A strongly coupled mesh adaptive optimal shape algorithm

Youssef Mesri*, Frédéric Alauzet ** and Alain Dervieux *

(*) Smash project, Inria-Sophia Antipolis, BP 93, 06902 Sophia-Antipolis Cedex, France.
(**) INRIA, Gamma project, Domaine de Voluceau Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France.

SUMMARY

This paper presents a combination of mesh adaptation and shape design optimization. The optimization loop is based on an Euler model and an adjoint-based gradient descent algorithm (see [8], [5] and [7]). Mesh adaptation provides here, a control of accuracy of the numerical solution by modifying the domain discretization according to size and stretching directions [1]. Copyright © 2007 John Wiley & Sons, Ltd.

KEY WORDS: Shape optimization; mesh adaptation; flow control; coupling models.

1. INTRODUCTION

Shape Design based on Optimal Control and adjoint state is becoming a frequent practice in industry. Using it assumes some confidence in the High-Fidelity simulation tool involved in the optimisation platform. In CFD, this confidence relies on the increasing robustness and accuracy of CFD solvers. However in some particular cases, the accuracy strongly depends on the ability of the solver to capture small scales. For handling these small scales, we consider a mesh adaptive design. Mesh-adaptation for Optimal Control is a topic addressed by several authors, in particular for the choice of error estimators. See for example [4]. The application that we consider relies on the mesh-adaptive simulation of steady near-field sonic boom around an aircraft. The complex structure of interacting shocks can be described thanks to a mesh adapted to the flow under study. See for example [3]. A particularly accurate anisotropic adaptation is presented in [1]. For this particular algorithm, starting for a couple of flow and adapted mesh, a slight variation of flow conditions will change the flow in such a way that the former adapted mesh cannot be used for computing the new flow. This can be explained by the fact that the shocks of new flow are outside previous mesh refinements. This point makes delicate the use of the mesh-adaptive solver inside an optimisation loop.
In this paper, we consider the research of an optimum in combination with the mesh adaptation algorithm. In other words, we want to get a shape that is optimal when the objective function is evaluated on a mesh that is strongly adapted to the optimal flow. We observe that the final mesh is not known in advance, but, instead, built at the same time we optimise. As a consequence, we cannot define a fixed discrete optimization problem. Instead, we propose to approximatively solve the continuous optimality condition with a mesh adaptative method involving a descent step on a frozen mesh.

In next section we formulate the minimization problem to solve. Section 3 presents the two numerical techniques to couple, viz. optimization and mesh adaptation, and propose a way to couple them. Section 4 gives some numerical application.

2. OPTIMIZATION/ADAPTATION MODEL

2.1. CONTINUOUS MODEL

Given a set of admissible shapes Γ_{ad}, a continuous optimal shape design problem writes:

$$\min_{\gamma \in \Gamma_{ad}} j(\gamma)$$

(1)

where $j(\gamma) = J(\gamma, W(\gamma))$ and $W(\gamma)$ is the solution of a state equation, a PDE posed on a domain Ω_γ with a shape parametrized by the control variable γ:

$$\Psi(\gamma, W(\gamma)) = 0 .$$

(2)

The solution $W(\gamma)$ of (2) is computed through an approximation $\bar{W}(\mathcal{M}, \gamma)$ with some error depending of a field \mathcal{M} defined on Ω_γ:

$$E(\mathcal{M}) = ||\bar{W}(\mathcal{M}, \gamma) - W(\gamma)|| = O(f(\mathcal{M})) .$$

(3)

Then we minimize the approximate functional:

$$\bar{j}(\mathcal{M}, \gamma) = J(\gamma, \bar{W}(\mathcal{M}, \gamma))$$

(4)

under conditions on approximation error. We would prefer to choose once for all a particular \mathcal{M} such that $f(\mathcal{M}) = 0$ to avoid the approximation error. But this choice is not possible, because it would take an infinite time on a computer. We consider having a maximum cpu effort, measured by the fact that the complexity of the approximation $c(\mathcal{M})$ (typically the number of degrees of nodes) is specified to a fixed number N. Then two options can be considered. A natural option (4) is to look for the couple $(\mathcal{M}^+, \gamma^+)$ which offers the best approximation of the continuous optimal shape:

$$(\mathcal{M}^+, \gamma^+) \text{ such that } |\gamma^+ - \gamma_{opt}| = Min .$$

In the industrial practice, another option can be prefered. We express it in terms of the error estimate (3):

$$(\mathcal{M}^*, \gamma^*) \text{ such that }$$

$$\mathcal{M}^* = \text{ArgMin}_c E(\mathcal{M})$$

$$\bar{j}(\mathcal{M}, \gamma^*) \leq \bar{j}(\mathcal{M}^*, \gamma^*).$$
Where the \textit{ArgMin} is taken for a complexity N. Note, however, that when the quality of approximation increases, the difference between both options may be very small. The research of a minimum of j will be based on a descent algorithm. Descent algorithms may take the historic form of the steepest gradient or the current form of Sequential Quadratic Programming (SQP). In both cases, a first part of the algorithm is devoted to build a correction, and a second part is devoted to adapt the correction to make it match a simplified quadratic model.

A central condition for the success of second part is that we have a reliable descent direction. The algorithm discussed in this paper is designed in order to satisfy this condition by using an exact gradient approach.

2.2. NUMERICAL MODEL

A 3D steady Euler system is discretized by means of a vertex-centered Mixed-Element-Volume approximation on unstructured meshes, as in [8]. The consistent part is a Galerkin formulation. The stabilizing part relies on a Roe Riemann solver combined with a MUSCL reconstruction with Van Albada type limiters. This produces a space accuracy of order two. Let us mention that for solution of the steady system, an explicit multi-stage pseudo-time integration which does not influence the spatial accuracy is applied.

We evaluate the cost function at a plane $z = -R$, where R is a multiplier constant of the aircraft length (i.e. $R = L, R = 2L, R = 3L$ etc.). This plane is determined as an intersection of mesh elements (tetrahedrons) and the plane represented by the equation $z = -R$. The cost function is computed over intersection points between mesh and a plane. The cost function is defined by:

$$j(W, \gamma) = \left(\sum_{ifac} |ifac| (P_{ifac} - P_{target_{ifac}})^2 \right) / n_{fac}$$

where $|ifac|$ is the area of the face $ifac$, this face is obtained by intersection of a mesh element and the plane, then the result face is or a triangle or a polygon of four points. n_{fac} is the number of intersected faces. P_{ifac} is the pressure value at the face $ifac$, and is obtained by interpolation of pressure values computed in $ifac$ nodes. $P_{target_{ifac}}$ is the desired pressure value at the face $ifac$. The target pressure at a plane z is defined with respect to the flight direction.

Here, for example, aircraft flies in the x-axis direction, and then we get an interval observation of the pressure chock, which is larger than the pressure at infinity. Then we chop pressure value in the interval at infinity pressure value.

Then the minimum we are looking for is the solution of the following Karush-Kuhn-Tucker (KKT) system:

$$\begin{align*}
\Psi(\gamma, W) &= 0 \\
\frac{\partial J}{\partial W}(\gamma, W) - \left(\frac{\partial \Psi}{\partial W}(\gamma, W) \right)^* \Pi &= 0 \\
\frac{\partial J}{\partial \gamma}(\gamma, W) - \left(\frac{\partial \Psi}{\partial \gamma}(\gamma, W) \right)^* \Pi &= j'(\gamma) = 0
\end{align*}$$

The residual for adjoint state Π and the functional gradient software are developed with the help of reverse Automatic Differentiation, (see [6]).
3. COUPLING IN DISCRETE CASE

We discuss now the strategy for combining a high-level mesh adaptation and the solution of the KKT system.

3.1. MINIMIZING FOR A FIXED MESH

Assuming we are applying a steepest descent algorithm, we need to identify which part of it cannot perform well when the mesh is changed. Our option is still to use an exact gradient approach in order to keep a reliable descent direction. Then the following sequence is applied with a fixed mesh:

Gradient and line search:
- compute the flow (state equation),
- compute the adjoint state,
- compute the (exact) gradient of functional,
- line search in the descent direction.

This algorithm is a steepest descent one but the method proposed in the sequel also applies if the “line search” is replaced by a trust-region algorithm as in SQP.

3.2. MESH ADAPTATION FOR A FIXED CONTROL

Mesh adaptation provides a way of controlling the accuracy of the numerical solution by modifying the domain discretization according to size and directional constraints. For stationary problems, the mesh adaptation scheme aims at finding a fixed point for the mesh-solution couple. In other words, the goal is to converge towards the stationary solution of the problem and similarly towards the corresponding invariant adapted mesh. At each stage, a numerical solution is computed on the current mesh with the Euler flow solver and has to be analyzed by means of an error estimate. The considered error estimate aims at minimizing the interpolation error in norm L^p, thus it is independent of the problem at hand. From the continuous metric theory in [1], an analytical expression of the optimal metric is exhibited that minimizes the interpolation error in norm L^p. This anisotropic metric is a function of the Hessian of the solution which is reconstructed from the numerical solution by a double L^2 projection. This metric will replace the Euclidean one to modified the scalar product that underlies the notion of distance used in mesh generation algorithms. Next, an adapted mesh is generated with respect to this metric where the aim is to generate a mesh such that all edges have a length of (or close to) one in the prescribed metric and such that all elements are almost regular. Such a mesh is called a unit mesh. The volume mesh is adapted by local mesh modifications of the previous mesh (the mesh is not regenerated) using mesh operations: vertex insertion, edge and face swap, collapse and node displacement. The vertex insertion procedure uses an anisotropic generalization of the Delaunay kernel. Finally, the solution is linearly interpolated on the new mesh. This procedure is repeated until the convergence of the solution and of the mesh is achieved. Practically, here we consider the continuous metric controlling the L^2 norm of the error.
3.3. COUPLED ITERATION

The flow changes when the shape is changed. We shall refer to static adaptation when only one shape and one flow are concerned, and dynamic adaptation else. This leads to introduce two kinds of coupling between adaptation and optimisation:

3.3.1. WEAK COUPLING BETWEEN OPTIMIZATION AND ADAPTATION: It relies on a static anisotropic adaptation algorithm relying on the Hessian-based continuous metric method described in [1]:

Algorithm 1: static adaptation/gradient step

Input: \mathcal{M}_0, γ_0
Output: $\mathcal{M}, \gamma_{opt}$, the converged mesh and optimal shape

1. Do
2. Do
 2.1. compute on current mesh the flow (state equation),
 2.2. compute the metrics for flow in steps 2, build a new mesh specified by the new metric and by a fixed number N of nodes,
While adaptation is not converged.

3. compute on current mesh the adjoint state,

4. compute on current mesh the (exact) gradient of functional,

5. perform on current mesh line search in the descent direction,

6. update control
While control is not optimized.

3.3.2. STRONG COUPLING: A mesh that is accurately adapted to a flow will be much less accurate when used for computing an -even slightly- different flow. Then starting a line search with a mesh adapted to the first flow may result in poor evaluation of the other flows and a poor evaluation of the descent step length. To avoid this, we adapt the transient fixed point adaptation method introduced in [2]. In the fixed-point adaptation/gradient loop, the mesh is adapted to the k-th gradient+search step by adapting it to all the flows of this step:

- to each flow correspond an optimal metric,
- the intersection of all these metrics is computed,
- the adapted mesh is built from this intersection metric.
One observe that the adapted mesh cannot be built before the concerned flow are evaluated, which means an implicit coupling needs to be solved. We solve it by a fixed point:

Algorithm 2: dynamic adaptation/gradient step:

Input: M_0, γ_0

Output: M, γ_{opt}, the converged mesh and optimal shape

1- Do

2- Do

2.1- compute on current mesh the flow (state equation),

2.2- compute on current mesh the adjoint state,

2.3- compute on current mesh the (exact) gradient of functional,

2.4- compute the intersection of metrics for each intermediate flow in steps 2.1-2.3,

2.5- build a new mesh specified by the intersected metric and by a fixed number N of nodes,

While adaptation is not converged.

While control is not optimized.

Process is considered as converged in step 7 when the difference between two metrics is small. In practice, this fixed point iterates about 5 times. Computing expenses can be reduced by saving and transferring flow arrays between remeshings. The fixed point adaptation/gradient step is then itself included in the gradient loop.

It is necessary to fix the number of nodes or a certain level of accuracy in order to have, in the fixed-point process a well-posed problem with respect to the metric. It is possible to imagine to vary this number of nodes from one gradient step to the other, but this requires some clever martingale. In the experiments presented in the sequel, we have fixed N.

4. APPLICATION TO PROBLEM UNDER STUDY

Preliminary optimization computations have been applied to an HISAC test case. We describe in table 1, the initial configuration used to perform the strong coupling computation.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial mesh vertices size</td>
<td>42120</td>
</tr>
<tr>
<td>Initial mesh elements size</td>
<td>223657</td>
</tr>
<tr>
<td>MACH number</td>
<td>1.6</td>
</tr>
<tr>
<td>Angle of attack</td>
<td>3</td>
</tr>
<tr>
<td>Aircraft lenght</td>
<td>30m</td>
</tr>
<tr>
<td>Observation plane</td>
<td>$z = -R = -30m$</td>
</tr>
<tr>
<td>Number of optimization iterations</td>
<td>10</td>
</tr>
<tr>
<td>Number of mesh adaptation iterations by one optimization iteration</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 1: table of simulation parameters

Figure 2 shows the horizontal cuts of pressure value at $z = -30m$ in order to compare the initial flow and the final flow after optimization. We observe that the first shock focalisation of initial flow is well weakened.

Figure 3 shows on the right the evaluation of functional during the coupled loop. The oscillations observed in the functional curve are associated to the mesh adaptation phase which is devoted to find the best adapted mesh and then ensure the good evaluation of the functional. This mesh adaptation influence over global optimization loop gives us a computation certainty along optimization cycle.

On the left of the figure 3 we depict the progress obtained on the nearfield pressure after optimization. The red line (green line) corresponds to the initial (final) nearfield pressure respectively.

Figure 4 shows the reduction obtained after propagation of the nearfield pressure to the ground.

Figure 2. Sonic boom mesh-adaptive reduction: initial (left) and final (right) pressure distribution at the plane $z = -30m$.

Figure 3. Left: Pressure reduction measured at $z = -30m$. Right: cost reduction during the dynamic adaption.

The final mesh and the associated final pressure distribution is presented on the figure 5.
Figure 4. Sonic boom mesh-adaptive reduction: initial (red line) and final (green line) pressure signature after propagation of the nearfield pressure distribution to the ground.

Figure 5. Left: Pressure distribution. Right: Associated adapted mesh.

5. CONCLUDING REMARKS

We have addressed a design problem in which mesh adaptation is a constraint as important as the state equation. Further, this constraint is strongly nonlinear. The solution we propose solves this nonlinear constraint during the whole optimisation algorithm, that is also during the choice of descent step. At this price the optimization can be successfully performed.

REFERENCES

Copyright © 2007 John Wiley & Sons, Ltd. ICNFD-NMFD 2007: 03:1–6
Prepared using f1dauth.cls
