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Important advances in CFD design methods as been obtained using first-order derivatives and
adjoints. However, in order to take into account uncertainties, reduced model are built with second-
order derivatives ([9], [5], [1]). New functionals involving first-order derivatives are also used for
robust design ([8], [5]) so their gradients will involve second-order derivatives. For these developments,
building second-order derivatives is a mandatory task. We analyze strategies for computing second-
order derivatives using Automatic Differentiation tools. The target is a solver for shape design with
supersonic flow.

1 CFD Model

In our design problem the shape of an obstacle is defined from a shape parameter γ. For a γ we
can define the external domain around the obstacle, Ωγ, then the stationary Euler equations can be
written as follows:

W1 = ρ, W2 = ρu, W3 = ρv, W4 = ρw, W5 = E; F (W )x + G(W )y + H(W )z = 0 (1)

(Ψ(γ, W ), φ) =−
∫

Ωγ

(F (W ) · ∂φ

∂x
+ G(W ) · ∂φ

∂y
+ H(W ) · ∂φ

∂z
) dΩγ

+

∫
∂ΩB

(FBnx + GBny + HBnz) · φ dσ

+

∫
∂Ωγ

p(W )(nγ
xφ2 + nγ

yφ3 + nγ
zφ4) dσ = 0.

(2)

The notations F, G, H are the classical fluxes of the Euler equations and p(W ) is the pressure (that
depends on W through the state law). The second integral keep in account the inflow/outflow
conditions and the third one the (physical) boundary conditions. This is discretized with a second-
order upwind scheme applying on tetrahedra. A differentiable functional j(γ) = J(γ, W (γ)) is
introduced, strategies for gradient evaluation are given in ([4]), the subject of this work is strategies
for computing second derivatives.

2 Second-order derivatives of a functional

We observe that γ → W (γ) and γ → j(γ) are functions implicitly defined through the state equation.
Then we consider two different points of view:

• Implicit differentiation: it consists to differentiate directly the implicit function j as a function
of the control variable γ.

• Differentiation of explicit parts: the second point of view is to apply differentiation only to
routines which compute explicit functions, that is functions Ψ and J .
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In the first approach, differentiating the entire routine j can be performed with either Tangent or
Reverse mode (see [3] or [2] for definitions). It permits to obtain directly a differentiated program, in
a black box manner, with the risk that this program has a rather good reliability but not sufficiently
good performances.

Since the routine j contains the iterative solver method for the state equation, the differentiated
routines will contain this solver in differentiated form. We assume that we need niter iterations in
order to obtain the nonlinear solution, and that for each iteration we have an unitary cost. Tangent
mode produces a program that we need to apply n time for computing the entire gradient. The cost
is n(niterαT ) where αT is usually 1 < αT < 4, see for example [2]. Memory requirements is about the
same. With Reverse mode, we are able to obtain the entire gradient with a single evaluation of the
differentiated routine. But the usual Reverse mode produces a code which involves two successive
parts: a forward sweep close to original code and a backward sweep needing data computed in the
forward sweep, but in the opposite way. In one option to solve this, the Store-All (SA) strategy,
these data are stored during the forward sweep. The CPU cost will be (niterαR) with 1 < αR < 5,
i.e. αR times the undifferentiated code, but the required memory will be n times greater. For a
Recompute-All (RA) strategy the CPU cost will be (n2

iterαR), i.e. (niterαR) the nonlinear solution,
but the memory will be the same of the undifferentiated routine. For real large programs trade-off
between SA and RA are compulsory (see [3]).

When the iterative algorithm is a fixed point one, with enough convergence to the fixed point, only
the final state variable is necessary for backward sweep. Lastly, the behaviour (efficiency, stability)
of differentiated solution algorithms is questionable, while a natural and conservative tendancy is to
re-use the algorithm used for state -preconditionner, iterator- for solving adjoint systems. For the
previous arguments, in case of simple explicit solvers, the implicit differentiation is a good option,
but for more sophisticated solvers (GMRES,...) we recommand the differentiation of explicit parts.
In the sequel we analyze two strategies for second-order differencing using this last strategy.

2.1 Tangent-on-Tangent (ToT)

This methods was initially investigated by [7]. Here we present the mathematical background behind
the idea and the efficient AD implementation of ([1]) but with a different analysis of the computational
cost.

First of all, we need to compute the first-order derivative of the functional j(γ) in Tangent
mode, i.e. we compute the Gâteaux-derivatives with respect to each component direction (ei =
(0, . . . 0, 1, 0, . . . , 0)T , where 1 is at the i-th component):

dj

dγi

=
dj

dγ
ei =

∂J

∂γi

+
∂J

∂W

dW

dγi

with
∂Ψ

∂W

dW

dγi

= −∂Ψ

∂γ
ei . (3)

This has to be applied to each component of γ, i.e. n times and the cost is n linearised N -
dimensional systems to solve. If we choose to solve the single linear system ∂Ψ

∂W
dW
dγi

= −∂Ψ
∂γ

ei with an

iterative matrix-free method (like GMRES, [6]), and the solution is obtained after niter,T step, the
total cost will be of the order of αT niter,T , i.e. niter,T evaluation of the matrix-by-vector operation(

∂Ψ
∂W

)
x, where each evaluation costs αT times the evaluation of the state residual Ψ(γ, W ) (and the

cost of the state residual is taken as reference equal to 1). Therefore, the cost of the full gradient
will be nαT niter,T .

Starting from the derivative (3), we perform another differentiation with respect to the variable
γk obtaining

d2j

dγidγk

= D2
i,kJ +

∂J

∂W

d2W

dγidγk

(4)
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where

D2
i,kJ =

∂

∂γ

(
∂J

∂γ
ei

)
ek +

∂

∂W

(
∂J

∂γ
ei

)
dW

dγk

+
∂

∂W

(
∂J

∂γ
ek

)
dW

dγi

+
∂

∂W

(
∂J

∂W

dW

dγi

)
dW

dγk

.

Differentiating the equation ∂Ψ
∂W

dW
dγi

= −∂Ψ
∂γ

ei we get

D2
i,kΨ +

∂Ψ

∂W

d2W

dγidγk

= 0 (5)

where the equation for the term D2
i,kΨ is analogous to the equation for D2

i,kJ above. Substituting

the second derivatives of the state with respect to the control variables d2W
dγidγk

in equation (4) from

equation (5) we get

d2j

dγidγk

= D2
i,kJ − ∂J

∂W

(
∂Ψ

∂W

)−1

D2
i,kΨ = D2

i,kJ − Π∗
0D

2
i,kΨ (6)

where Π0 is the solution of the adjoint system
(

∂Ψ
∂W

)∗
Π =

(
∂J
∂W

)∗
evaluated at the point (γ, W (γ))

solution of the state equation Ψ(γ, W ) = 0.

2.2 Tangent-on-Reverse (ToR)

This consists in the direct derivation in any direction ei, i = 1, n of the (non-scalar) function:(
∂j

∂γ

)∗

(γ, W (γ)) =

(
∂J

∂γ

)∗

(γ, W (γ))−
(

∂Ψ

∂γ

)∗

Π(γ, W (γ))

where W (γ) is the flow solution, and Π(γ, W (γ)) is the solution of the adjoint system
(

∂Ψ
∂W

)∗
Π =(

∂J
∂W

)∗
. With some algebra we obtain

∂

∂γi

(
∂j

∂γ

)∗

=

(
∂2j

∂γ2

)
ei =

∂

∂γ

(
∂J

∂γ

)∗

ei +
∂

∂W

(
∂J

∂γ

)∗
dW

dγi

+

− ∂

∂γ

[(
∂Ψ

∂γ

)∗

Π0

]
ei −

∂

∂W

[(
∂Ψ

∂γ

)∗

Π0

]
dW

dγi

−
(

∂Ψ

∂γ

)∗

λi

(7)

For each i = 1, . . . , n, Equation (7) needs Π0, the solution of the adjoint system(
∂Ψ

∂W

)∗

Π =

(
∂J

∂W

)∗

(8)

and two perturbed N -dimensional linear systems:

∂Ψ

∂W

dW

dγi

= −∂Ψ

∂γ
ei(

∂Ψ

∂W

)∗

λi =
∂

∂γ

(
∂J

∂W

)∗

ei +
∂

∂W

(
∂J

∂W

)∗
dW

dγi

+

− ∂

∂γ

[(
∂Ψ

∂W

)∗

Π0

]
ei −

∂

∂W

[(
∂Ψ

∂W

)∗

Π0

]
dW

dγi

(9)

where all the functions in the equations (7)–(9) are evaluated at the final state (in order to verify
Ψ(γ, W (γ)) = 0). In addition, the second linear system in (9) is of the same type of the adjoint system
(8) but with a different right-hand side, so we can use the same algorithm (but with different initial
data) for both equations. It is useful to note that Equation (7) gives us an entire column (or row,
by symmetry) of the Hessian matrix, where the Tangent-on-Tangent approach (6) gives us a single
element. The cost associated to the full Hessian can be evaluated as n[αT niter,T + αRαT + αRniter,R].
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3 Main conclusions

The algorithms for ToT and ToR approaches have a different part that characterizes the two ap-
proaches. Its cost is:

n(n + 1)

2
α2

T for ToT ; nαR[αT + niter,R] for ToR.

The crucial factor is the number of iterations needed to solve the adjoint system in (9). From a
theoretical point of view, if we assume that niter,R is bounded (i.e. we have convergence in a finite
number of iterations) we can say that ToR is less expensive then ToT for high values of n, but it
is difficult to a priori say what is the value of n for which the ToR approach is preferable than the
ToT. Theoretical and numerical performance will be compared for supresonic flows on various sizes
of meshes.
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