Using Automatic Differentiation to study the
sensitivity of a crop mode
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Abstract Automatic Differentiation (AD) is often applied to codesttsolve partial
differential equations, e.g. in geophysical sciences anQudational Fluid Dynam-
ics. In agronomy, the differentiation of crop models hasamdeen performed since
these models are more empirical than derived from equatibms study shows
the feasability of constructing the adjoint model of a cropdel referent in the
agronomic community (STICS) with the TAPENADE tool, and thee of this ac-
curate adjoint to perform some sensitivity analysis. Thipgy reports on the expe-
rience from AD users of the environmental domain, in which @éage is not very
widespread.
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1 Theapplication domain: the agronomic crop model STICS

STICS [2, 3] is a crop model with a daily time step. Its main &no simulate the
effects of the physical medium and crop management schedtikgtions on crop
production and environment at the field scale. From the ch@riaation of climate,
soil, species and crop management, it computes outputlesiselated to yield in
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terms of quantity and quality, environment in terms of dagi@ and nitrate leaching,
and to soil characteristics evolution under cropping syste

The two key output variables simulated by STICS that we vékd in this paper
are the Leaf Area Index (LAI) and the biomass. The LAl is thaltone-sided area
of leaf tissue per area of ground surface (unitless). Thésdanopy parameter that
directly quantifies green vegetation biomass. As the leaxe@sonsidered to be the
main interfaces with the atmosphere for the transfer of naassenergy 7], the
LAl indirectly describes properties such as potential aftolynthesis available for
primary production, plant respiration, evapotranspiratind carbon flux between
the biosphere and the atmosphere, and gives evidence akkeedfected areas
(fires, parasites. ..). Because it is the most observablepygparameter by remote
sensing, the LAI is very commonly used e.g., in crop perfaroeaprediction [7],
in models of soil-vegetation-atmosphere [15], in crop ned2, 3], in radiative
transfer models [19]. Its values can range from 0 for baréteob-7 for a crop
during its life cycle, and up to 15 in extreme cases (tropicadsts).

Leaf Area Index
(LAI)
Fig. 1 Simplistic scheme of
the stages simulated by the
STICS model on dynamics of : P
LAL iLEV IAMF iLAX iSEN iMAT

Time

STICS simulates the crop growth from sowing to harvest, $otyon the evolu-
tion of the LAl at a few selected [2] vegetative stages showirig. 1. These stages
involve process thresholds, accounting for some of theuwdfitiation problems de-
scribed in Sect. 3.2. For a wheat crop, the main phenologteales are known as
ear at 1 cmheading flowering andmaturity. In this work we do not simulate grain
yield but only the total biomass. As we focus on the LAI, weyordnsider the veg-
etative stages namely: LEV (emergence or budding), AMF (mar acceleration
of leaf area index, equivalent &ar at 1 cn), LAX (maximum LAl i.e. end of leaf
growth), and SEN (start of net senescence).

2 Sensitivity Analysis

A model is a more or less realistic or biased simplificatiorttef state variables

it simulates. This is especially true for agronomic modsiisce the functioning of
vegetation is no& priori described by exact equations: agronomic models attempt
to predict the behavior of the crop by incremental improvetaef the simulation
code, based on observations made on the field and then prdblishspecialists.
Thus, in some parts of the model, this empirical approachivased on the equa-
tions of some underlying physics or chemistry. Sensitiaitalysis, which studies

1 http:/Avww.avignon.inra.fr/agroclinstics eng
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the impact of perturbing the control parameters on the modggut, gives insights
useful to improve or even simplify the model. Sensitivityabysis takes two essen-
tial ingredients:

e Amodel:F(X,K) =0, whereX is the state variable (LAI, biomass . ..) akdhe
control variables (parameters, forcing variables .F.}s a differential operator
a priori non-linear finite-dimensional, that describes implicitig evolution of
X for a givenK. We assume that the system has a unique solXti@). In this
study, what we call the model is exactly the STICS computegam.

e A response functios which combines one or more elementsXointo a scalar
value, e.g. the final value or the integral over time of an outphe problem is
to evaluate the sensitivity @ with respect tK or in other words the gradient
of G with respect tK.

With the help of the adjoint model, computing the gradiefketaonly 2 steps:
run the direct model once for the givéy then solve the adjoint model once [12].
The classical justification is:

_dG'_ (dG dx\'_ /dX\" (dG)!
~dk \dX'dk/) \dK/ "\ dX
where we observe thﬁg is easily computed from the definition Gfalone and the

product ofg—fét with a vector is achieved by feeding this vector to the adjoode
of STICS, produced by the adjoint mode of Automatic Diffdiation.

Sensitivity analysis using an adjoint model is the only wagalculate formally
the gradient of the response function at a cost that doesapetd on the size ¢.
Itis particularly suitable when the number of entriéss large compared to the size
of the response functioB[14, 13].

One can also compute the gradient accurately with tangreed differentiation,
at a cost that is proportional to the sizekf The other sensitivity methods only
approximate the gradient: finite difference approximatibthe gradient require ex-
tensive direct model computations [4]. Stochastic sangpthniques require less
mathematical insight as they consist (roughly speakingxiploring the space of
control to determine an overall global sensitivity [17, 1Dheir cost grows rapidly
with the dimension oK. These methods have been widely applied to the agronomic
models and in particular on STICS [9, 16, 18].

If in many cases, the response funct®iis a differentiable function oK, it can
happen that the model is driven by thresholds e.g., the csele ailot of branches.
Theoretically, a piecewise continuous function is not cardgusly differentiable,
but it has right- and left-derivatives. Differentiation ich a code can only return
a sub-gradient. Actually, the methods that do not rely oiivdgves (divided differ-
ences, stochastic,. ..) behave better in these caseqglitioey remain expensive.
In practice, this problem is not considered serious as lerh@local sensitivity is
valid in a neighborhood of the currekit

UG
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3 Automatic Differentiation of STICS

3.1 The TAPENADE Automatic Differentiaton tool

TAPENADE [8] is an Automatic Differentiaton (AD) tool baset source transfor-
mation. Given a source program written in FORTRAN, TAPENADE!ds a new
source program that computes some of its derivatives. img&at” mode, TAPE-
NADE builds the program that computes directional derixesi In “adjoint” mode,
TAPENADE builds the program that computes the gradient efdhtput with re-
spect to all input parameters.

Considering the complete set of derivatives of each outptlit kgspect to each
input, i.e. the Jacobian matrix of the program’s functidre tangent mode yields
a column of the Jacobian whereas the adjoint mode yields eofdaive Jacobian.
Therefore in our particular case where the output is a s&Glane run of the adjoint
code will return the complete gradient. In contrast, it sakae run of the tangent
mode per input to obtain the same gradient. Although we willegiment with the
two modes, the adjoint mode fits our needs better.

However, the adjoint mode evaluates the derivatives inthierse of the orig-
inal program’s execution order. This is a major difficulty farge programs such
as STICS. The AD model copes with this difficulty by a combimatof storage of
intermediate values and duplicated evaluation of the maigbrogram, at a cost in
memory and execution time. In TAPENADE, the strategy is igdsased on stor-
age of intermediate values, combined with the storagefngate tradeoff known as
checkpointing, applied automatically at each procedulle ca

3.2 STICS adjoint : the pains and sufferings of an AD end-user

The STICS model being written in FORTRAN 77, TAPENADE cantieary build
its adjoint. However, there were shortcomings with theyeadrsions of TAPE-
NADE, before 2005. Later versions brought notable improsets but we believe
it is worth describing the main problems that we encountatdtiese early stages.
AD allows for instructions which the symbolic differeni@t systems cannot
process. It also provides a real gain in computational tidewvever, a few good
programming practices are recommended: the input parasnetelved in deriva-
tives must be clearly identified and if possible separatenftbe other variables.
The same holds for the outputs to be differentiated. Theigmaclevel of all float-
ing point variables must be coherent, especially for véilisepurposes: if the chain
of computation is not completely “double precision”, thére tivided difference
that is used to validate the analytic derivatives will haymar accuracy, validation
will be dubious and may even fail to detect small errors indifierentiated code.
Validation helped us detect small portability problems THGS. As divided dif-
ferences requires to call STICS twice, we discovered thatduccessive calls to
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STICS apparently with the same inputs gave different restitfact the first call
was different from all the others, which pointed us to a peabbf hidden uninitial-
ized remanent global. Fixing this gave us correct dividdtedinces, and a more
portable STICS code.

More specifically to this agronomy application, we had peots with the high
number of tests and other conditional jumps in an averagelrumore classical
situations of Scientific Computing, programs are derivednfimathematical equa-
tions, typically a set of ODE’s or PDE’s. This forces someulagty into the code
that discretizes and solves these equations: even if beandt occur, they rarely
introduce discontinuity and the derivative itself oftemmians continuous. In our
application, the program itself basically is the equatibne model evolves by in-
troducing by hand new subcases and subdivisions, i.e. mstg. if this evolution
is not made with differentiation in mind, it may introduceasp discontinuities that
do not harm the original code but make it non-differentialileook time to replace
faulty branches with a cleaner, differentiable implem#ata On the other hand,
users agreed that this resulted in a better code.

Still, the number of branches in the STICS model is very latigeesholds, con-
ditions, loops, and other control all are tests that theiatijgpde must remember
to run backwards. STICS consumes an unusually large memoithdt. Until re-
cently, TAPENADE did not store this control efficiently, ngi a full INTEGER
value to store only a boolean in general.

Checkpointing the time stepping was difficult. Before binalmheckpointing [5]
was implemented in TAPENADE, we had to split the main timeplad 400 itera-
tions into two nested loops of 20 iterations each, and plaese two loops into two
new subroutines to force checkpointing. This tedious maatpns are now spared
with the new TAPENADE directives for binomial checkpoirgin

More than five years after this sensitivity study, both STI&® TAPENADE
have evolved. The latest version 6 of STICS is more readifgerintiable than be-
fore. TAPENADE 3.6 had several bugs fixed and more impornggrtvides a set of
user directives to control checkpointing better. Theseckbeinting directives are
also the answer to the serious performance problem distis&ect. 3.3.

3.3 Validation of the adjoint model

Validation was performed in two steps as usual, and for s¢d@nections of pertur-
bation. First, the tangent derivatives were compared witlded differences, and
they agreed up to théBdecimal for an increment of 1§ in the one-sided divided
difference. Second, the adjoint derivatives were compuaiigtthe tangent deriva-
tives (“dot-product” test [6]) and they agreed up to th& Tecimal. At the time of
the study, the run times were:

Direct model : 021s Tangent model : 39 Adjoint model : 3096s
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The run time of the adjoint code is much higher than the custang 5- to 10-fold
slowdown. The problem was left to the TAPENADE developergdoon with the
sensitivity study. ldentifying its causes was hard, andhieal to the need for spe-
cific profiling tools for adjoint codes. Profiling instructis must be inserted by the
AD tool itself, and tools are missing to help interpret thefiiing results. Even-
tually, the problem was found to come from the systematickpeinting on pro-
cedure calls on a chain of 4 nested procedure calls, eacltenf tioing little else
than calling the next nested cadf, Fig. 2. Checkpointing [6] one call tB reduces
the peak memory used by the adjoint. This reduction is rqugtdportional to the
run-time of P. On the other hand, it costs one extra rurPpfplus some memory
(a “snapshot”) to restore the execution state. Checkpwjmested calls causes an
increasing number of extra runs. This is inherent to the @ggr and beneficial in

Bﬁ IE': original P

BERG (& adoinee, e
: adjointP,

B 6 backward sweep

‘ : take snapshot
<D—| I—D>> <<D—| (I: use snapshot

Fig. 2 The cost of checkpointing long chains of nested calls

general, but is a waste for procedures that are nearly erhptissaround a deeper
call. In our case, the problem was amplified by the size of w bigy work array that
was restored at each checkpoint. The answer is to deactiiatkpointing on the
calls to the “empty shell” procedures. This is known as th@it'smode of adjoint
AD [6], and is sketched on the right of Fig. 2. This requireglelepment in TAPE-
NADE, plus new directivesfAD NOCHECKPQO NT) to let the user trigger this split
mode on selected procedure calls. Conversely in other casssuseful to trig-
ger checkpointing on pieces of a procedure, and TAPENADE diesctives $§AD
CHECKPO NT- START) and $AD CHECKPO NT- END) let the user do that. This
results in the following times obtained with TAPENADE 3.6:

Direct model : 022s Tangent model : 32s  Adjoint model : 086s

4 Results: senditivity analysisof STICS

We computed the gradients of two response functi@ng Al and biomass, and
more precisely their integrals over the simulation timefigowing to harvest. These
response functions capture well the growth dynamics.
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4.1 Selection of input parametersfor sensitivity analysis of output
variables

For this feasibility study, the control variables corresgpdo wheat crops from the
Danube’s plain in Romania in 2000-2060[11]. The gradient was calculated with
respect to the following input paramet&réor LAI, we chose the varietal param-
eters acting on the dynamics of LAI, animaxbrutthat strongly characterizes
the aerial growth. Parameters were adapted to the ADAM dagglincluding the
variety of wheat (Flamura) used here for its particular gekistance. For biomass,
efficiencies at three important phases of the cycle of wheatKile phases, vegeta-
tive and grain filling) andyrmax2were chosen following the experience accumulated
by users of the crop model. Table 1 describes the role of thaseneters, and their
values for this sensitivity study.

Table1 Parameter role and values for the ADAM conditions

parameter  definition value
dlaimaxbrut maximum rate of gross leaf surface area production 0.00044
stlevamf  cumulated development units between the LEV and AMF stages 29288.
stamflax ~ cumulated development units between AMF and LAX stages 181.688
jve days of vernalisation (cold days needed to lift) 35
durvieF lifespan of a cm of adult leaf 160

adens compensation between number of stems and plants density -0.6

efcroijuv  maximum growth efficiency during juvenile phase (LEV-AMF) 2.2
efcroiveg  maximum growth efficiency during vegetative phase (AMF-DRPR 2.
efcroirepro  maximum growth effiicency during grain filling phase (DRP-MATR8
vmax2 maximum rate of nitrate absorption by the roots 0.05

4.2 Sensitivity results of LAI and biomass

One goal of this sensitivity study was to establish the h@maof influent parame-
ters. Therefore Fig. 3 shows the 10 influences normalizecaeptages, totalling
100%. Among the 10 selected, the most influential parametetise LAl areadens

2 ADAM experiment (Data Assimilation through Agro-Modelling)rdfect and database at
http://kalideos.cnes.fr/spip.php?article68

3 All the parameters of STICS are described in

http://www.avignon.inra.fr/agroclinstics eng/noticesd_utilisation
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(47%), dlaimaxbrut(21%), stlevamf(17%), jvc (10%), and finallystamflax(2%).
adengrepresents the ability of a plant to withstand increasingsites, and since it
depends on the species and varieties, its influence may tieupery strong for this
type of wheat and less for other crops. For biomass, we obskat the hierarchy is
modified by the strong influence of the efficiersfgroiveg(maximum growth effi-
ciency during vegetative phase) which is similar to thea@éns27%). This means
that we can ignore the estimateeitroivegif we only want to assimilate LAI data,
but absolutely not if we need to simulate biomagkevmafanddlaimaxbrutare of
similar importance (14 and 12%). Finally, there is a reliiMow sensitivity (5%
and 3%) of biomass integrated over the life cycle to the otiver parameters of
efficiency efcroireproand efcroijuy, meaning that the biomass is not so dependant
on the juvenile and the grain filling phases but essentiallyhe vegetative phase.
The fact that only the integral over the entire cycle wasistlithvolves a very small
influence of the parameteescroireproandefcroijuy, as opposed tefcroiveg These
efficiencies with a small influence matter only during shwtipological stages: only
a sensitivity study restricted to these stages can modihibrarchy of influent pa-
rameters, opening the way to estimation of these low-inflagrarameters [16]. LAI
is actually dependant on 4 parameters and biomass on 5 o0 test&d, which will
help the user concentrate on these and estimate them hittertainty on the other
parameters is of relatively smaller importance.

5 Conclusion and outlook

This case study illustrates the interest of AD for sengitiginalysis of agronomic
models. It can as well be used for assimilation of remoteisgndata into crop
models, for precision agriculture [7], in radiative tragrsimodel [11], by using the
adjoint to minimize the discrepancy cost function. This kvehows the feasability
of applying and developing variationnal methods in agropdmthe same way as
in oceanography or meteorology.

100%- = = = = = oo
s
607 e
L
207 e T
O%Il"'.

. stlevamf jvc . adens | efcroiveg |  vmax2
dlaimaxbrut stamflax durvieF efcroijuv efcroirepro

Fig. 3 Relative sensitivity (%) to selected STICS parameters of ouptitibles LAI (left) and
biomass (right) computed by the adjoint.
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For the agronomic community, the adjoint model of STICS isr@resting tool
to perform sensitivity analysis since it requires the cltion only once for each
agro-pedo-climatic situation. The most difficult work ietdifferentiation of the
model, which must be done only once, and with the help of AOstdlbat keep
improving. However, the local sensitivity analysis is dadinly in a small neighbor-
hood and the hierarchy of sensitivities may vary under diffie conditions. These
results are only a first step. Following work could concdetrm:

1. a“multi-local” sensitivity analysis, keeping the cromnagement and climate of
the base ADAM, but letting the parameters vary in a given earighis would
require many runs of the adjoint modes on a representativplsaof possible
parameter values. This would return a parameter hierardtiyanmore general
validity.

2. an application of this analysis to other conditions (elie) soil...) to see whether
the hierarchy is preserved in general. Extending to otheeties is also impor-
tant. Actually, it seems unlikely that this hierarchy isggeved since the change
of climate and soil conditions may rapidly hit limiting facs (stress for the plant)
and thus modify the parameters influence.

3. astudy of the sensitivity at selected phenological Saf¢he cycle to study the
effect of variables temporally valid (especially efficighon the general hierar-
chy.

The adjoint code is able to compute the sensitivities of @spanse function to
all parameters in just one run. There are more parametersl@S3than the 10 we
have selected for this sensitivity study. Looking at theuiafice of all parameters
will guide the attention of STICS users on some parametatsrasdules, according
to the users’ objectives. Sensitivity study is a prelimyniar parameter estimation:
many of these agronomic parameters (yield, balance .. Nardirectly observable
by remote sensing. On the other hand the outputs (biomasd)eameasured. The
adjoint of the model, by returning the gradient of any dipamcy cost function,
is the key to estimate these hidden agronomic parameters thhe ones we can
measure.
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