3D ANISOTROPIC MESH ADAPTATION FOR FUNCTIONAL OUTPUTS

Adrien Loseille(*), Alain Dervieux(**) and Frédéric Alauzet(***)

${ }^{*}$)CFD, George Mason University, Fairfax, VA
(**)INRIA - Tropics project Sophia-Antipolis, France
(***)INRIA - Gamma Project Rocquencourt, France alain.dervieux@inria.fr

ECCM 2010, Paris, may 16-21, 2010

Why can we be interested by mesh adaptation?

Mesh adaptation does:

- not simplify you algorithm,
- not show an asymptotical convergence order higher than non-adaptive algorithms when computing a smooth solution.

What we expect is that mesh adaptation does:

- improve the early phase of convergence,
- produce high order convergence for computing non-smooth solutions.

Improving the early phase of convergence

Example: convergence towards a smooth but stiff arctangent solution:

Abscissae: number of nodes, from 0 to 1000 ; ordinates: L^{1} error norm, from 10^{-5} to 1 . Upper curve: uniform refinement, Lower curve: adaptive refinement.

Improving the convergence to non-smooth solutions

Example: convergence towards a discontinuous Heaviside-like solution:

Abscissae: number of nodes, from 0 to 1000; ordinates: L^{1} error norm, from 10^{-5} to 1 . Upper curve: uniform refinement, Lower curve: adaptive refinement.

Setting mesh adaptation as an optimisation problem:

Starting from the initial ill-posed problem,

Find an optimal mesh $\mathcal{H}_{\text {opt }}(u)$ having N vertices such that $\mathcal{H}_{\text {opt }}(u)=\operatorname{Arg} \min _{\mathcal{H}} \mathcal{E}(\mathcal{H})$

- Which parameter for optimisation?
- For minimising what?
(1) Concept of metric-based mesh adaptation
(2) Multi-scale mesh adaptation
(3) Goal-oriented mesh adaptation

1. Concept of metric-based mesh adaptation

 What is a Metric ?- Canonical Euclidean space:

$$
\langle\mathbf{u}, \mathbf{v}\rangle={ }^{t} \mathbf{u} \mathbf{v} \quad \Longrightarrow \quad \ell(\mathbf{a}, \mathbf{b})=\sqrt{t^{t} \mathbf{a b} \mathbf{a b}}
$$

- Euclidean metric space: $\mathcal{M}: d \times d$ symmetric definite positive matrix

$$
\langle\mathbf{u}, \mathbf{v}\rangle_{\mathcal{M}}={ }^{t} \mathbf{u} \mathcal{M} \mathbf{v} \Longrightarrow \ell_{\mathcal{M}}(\mathbf{a}, \mathbf{b})=\sqrt{{ }^{t} \mathbf{a b} \mathcal{M} \mathbf{a b}}
$$

- Riemannian metric space:
$(\mathcal{M}(\mathbf{x}))_{\mathrm{x} \in \Omega}$

$$
\ell_{\mathcal{M}}(\mathbf{a b})=\int_{0}^{1} \sqrt{{ }^{t} \mathbf{a b} \mathcal{M}(\mathbf{a}+t \mathbf{a b}) \mathbf{a b}} \mathrm{d} t
$$

Continuous Mesh

Definition

- function $\mathbf{M}: \mathbf{x} \in \Omega \mapsto \mathcal{M}(\mathbf{x})$,
- density: $d=\frac{1}{h_{1} h_{2} h_{3}}=\sqrt{\lambda_{1} \lambda_{2} \lambda_{3}}$,
- n anisotropic quotients $r_{i}=\frac{h_{i}^{3}}{h_{1} h_{2} h_{3}}$
- complexity \mathcal{C} :

$$
\mathcal{C}(\mathbf{M})=\int_{\Omega} d(\mathbf{x}) d \mathbf{x}=\int_{\Omega} \sqrt{\operatorname{det}(\mathcal{M}(\mathbf{x}))} d \mathbf{x} .
$$

Matrix writing

$$
\mathcal{M}(\mathbf{x})=d^{\frac{2}{3}}(\mathbf{x}) \mathcal{R}(\mathbf{x})\left(\begin{array}{ccc}
r_{1}^{-2 / 3}(\mathbf{x}) & & \\
& r_{2}^{-2 / 3}(\mathbf{x}) & \\
& & r_{3}^{-2 / 3}(\mathbf{x})
\end{array}\right)^{t} \mathcal{R}(\mathbf{x})
$$

Continuous Mesh Framework

The continuous mesh parametrisation to solve mesh adaptation writes:

Discrete
Element K
Mesh \mathcal{H} of Ω_{h}
Number of vertices N_{v}
\section*{Continuous}
Metric tensor \mathcal{M}
Riemannian metric space $\mathbf{M}=(\mathcal{M}(\mathbf{x}))_{\mathbf{x} \in \Omega}$
Complexity $\mathcal{C}(\mathbf{M})=\int_{\Omega} \sqrt{\operatorname{det}(\mathcal{M}(\mathbf{x}))} d \mathbf{x}$

Generation of Adapted Discrete Meshes

- Main idea: change the distance evaluation in the mesh generator [Vallet, 1992], [Casto-Diaz et AI., 1997], [Hecht et Mohammadi, 1997]
- Fundamental concept: Unit mesh

Adapting a mesh

Generating a uniform mesh w.r. to $\mathcal{M}(\mathbf{x})$
\mathcal{H} unit mesh $\Longleftrightarrow \forall \mathbf{e}, \ell_{\mathcal{M}}(\mathbf{e}) \approx 1$ and $\forall K,|K|_{\mathcal{M}} \approx\left\{\begin{array}{l}\sqrt{3} / 4 \text { in 2D } \\ \sqrt{2} / 12 \text { in 3D }\end{array}\right.$

Outline

(1) Metric-based mesh adaptation
(2) Multi-Scale Mesh Adaptation

3 Goal-oriented mesh adaptation

Minimizing the Interpolation Error in \mathbf{L}^{p}-norm

Starting from the initial ill-posed problem,
Find an optimal mesh $\mathcal{H}_{\text {opt }}(u)$ having N vertices such that $\mathcal{H}_{\text {opt }}(u)=\operatorname{Arg} \min _{\mathcal{H}}\left\|u-\Pi_{\mathcal{H}} u\right\|_{L^{\rho}(\Omega)}$
where $\Pi_{\mathcal{H}}$ is the P_{1} interpolation on mesh \mathcal{H},
We get a still ill-posed problem:
Find the continuous mesh $\mathcal{M}_{\text {opt }}$ having N vertices such that
$\mathcal{M}_{\text {opt }}(u)=\operatorname{Arg} \min _{\mathcal{M}}\left\|u-\Pi_{\mathcal{H}} u\right\|_{L^{p}(\Omega)}$

Continuous Mesh Framework

We proposed a continuous mesh framework to solve this problem

Discrete
Element K
Mesh \mathcal{H} of Ω_{h}

Number of vertices N_{v}

Linear interpolate $\Pi_{h} u$

Continuous

Metric tensor \mathcal{M}
Riemannian metric space $\mathbf{M}=(\mathcal{M}(\mathbf{x}))_{\mathbf{x} \in \Omega}$
Complexity $\mathcal{C}(\mathbf{M})=\int_{\Omega} \sqrt{\operatorname{det}(\mathcal{M}(\mathbf{x}))} d \mathbf{x}$
Continuous linear interpolate $\pi_{\mathcal{M}} u$

$$
\mathcal{M}(\mathbf{x})=d^{\frac{2}{3}}(\mathbf{x}) \mathcal{R}(\mathbf{x})\left(\begin{array}{ccc}
r_{1}^{-2 / 3}(\mathbf{x}) & & \\
& r_{2}^{-2 / 3}(\mathbf{x}) & \\
& & r_{3}^{-2 / 3}(\mathbf{x})
\end{array}\right)^{t} \mathcal{R}(\mathbf{x})
$$

Continuous Interpolation Error

For any K which is unit for \mathcal{M} and for all u quadratic positive form ($u(\mathbf{x})=\frac{1}{2}{ }^{t} \mathbf{x} \mathbf{H}$):

$$
\left\|u-\Pi_{h} u\right\|_{\mathbf{L}^{1}(K)}=\frac{\sqrt{2}}{240} \underbrace{\operatorname{det}\left(\mathcal{M}^{-\frac{1}{2}}\right)}_{\text {mapping }} \underbrace{\operatorname{trace}\left(\mathcal{M}^{-\frac{1}{2}} H \mathcal{M}^{-\frac{1}{2}}\right)}_{\text {anisotropic term }}
$$

Continuous interpolation error:

$$
\forall \mathbf{x} \in \Omega, \quad\left|u-\pi_{\mathcal{M}} u\right|(\mathbf{x})=\frac{1}{10} \operatorname{trace}\left(\mathcal{M}(\mathbf{x})^{-\frac{1}{2}}|H(\mathbf{x})| \mathcal{M}(\mathbf{x})^{-\frac{1}{2}}\right)
$$

equivalent because:

$$
\frac{1}{10} \operatorname{trace}\left(\mathcal{M}(\mathbf{x})^{-\frac{1}{2}}|H(\mathbf{x})| \mathcal{M}(\mathbf{x})^{-\frac{1}{2}}\right)=2 \frac{\left\|u-\Pi_{h} u\right\|_{\mathbf{L}^{1}(K)}}{|K|}
$$

for any K which is unit with respect to $\mathcal{M}(\mathbf{x})$.

Minimizing the Interpolation Error in \mathbf{L}^{p}-norm

A well-posed problem

Find $\mathbf{M}_{\text {opt }}=\left(\mathcal{M}_{\text {opt }}(\mathbf{x})\right)_{\mathbf{x} \in \Omega}$ of complexity N such that

$$
\begin{aligned}
E_{\mathcal{M}_{\text {opt }}}(u) & =\min _{\mathcal{M}}\left\|u-\pi_{\mathcal{M}} u\right\|_{\mathcal{M}, \mathrm{L}^{p}(\Omega)} \\
& =\min _{\mathcal{M}}\left(\int_{\Omega}\left|u(\mathbf{x})-\pi_{\mathcal{M}} u(\mathbf{x})\right|^{p} \mathrm{~d} \mathbf{x}\right)^{\frac{1}{p}}
\end{aligned}
$$

Solved by a calculus of variations.

Minimizing the Interpolation Error in \mathbf{L}^{p}-norm

Optimal metric

$$
\mathcal{M}_{L p}=D_{L p}\left(\operatorname{det}\left|H_{u}\right|\right)^{\frac{-1}{2 p+3}} \mathcal{R}_{u}^{-1}|\Lambda| \quad \mathcal{R}_{u}
$$

(1) Global normalization: to reach the constraint complexity N

$$
D_{L^{p}}=N^{\frac{2}{3}}\left(\int_{\Omega}\left(\operatorname{det}\left|H_{u}\right|\right)^{\frac{p}{p p+3}}\right)^{-\frac{2}{3}} \text { and } D_{\mathrm{L} \infty}=N^{\frac{2}{3}}\left(\int_{\Omega}\left(\operatorname{det}\left|H_{u}\right|\right)^{\frac{1}{2}}\right)^{-\frac{2}{3}}
$$

(2) Local normalization: sensitivity to small solution variations, depends on \mathbf{L}^{p} norm chosen
(3) Optimal anisotropy directions based on Hessian eigenvectors
(4) Diagonal matrix of anisotropy strengths, defined from the absolute values of Hessian eigenvalues

Multi-Scales Mesh Adaptation

In contrast to error equidistribution (L^{∞}-based), the L^{p} allows
capturing the different scales. Example on a non-regular solution:

Multi-Scales Mesh Adaptation

Example on a non-regular solution (cont'd):

L^{2}-adaptation

L^{∞}-adaptation

Mesh Adaptation Algorithm for PDEs

Mesh adaptation is a non-linear problem

\Longrightarrow an iterative process is required to converge the couple mesh-solution

A Supersonic Aircraft

Supersonic CFD simulation on the supersonic business jet provided by Dassault Aviation

Objective: modelling the sonic boom

- 1.6 Mach
- an angle of attack of 3 degrees
- an altitude of 45,000 feet

Simulation carried out in serial on a MacPro

- 2.66 GHz Intel Xeon processor
- 4 GB of memory
- approximately 48 hours of CPU for the whole process (22 millions of tetrahedra)

A Supersonic Aircraft

Aircraft geometry

Computational domain
Aircraft size $=36 \mathrm{~m}$, mesh size from 2 mm to 30 cm
Domain size (meters):
$x:[-225,2025] \quad y:[-1200,1200] \quad z:[-1200,1200]$

A Supersonic Aircraft

- Adapted mesh with \mathbf{L}^{2} norm on the Mach Number - ≈ 4.2 million vertices - ≈ 25.1 million tetrahedra

Mesh refinements propagate 2 km

A Supersonic Aircraft

- Adapted mesh with \mathbf{L}^{2} norm on the Mach Number
- ≈ 4.2 million vertices
- ≈ 25.1 million tetrahedra

Mesh behind the aircraft

After 2 km of propagation mesh size is \approx one meter

A Supersonic Aircraft

- Mach Number iso-values
- Solution accurately propagated in the whole domain
- All shocks are accurately captured

A Supersonic Aircraft

- Mach Number iso-surfaces
- Mach cone clearly appears
- Solution accurately propagated in the whole domain

Anisotropic ratio

$$
\text { ratio }=\sqrt{\frac{\min _{i} \lambda_{i}}{\max _{i} \lambda_{i}}}=\frac{\max _{i} h_{i}}{\min _{i} h_{i}}
$$

Anisotropic ratio		
$1<$ ratio ≤ 2	29609	0.12%
$2<$ ratio ≤ 3	123788	0.49%
$3<$ ratio ≤ 4	190705	0.76%
$4<$ ratio ≤ 5	227993	0.91%
$5<$ ratio ≤ 10	1032940	4.12%
$10<$ ratio ≤ 50	3795329	15.13%
$50<$ ratio ≤ 100	3205727	12.78%
$100<$ ratio ≤ 1000	15446359	61.60%
$1000<$ ratio ≤ 10000	1024491	4.09%
Mean ratio	288	

Anisotropic quotient

$$
\text { quo }=\frac{\max _{i} h_{i}^{3}}{h_{1} h_{2} h_{3}}
$$

Anisotropic quotient		
$1<$ quo ≤ 2	7423	0.03%
$2<$ quo ≤ 3	36325	0.14%
$3<$ quo ≤ 4	57309	0.23%
$4<$ quo ≤ 5	71293	0.28%
$5<$ quo ≤ 10	376558	1.50%
$10<$ quo ≤ 50	1268085	5.06%
$50<$ quo ≤ 100	692184	2.76%
$100<$ quo ≤ 1000	3667454	14.62%
$10^{3}<$ quo $\leq 10^{4}$	7709552	30.74%
$10^{4}<$ quo $\leq 10^{5}$	9359580	37.32%
$10^{5}<$ quo	1831199	7.30%
Mean quo	30877	

Mesh convergence for various aircraft geometries

Measured from L^{2} norm of Mach deviation with respect to a very fine 10 M nodes mesh, shown for meshes of 1 M to 4 M nodes.

Outline

(1) Metric-based mesh adaptation
(2) Multi-Scale Mesh Adaptation
(3) Goal-oriented mesh adaptation

Motivations for Goal-Oriented Mesh Adaptation

Outputs of interest

- area of interest is generally known
\Longrightarrow Computation of a functional $j(\mathbf{w})$ that depends on physical solution $\mathbf{w}=(\rho, \mathbf{u}, p)$.
- Performance of solution w evaluated thanks to $j(\mathbf{w})$

Exemples

- vorticity in wake $j(\mathbf{w})=\int_{\gamma}\left\|\nabla \wedge\left(\mathbf{u}-\mathbf{u}_{\infty}\right)\right\|_{2}^{2} \mathrm{~d} \gamma$
- sonic boom $j(\mathbf{w})=\int_{\gamma}\left(\frac{p-p_{\infty}}{p_{\infty}}\right)^{2} \mathrm{~d} \gamma$
- drag, lift: use to quantify the performance of a design , etc...

Goal: Take into account this supplementary information in the adaptive process

Geometrical adaptation (Hessian-based)
[Castro Diaz et Al., 1997], [Habashi et Al., 2000], [Frey et Alauzet, 2005],

- Genericity, does not depend on the EDP and on the numerical scheme
- Anisotropy easily deduced

Goal-oriented mesh adaptation (Adjoint-based)
[Venditti et Darmofal, 2002],

- Explicit use of the EDP
- Strong dependency on the numerical scheme
- Anisotropy hard to prescribe

- Given a functional $j(w)$
- We only know w_{h}
- How to control $j(w)-j\left(w_{h}\right)$

Continuous and discrete equations

$$
(\Psi(w), \phi)=0 \quad \text { and } \quad\left(\Psi_{h}\left(w_{h}\right), \phi_{h}\right)=0
$$

Continuous and discrete adjoint equations

$$
\left(\frac{\partial \Psi}{\partial w}(w) \phi, p\right)=(g, \phi) \quad \text { and } \quad\left(\frac{\partial \Psi_{h}}{\partial w}\left(w_{h}\right) \phi_{h}, p_{h}\right)=\left(g, \phi_{h}\right)
$$

Adjoint estimation

- Dual formula [Giles et Süli, 2002]

$$
j(w)-j\left(w_{h}\right) \approx\left(g, w-w_{h}\right)=\underbrace{-\left(p, \Psi\left(w_{h}\right)\right)}_{\text {A posteriori }}=\underbrace{\left(p_{h}, \Psi_{h}(w)\right)}_{\text {A priori }}
$$

A priori error estimation [D, L and A, 2008]

$$
\begin{aligned}
& j(w)-j\left(w_{h}\right)=\underbrace{\left(g, w-w_{h}\right)}_{\text {Approximation error }}=\underbrace{\left(g, w-\Pi_{h} w\right)}_{\text {Interpolation error }}+\underbrace{\left(g, \Pi_{h} w-w_{h}\right)}_{\text {Implicit error }} \\
& \begin{aligned}
(\text { D.A.E. }) & =\left(g, w-\Pi_{h} w\right)+\left(\frac{\partial \Psi_{h}}{\partial w}\left(\Pi_{h} w\right)\left(\Pi_{h} w-w_{h}\right), p_{h}\right) \\
(T . D .) & =\left(g, w-\Pi_{h} w\right)+\left(\Psi_{h}\left(\Pi_{h} w\right), p_{h}\right)-\left(\Psi_{h}\left(w_{h}\right), p_{h}\right)+R_{1} \\
& =\left(g, w-\Pi_{h} w\right)+\left(\Psi_{h}\left(\Pi_{h} w\right), p_{h}\right)-\left(\Psi_{h}(w), p_{h}\right) \\
& +\left(\left(\Psi_{h}-\Psi\right), p_{h}\right)+R_{1} \\
(T . D .) & =\left(g, w-\Pi_{h} w\right)+\left(\frac{\partial \Psi_{h}}{\partial w}(w)\left(\Pi_{h} w-w\right), p_{h}\right) \\
& +\left(\left(\Psi_{h}-\Psi\right)(w), p_{h}\right)+R_{2}
\end{aligned}
\end{aligned}
$$

A priori error estimation [D, L and $\mathrm{A}, 2008$]

$$
\begin{aligned}
j(w)-j\left(w_{h}\right) & =\underbrace{\left(g, w-w_{h}\right)}_{\text {Approximation error }}=\underbrace{\left(g, w-\Pi_{h} w\right)}_{\text {Interpolation error }}+\underbrace{\left(g, \Pi_{h} w-w_{h}\right)}_{\text {Implicit error }} \\
(\text { Only C. Terms) } & =\left(g, w-\Pi_{h} w\right)+\left(\frac{\partial \Psi}{\partial w}(w)\left(\Pi_{h} w-w\right), p\right) \\
& +\left(\left(\Psi_{h}-\Psi\right)(w), p\right)+R_{3} \\
(\text { C.A.E. }) & =\left(\left(\Psi_{h}-\Psi\right)(w), p\right)+R_{3}
\end{aligned}
$$

Use of anisotropic mesh adaptation to reach asymptotic convergence even in singular cases

$$
p_{h} \rightarrow p
$$

Application to Euler Equations

$$
\Psi(W)=\nabla \cdot \mathcal{F}(W)=0
$$

From the previous analysis it results

$$
\begin{aligned}
j(w)-j\left(w_{h}\right) & \approx \int_{\Omega} P\left(\nabla \cdot \mathcal{F}_{h}(W)-\nabla \cdot \mathcal{F}(W)\right) \mathrm{d} \Omega+\mathrm{BT} \\
& =\int_{\Omega} \nabla \cdot P\left(\mathcal{F}(W)-\mathcal{F}_{h}(W)\right) \mathrm{d} \Omega+\mathrm{BT} \\
& =\int_{\Omega} \nabla \cdot P\left(\mathcal{F}(W)-\Pi_{h} \mathcal{F}(W)\right) \mathrm{d} \Omega+\mathrm{BT}
\end{aligned}
$$

Properties

- interpolation error on the Euler fluxes
- weighted \mathbf{L}^{1} interpolation error
- sum of interpolation errors

Application to Euler Equations

Solve this problem in the continuous framework
Find $\mathbf{M}_{\text {opt }}=\left(\mathcal{M}_{o p t}(\mathbf{x})\right)_{\mathbf{x} \in \Omega}$ of complexity N such that

$$
E\left(\mathcal{M}_{\text {opt }}\right)=\min _{\mathcal{M}} \int_{\Omega} \nabla \cdot P\left(\mathcal{F}(W)-\pi_{\mathcal{M}} \mathcal{F}(W)\right) \mathrm{d} \Omega+\mathrm{BT}
$$

A calculus of variations gives

$$
\mathcal{M}_{o p t}=\mathcal{M}_{o p t}^{\mathrm{L}^{1}}\left(\sum_{i=1}^{5}\left(\sum_{j=1}^{3}\left|\nabla_{x_{j}} P_{h}\left(W_{i}\right)\right|\left|H\left(\mathcal{F}_{\chi_{j}}\left(W_{i}\right)\right)\right|\right)\right)
$$

Comparisons between adjoint and hessian

Application to sonic boom :

- Adjoint functional :

$$
j(W)=\int_{\gamma}\left(\frac{p-p_{\infty}}{p_{\infty}}\right)^{2} \mathrm{~d} \gamma
$$

- Adaptation variable : Mach number

Comparisons between adjoint and hessian

Comparisons between adjoint and hessian

Comparisons between adjoint and hessian

Comparisons between adjoint and hessian

Comparisons between adjoint and hessian

Anisotropic ratio

$$
\text { ratio }=\sqrt{\frac{\min _{i} \lambda_{i}}{\max _{i} \lambda_{i}}}=\frac{\max _{i} h_{i}}{\min _{i} h_{i}}
$$

Anisotropic ratio	Adjoint-based		Hessian-based	
$1<$ ratio ≤ 2	87152	1.81%	63900	1.34%
$2<$ ratio ≤ 3	344171	7.15%	254689	5.33%
$3<$ ratio ≤ 4	408150	8.48%	326727	6.84%
$4<$ ratio ≤ 5	383587	7.97%	333693	6.99%
$5<$ ratio ≤ 10	1417279	29.43%	1464200	30.67%
$10<$ ratio ≤ 50	2160709	44.87%	2318963	48.57%
$50<$ ratio ≤ 100	14589	0.30%	11748	0.25%
Mean ratio	11.404		11.721	

Anisotropic quotient

$$
\text { quo }=\frac{\max _{i} h_{i}^{3}}{h_{1} h_{2} h_{3}}
$$

Anisotropic quotient	Adjoint-based		Hessian-based	
$1<$ quo ≤ 2	20670	0.43%	15391	0.32%
$2<$ quo ≤ 3	98030	2.04%	71910	1.51%
$3<$ quo ≤ 4	135076	2.80%	99694	2.09%
$4<$ quo ≤ 5	140389	2.92%	105367	2.21%
$5<$ quo ≤ 10	570124	11.84%	459995	9.64%
$10<$ quo ≤ 50	1635197	33.96%	1635882	34.27%
$50<$ quo ≤ 100	731548	15.19%	855954	17.93%
$100<$ quo ≤ 1000	1435724	29.81%	1502571	31.47%
$10^{3}<$ quo $\leq 10^{4}$	48955	1.02%		
$10^{4}<$ quo $\leq 10^{5}$	4	0.00%		
$10^{5}<$ quo	1	0.00%		
Mean quo	109.74		117.24	

Comparisons between adjoint and hessian

Computation of wing tip vortices :

- Adjoint functional :

$$
j(W)=\int_{\gamma}\left\|\nabla \wedge\left(\mathbf{u}-\mathbf{u}_{\infty}\right)\right\|_{2}^{2} \mathrm{~d} \gamma
$$

- Adaptation variable : Mach number

Vorticity 100 m behind the Falcon:

Vorticity 200 m behind the Falcon:

Vorticity 400 m behind the Falcon:

Adapted meshes :

Vorticity iso-surfaces :

Concluding remarks (1)

Two adaptive techniques have been presented:

- The multi-scale anisotropic mesh adaptation.
- The goal-oriented anisotropic mesh adaptation.
- The multi-scales method shows high-order mesh convergence, although not many theoretical arguments pleade for this.
- The goal-oriented method (which shows also high-order mesh convergence for the functional, not discussed here) far supersedes the multi-scale method for well specified goals.

Concluding remarks (2)

- Extension to unsteady simulations are currently addressed. See bibliography of the abstract and the other presentations by Alauzet and Olivier.
- Extension to other PDE models can be considered, with no a priori limitation to CFD.

Thank you for your attention

Business supersonic flight

- Financial motivation
- Environmental constraints

Physical phenomenon

- Multi-scale: from millimeter to kilometer
- Shock waves

State of the art: no actual low boom design

- Projects: Dassault Aviation (HISAC), Aerion Corp., GulfStream Aerospace, NASA, JAXA
- Innovative concept: Quiet Spike
- Full scale experiments very expensive and difficult

Quiet spike concept

- Initial geometry: F15
- Quiet Spike [Henne et Al., 2004, US Patent], Gulfstrean Aerospace
- Flight condition test, NASA Dryden Flight Research Center, 2006

F15-Spike

Gulfstream Nasa strategy [Howe et Al., 2008], [Henne et Al., 2008],
[Waithe, 2008]
1 Near-field: $R / L<0.3$ unstructured adaptation

- Mandatory to capture the complexity of the flow

2 Mid-field: $R / L \geq 0.3$ structured solver [Laflin et Al., 2006]

- Mandatory to avoid solution diffusion

90 feet (27 m) below the aircraft, the [adapted] unstructured has dissipated significantly, ..., unstructured solver alone seems impractical

F15-Spike: pressure field obtained at a distance of 67 m (220ft) below the aircraft

F15-Spike

Gamma strategy

1 Near-field/mid-field: coupling multi-scale and goal-oriented unstructured mesh adaptation

- Pressure field observed on the spike: $j(w)=\int_{\gamma}\left(\frac{p-p_{\infty}}{p_{\infty}}\right)^{2}$
- Multi-scale adaptation on the local Mach number

F15-Spike: Accurate pressure field obtained at 120 m below the aircraft with a mesh of 3.8 M of ver. within 5 days of computation on 4 processors and 15G of RAM
\Longrightarrow anisotropic mesh adaptation reduces solver dissipation

Fully anisotropic goal-oriented mesh adaptation

