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SUMMARY

This paper presents a combination of mesh adaptation and shape design optimization. The
optimization loop is based on an Euler model and an adjoint-based gradient descent algorithm (see
[8],[5] and [7]). Mesh adaptation provides here, a control of accuracy of the numerical solution by
modifying the domain discretization according to size and stretching directions [1]. Copyright c©
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shape Design based on Optimal Control and adjoint state is becoming a frequent practice
in industry. Using it assumes some confidence in the High-Fidelity simulation tool involved
in the optimisation platform. In CFD, this confidence relies on the increasing robustness and
accuracy of CFD solvers. However in some particular cases, the accuracy strongly depends on
the ability of the solver to capture small scales. For handling these small scales, we consider
a mesh adaptive design. Mesh-adaptation for Optimal Control is a topic addressed by several
authors, in particular for the choice of error estimators. See for example [4]. The application
that we consider relies on the mesh-adaptive simulation of steady near-field sonic boom around
an aircraft. The complex structure of interacting shocks can be described thanks to a mesh
adapted to the flow under study. See for example [3]. A particularly accurate anisotropic
adaptation is presented in [1]. For this particular algorithm, starting for a couple of flow and
adapted mesh, a slight variation of flow conditions will change the flow in such a way that the
former adapted mesh cannot be used for computing the new flow. This can be explained by
the fact that the shocks of new flow are outside previous mesh refinements. This point makes
delicate the use of the mesh-adaptive solver inside an optimisation loop.
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In this paper, we consider the research of an optimum in combination with the mesh
adaptation algorithm. In other words, we want to get a shape that is optimal when the objective
function is evaluated on a mesh that is strongly adapted to the optimal flow. We observe that
the final mesh is not known in advance, but, instead, built at the same time we optimise. As
a consequence, we cannot define a fixed discrete optimization problem. Instead, we propose
to approximatively solve the continuous optimality condition with a mesh adaptative method
involving a descent step on a frozen mesh.

In next section we formulate the minimization problem to solve. Section 3 presents the two
numerical techniques to couple, viz. optimization and mesh adaptation, and propose a way to
couple them. Section 4 gives some numerical application.

2. OPTIMIZATION/ADAPTATION MODEL

2.1. CONTINUOUS MODEL

Given a set of admissible shapes Γad, a continuous optimal shape design problem writes:

min
γ∈Γad

j(γ) (1)

where j(γ) = J(γ, W (γ)) and W (γ) is the solution of a state equation, a PDE posed on a
domain Ωγ with a shape parametrized by the control variable γ:

Ψ(γ, W (γ)) = 0 . (2)

The solution W (γ) of (2) is computed through an approximation W̄ (M, γ) with some error
depending of a field M defined on Ωγ :

E(M) = ||W̄ (M, γ)−W (γ)|| = O(f(M)) . (3)

Then we minimize the approximate functional:

j̄(M, γ) = J(γ, W̄ (M, γ)) (4)

under conditions on approximation error. We would prefer to choose once for all a particularM
such that f(M) = 0 to avoid the approximation error. But this choice is not possible, because
it would take an infinite time on a computer. We consider having a maximum cpu effort,
measured by the fact that the complexity of the approximation c(M) (typically the number
of degrees of nodes) is specified to a fixed number N . Then two options can be considered. A
natural option ([4]) is to look for the couple (M+, γ+) which offers the best approximation of
the continuous optimal shape:

(M+, γ+) such that |γ+ − γopt| = Min .

In the industrial practice, another option can be prefered. We express it in terms of the error
estimate (3):

(M∗, γ∗) such that
M∗ = ArgMinE(M)

j̄(M, γ∗) ≤ j̄(M, γ) .
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Where the ArgMin is taken for a complexity N . Note, however, that when the quality of
approximation increases, the difference between both options may be very small. The research
of a minimum of j will be based on a descent algorithm. Descent algorithms may take the
historic form of the steepest gradient or the current form of Sequential Quadratic Programming
(SQP). In both cases, a first part of the algorithm is devoted to build a correction, and a
second part is devoted to adapt the correction to make it match a simplified quadratic model.
A central condition for the success of second part is that we have a reliable descent direction.
The algorithm discussed in this paper is designed in order to satisfy this condition by using
an exact gradient approach.

2.2. NUMERICAL MODEL

A 3D steady Euler system is discretized by means of a vertex-centered Mixed-Element-Volume
approximation on unstructured meshes, as in [8]. The consistent part is a Galerkin formulation.
The stabilizing part relies on a Roe Riemann solver combined with a MUSCL reconstruction
with Van Albada type limiters. This produces a space accuracy of order two. Let us mention
that for solution of the steady system, an explicit multi-stage pseudo-time integration which
does not influence the spatial accuracy is applied.

We evaluate the cost function at a plane z = −R, where R is a multiplier constant of the
aircraft length (i.e. R = L, R = 2L, R = 3L etc.). This plane is determined as an intersection
of mesh elements (tetrahedrons) and the plane represented by the equation z = −R . The cost
function is computed over intersection points between mesh and a plane. The cost function is
defined by:

j(W,γ) = (
∑

ifac

|ifac|(Pifac − P target
ifac )2)/nfac

where |ifac| is the area of the face ifac, this face is obtained by intersection of a mesh element
and the plane, then the result face is or a triangle or a polygon of four points. nfac is the
number of intersected faces. Pifac is the pressure value at the face ifac, and is obtained by
interpolation of pressure values computed in ifac nodes. P target

ifac is the desired pressure value
at the face ifac. The target pressure at a plane z is defined with respect to the flight direction.
Here, for example, aircraft flies in the x−axis direction, and then we get an interval observation
of the pressure chock, which is larger than the pressure at infinity. Then we chop pressure value
in the interval at infinity pressure value.

Then the minimum we are looking for is the solution of the following Karush-Kuhn-Tucker
(KKT) system:





Ψ(γ,W ) = 0
(State)

∂J

∂W
(γ,W )−

(
∂Ψ
∂W

(γ, W )
)∗

·Π = 0

(Adjoint state)
∂J

∂γ
(γ, W )−

(
∂Ψ
∂γ

(γ, W )
)∗

·Π = j′(γ) = 0

(Optimality)

(5)

The residual for adjoint state Π and the functional gradient software are developed with the
help of reverse Automatic Differentiation, (see [6]).
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3. COUPLING IN DISCRETE CASE

We discuss now the strategy for combining a high-level mesh adaptation and the solution of
the KKT system.

3.1. MINIMIZING FOR A FIXED MESH

Assuming we are applying a steepest descent algorithm, we need to identify which part of it
cannot perform well when the mesh is changed. Our option is still to use an exact gradient
approach in order to keep a reliable descent direction. Then the following sequence is applied
with a fixed mesh:
Gradient and line search:
- compute the flow (state equation),
- compute the adjoint state,
- compute the (exact)gradient of functional,
- line search in the descent direction.
This algorithm is a steepest descent one but the method proposed in the sequel also applies if
the “line search” is replaced by a trust-region algorithm as in SQP.

3.2. MESH ADAPTATION FOR A FIXED CONTROL

Mesh adaptation provides a way of controlling the accuracy of the numerical solution
by modifying the domain discretization according to size and directional constraints. For
stationary problems, the mesh adaptation scheme aims at finding a fixed point for the mesh-
solution couple. In other words, the goal is to converge towards the stationary solution of the
problem and similarly towards the corresponding invariant adapted mesh. At each stage, a
numerical solution is computed on the current mesh with the Euler flow solver and has to be
analyzed by means of an error estimate. The considered error estimate aims at minimizing
the interpolation error in norm Lp, thus it is independent of the problem at hand. From the
continuous metric theory in [1], an analytical expression of the optimal metric is exhibited
that minimizes the interpolation error in norm Lp. This anisotropic metric is a function of
the Hessian of the solution which is reconstructed from the numerical solution by a double
L2 projection. This metric will replace the Euclidean one to modified the scalar product that
underlies the notion of distance used in mesh generation algorithms. Next, an adapted mesh
is generated with respect to this metric where the aim is to generate a mesh such that all
edges have a length of (or close to) one in the prescribed metric and such that all elements
are almost regular. Such a mesh is called a unit mesh. The volume mesh is adapted by local
mesh modifications of the previous mesh (the mesh is not regenerated) using mesh operations:
vertex insertion, edge and face swap, collapse and node displacement. The vertex insertion
procedure uses an anisotropic generalization of the Delaunay kernel. Finally, the solution is
linearly interpolated on the new mesh. This procedure is repeated until the convergence of
the solution and of the mesh is achieved. Practically, here we consider the continuous metric
controlling the L2 norm of the error.
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Figure 1. Left: Pressure distribution. Right: Associated adapted mesh.

3.3. COUPLED ITERATION

The flow changes when the shape is changed. We shall refer to static adaptation when only
one shape and one flow are concerned, and dynamic adaptation else. This leads to introduce
two kinds of coupling between adaptation and optimisation:

3.3.1. WEAK COUPLING BETWEEN OPTIMIZATION AND ADAPTATION: It relies
on a static anisotropic adaptation algorithm relying on the Hessian-based continuous metric
method described in [1]:
Algorithm 1: static adaptation/gradient step: Input: M0, γ0

Output: M, γopt, the converged mesh and optimal shape

1- Do

2- Do

2.1- compute on current mesh the flow (state equation),

2.2- compute the metrics for flow in steps 2, build a new mesh specified by the new metric
and by a fixed number N of nodes,

While adaptation is not converged.

3- compute on current mesh the adjoint state,

4- compute on current mesh the (exact) gradient of functional,

5- perform on current mesh line search in the descent direction,

6- update control

While control is not optimized.

3.3.2. STRONG COUPLING: A mesh that is accurately adapted to a flow will be much less
accurate when used for computing an -even slightly- different flow. Then starting a line search
with a mesh adapted to the first flow may result in poor evaluation of the other flows and a
poor evaluation of the descent step length. To avoid this, we adapt the transient fixed point
adaptation method introduced in [2]. In the fixed-point adaptation/gradient loop, the mesh is
adapted to the k-th gradient+search step by adapting it to all the flows of this step:
- to each flow correspond an optimal metric,
- the intersection of all these metrics is computed,
- the adapted mesh is built from this intersection metric.
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One observe that the adapted mesh cannot be built before the concerned flow are evaluated,
which means an implicit coupling needs to be solved. We solve it by a fixed point:

Algorithm 2: dynamic adaptation/gradient step:
Input: M0, γ0

Output: M, γopt, the converged mesh and optimal shape

1- Do

2- Do

2.1- compute on current mesh the flow (state equation),

2.2- compute on current mesh the adjoint state,

2.3- compute on current mesh the (exact)gradient of functional,

2.4- compute the intersection of metrics for each intermediate flow in steps 2.1-2.3,

2.5- build a new mesh specified by the intersected metric and by a fixed number N of
nodes,

While adaptation is not converged.

While control is not optimized.

Process is considered as converged in step 7 when the difference between two metrics is
small. In practice, this fixed point iterates about 5 times. Computing expenses can be reduced
by saving and tranfering flow arrays between remeshings. The fixed point adaptation/gradient
step is then itself included in the gradient loop.
It is necessary to fix the number of nodes or a certain level of accuracy in order to have, in the
fixed-point process a well-posed problem with respect to the metric. It is possible to imagine
to vary this number of nodes from one gradient step to the other, but this requires some clever
martingale. In the experiments presented in the sequel, we have fixed N .

4. APPLICATION TO PROBLEM UNDER STUDY

Preliminary optimization computations have been applied to an HISAC test case. We describe
in table 1, the initial configuration used to perform the strong coupling computation.
Initial mesh vertices size 42120
Initial mesh elements size 223657
MACH number 1.6
Angle of attack 3
Aircraft lenght 30m
Observation plane z = −R = −30m
Number of optimization iterations 10
Number of mesh adaptation iterations by one optimization ietration 5
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Table 1: table of simulation parameters

Figure 2 shows the horizontal cuts of pressure value at z = −30m in order to compare the
initial flow and the final flow after optimization. We observe that the first shock focalisation
of initial flow is well weakened.
Figure 3 shows on the right the evaluation of functional during the coupled loop. The
oscillations observed in the functional curve are associated to the mesh adaptation phase which
is devoted to find the best adapted mesh and then ensure the good evaluation of the functional.
This mesh adaptation influence over global optimization loop gives us a computation certainty
along optimization cycle.
On the left of the figure 3 we depict the progress obtained on the nearfield pressure after
optimization. The red line (green line) corresponds to the initial (final) nearfield pressure
respectively.
Figure 4 shows the reduction obtained after propoagation of the nearfield pressure to the
ground.

Figure 2. Sonic boom mesh-adaptive reduction: initial (left) and final (right) pressure distribution at
the plane z = −30m.
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Figure 3. Left: Pressure reduction measured at z = −30m. Right: cost reduction during the dynamic
adaption.

The final mesh and the associated final preesure distribution is presented on the figure 5.
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Figure 4. Sonic boom mesh-adaptive reduction: initial (red line) and final (green line) pressure signature
after propagation of the nearfield pressure distribution to the ground.

Figure 5. Left: Pressure distribution. Right: Associated adapted mesh.

5. CONCLUDING REMARKS

We have adressed a design problem in which mesh adaptation is a constraint as important
as the state equation. Further, this constraint is strongly nonlinear. The solution we propose
solves this nonlinear constraint during the whole optimisation algorithm, that is also during
the choice of descent step. At this price the optimization can be successfull performed.
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