 with AM = 0.05).

8.2.2. Test-case 2: an airfoil inverse problem

In this second test-case, starting from a symmetric NACADAitfoil, the cam-
bered RAE2822 should be rebuilt. The initial flow conditicare characterised by
a far-field Mach number of.734 and an angle of incidence @f79°. Furthermore,
as in the previous test-case, only inviscid flows are comsitle A mixed unstruc-
tured/structured mesh of 3282 nodes has been generatedi@mularccomputational
domain centred on the airfoil (see Fig. 8). The definitiontaf Bézier-based sub-
parametrisations have been done, here, imposing a vediugént at the leading edge,
and thus, following the procedure proposed in Sec. 4.1.2.

The direct use of the parametrisation based on shape giidspgseems more dif-
ficult for this optimisation problem, in particular, nearettraining edge where the
upper and lower profiles may be crossed over. This problenbeasolved by impos-
ing geometrical constraints, considering only coarserlsubls in order to increase
the smoothing or/and modifying the criterion for the choafehe descent step,..
Nevertheless, we choose, here, to consider only the otliepatametrisations. Fig.
9a shows the convergence behaviour for one-level strateggewell as a V-cycle
multi-level strategy on three sub-levels (5, 10 and 15 patars) in the case of a
Bézier-based parametrisation. The behaviour observddthit previous test-case is
magnified, here, since the finer is the level, the more aceusahe solution but with-
out any lost in convergence speed. Consequently, a very gebaviour is obtained
with the one-level approach with 15 parameters, but on ardtand, the multi-level
algorithm does not improve the convergence rate. Fig. 9lwslhlbe convergence be-
haviour obtained with the parametrisation based on theoadtmal shape functions.
As expected from the results obtained in Sec. 8.1, the santed{ibehaviour is ob-
tained between the two kinds of parametrisation in term®hit®n accuracy, for the
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Figure 9. Test-case 2: Convergence history for one-level and V-cyuiee-level
strategies (a) Bézier-based parametrisation (b) paraisation based on orthonor-
mal shape functions.

one-level approaches. However, since, here, the increfasanober of parameters
corresponds to a decrease of terms of convergence, theleudtistrategy yields an
important improvement of the convergence behaviour.

9. Conclusion

In the present study, the description of multi-level gradibased methods for
aerodynamic shape design is addressed. Starting from atingxformulation (Beux
et al, 1994) based on an embedded parametrisation of shape@rits@nd on in-
terpolation operators, a possible generalisation to dtirets of parametrisations is
described. This extension requires the elaboration of agaate family of sub-
parametrisations, possibly embedded, associated to gifilengation operators.
Two particular examples are then presented, and since tqeedjrid-points are yet
used as control variables, the resulting approaches cantépieted as multi-level
strategies as defined in (Beakal,, 1994), in which a particular prolongation operator
(i.e. with a particular preconditioning) is applied. Hovee)it can also be reinterpreted
directly as multi-level approaches with respect to the rewily of shape parametrisa-
tion. In the first example, the sub-levels are defined thrahghuse of Bézier control
points, and starting from a consistent coarsest level, duygek-elevation property of
Bézier curves is applied to successively define the diffidieer levels. In this context,
even if, in practice, the Bézier control points do not neeBeacexplicitly computed,
the proposed algorithm can be also interpreted as a desathbthfor Bézier con-
trol points as control variables. Thus, the present descathod seems very close
to the approach proposed in (Désidéri, 2003), even if, ties dbne has been defined
independently of the specific optimisation algorithm. ledewe prove that, under
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specific conditions, the two approaches can be equivalenthi$ way, it has been
built up an explicit link between two kinds of multi-leveily: on the one hand, the
preconditioned gradient-based method initially define(Bauxet al, 1994), and on
the other hand, the multi-level algorithm for parametriajsé optimisation presented
in (Désidéri, 2003) and its successive extensions. In tberskexample, the definition
of the set of sub-parametrisations is based on the use otlaonmrmal basis of shape
functions as shape representation. As for the case of BBam¥d parametrisation,
a descent direction is obtained considering as controlnperars the ordinates of the
shape grid-points as well as the finest sub-parametrisation

The numerical experiments shows that the new families ofarfametrisations
have suitable effects, if there are understood as an atteengradient precondition-
ing for the optimisation with respect to the shape grid-pmilNevertheless, to extend
the range of interest of this kind of methods, it should berpteted as a descent
method in which the control variables are taken through the set of parameters.
Note that, in this case, we start with a less inefficient na@tpnditioned algorithfh
since the lack of shape smoothness, typical of shape giittspparametrisation, has
been avoided. Nevertheless, for the parametrisation lasedhonormal shape func-
tions, the multi-level strategy still yields an interestispeed-up of the convergence.
Concerning the Bézier-based parametrisation, the resdsiore disappointing since
the multi-levelling seems poorly efficient. This is due, éeio a good convergence
behaviour on the finest levels while the coarsest levels doyietd any additional
speed-up, and thus, the basic conditions are not preseppty effectively the multi-
level/multigrid principles. Thus, such additional invigsttion should be performed
in order to better understand the present behaviour, whickiso inconsistent with
the results obtained by J.-A. Désidéri and collaboratdndre attractive results can
be obtained for Bézier-based parametrisation, since tlxeBéurves act as a basic
tool for polynomial shape representation, one can alscsageé to extend the formu-
lation to more complex shape representation as B-splinégchwnalso have proper-
ties of degree-elevation), and also, to 3D case throughintance, tensorial Bézier
parametrisation. In the both examples of parametrisafio@sented in this study, the
shape parameters are related by linear or affine applicatidhe set of shape grid-
points. Even if it appears the simplest way to behave, aterm approaches can be
also envisaged since the algorithm should not be obligaagscent direction with
respect to the shape grid-points. Finally, note that, e/greimulti-levelling has been
used, in the present study, only associated with a steepsasedt approach, other
gradient-based methods can be also considered as, fondestBFGS-type formu-
lation. In this case, the use of an additive multi-level preditioner, which can be
defined as soon as a set of embedded sub-parametrisatiorsslabke, seems more
suitable (see (Courtgt al, 2006)).

4. indeed, with respect to the shape grid-points, it can beedeas a method already precondi-
tioned but associated to a one-level strategy.
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