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Why can we be interested by mesh adaptation?

Mesh adaptation does:
@ not simplify you algorithm,

@ not show an asymptotical convergence order higher than
non-adaptive algorithms when computing a smooth solution.

What we expect is that mesh adaptation does:
@ improve the early phase of convergence,

@ produce high order convergence for computing non-smooth
solutions.
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Improving the early phase of convergence

Example: convergence towards a smooth but stiff arctangent
solution:
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Abscissae: number of nodes, from 0 to 1000; ordinates: L! error
norm, from 1072 to 1. Upper curve: uniform refinement, Lower
curve: adaptive refinement.
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Improving the convergence to non-smooth solutions

Example: convergence towards a discontinuous Heaviside-like
solution:

Abscissae: number of nodes, from 0 to 1000; ordinates: L! error
norm, from 107> to 1. Upper curve: uniform refinement, Lower
curve: adaptive refinement.

4 Fully anisotropic goal-oriented mesh adaptation



Setting mesh adaptation as an optimisation problem:

Starting from the initial ill-posed problem,

Find an optimal mesh Hpt(u) having N vertices such that

Hopt(u) = Arg ming E(H)
- Which parameter for optimisation?
- For minimising what?

@  Concept of metric-based mesh adaptation
@  Multi-scale mesh adaptation
©  Goal-oriented mesh adaptation

5 Fully anisotropic goal-oriented mesh adaptation



1. Concept of metric-based mesh adaptation

What is a Metric ?

@ Canonical Euclidean space:
(u,v)=tuv = /(a,b) = tabab

@ Euclidean metric space:
M : d x d symmetric definite positive matrix

(u, V)p = 'uMv = /(a,b) = Vtab M ab

@ Riemannian metric space:

(M(x))xea

1
lp(ab) = /0 /tab M(a + tab) ab dt
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Continuous Mesh

Definition
e function M : x € Q — M(x),

1
@ density: d = = \/)\1>\—2)\3

hihohs

h

h1hah3

@ n anisotropic quotients r; =

e complexity C :

C(M):/Qd(x)dx:/ﬂx/det(/\/t(x)) o,
Matrix writing

n*P)
M(x) = d3(x) R(x) ry 23 (x) 'R(x).
ry (%)
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Continuous Mesh Framework

The continuous mesh parametrisation to solve mesh adaptation writes:

Discrete Continuous
Element K Metric tensor M
Mesh H of Q4 Riemannian metric space M = (M(x))xeq

Number of vertices N, | Complexity C(M) = / v/ det(M(x)) dx
Q
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Generation of Adapted Discrete Meshes

@ Main idea: change the distance evaluation in the mesh generator
[Vallet, 1992], [Casto-Diaz et Al., 1997], [Hecht et Mohammadi, 1997]

@ Fundamental concept: Unit mesh

Adapting a mesh )

]I Work in adequate Riemannian metric space

Generating a uniform mesh w.r. to M(x) )

V3/4 in2D

H unit mesh <= Ve, {p(e) = 1and VK, |K|m =~ {\@/12 in 3D
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© Multi-Scale Mesh Adaptation
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Minimizing the Interpolation Error in LP-norm

Starting from the initial ill-posed problem,

Find an optimal mesh Hp(u) having N vertices such that
Hopt(u) = Argminy ||u — Ty ullie(o)
where [y is the P; interpolation on mesh H,

We get a still ill-posed problem:
Find the continuous mesh M,,; having N vertices such that

Moopt(u) = Argmin g ||u — Myul|Le(o)
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Continuous Mesh Framework

We proposed a continuous mesh framework to solve this problem

Discrete Continuous
Element K Metric tensor M
Mesh H of Riemannian metric space M = (M (x))xeq

Number of vertices N, Complexity C(M / v/ det(M(x)) dx

Linear interpolate [1,u Continuous linear interpolate mu
—2/3
2 iR ()
M(x) = d3(x) R(x) r2_2/3(x) 'R (x).
—2/3
r3 7(x)
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Continuous Interpolation Error

For any K which is unit for M and for all u quadratic positive
form (u(x) = 3 tx Hx):

lu = Maullis iy 2*4[0 det(M” 2) trace(M ™2 H M™2)

mappmg anisotropic term

Continuous interpolation error:

N

xeQ, |u—mmul(x) = 1—10trace(/\/l(x)*%|H(x)|M(x)*

)

equivalent because:

Ju— I_th||L1(K)
K|

N[

itrace (M(x)_% |H(x)| M(x)~

10 ) =2

for any K which is unit with respect to M(x).
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Minimizing the Interpolation Error in LP-norm

A well-posed problem

Find Mopt = (Moopt(x))xeq of complexity N such that

Epmope(u) = WJ}LHHU—?TMUHM,LP(Q)

min (/Q Iu(x) = T rqu(x)[? dx>‘1’

Solved by a calculus of variations.
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Minimizing the Interpolation Error in LP-norm

Optimal metric

My = D (det|Hu)7= R;' |A| R
o o 0o o

© Global normalization: to reach the constraint complexity N

2
-3
Dip = N3 (/(det|Hu|)T'13> and Dy = N3 (/(det|Hu\)%>
Q Q

@ Local normalization: sensitivity to small solution variations,
depends on LP norm chosen

2
3

© Optimal anisotropy directions based on Hessian eigenvectors

@ Diagonal matrix of anisotropy strengths, defined from the
absolute values of Hessian eigenvalues
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Multi-Scales Mesh Adaptation

In contrast to error equidistribution (L°°-based), the LP allows
capturing the different scales. Example on a non-regular solution:

“ W‘U ‘H‘
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Example on a non-regular solution (cont'd):

=0

L°°-adaptation

L2-adaptation
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Mesh Adaptation Algorithm for PDEs

Mesh adaptation is a non-linear problem J

= an iterative process is required to converge the couple
mesh-solution

(H07 58)
. Interpolate Solution
p 0 SO
(Hi7 S; ) i+1
3
(Hit1,Si, Hs)
v
Compute Solution Generate Mesh
Si Hiva
3
(Hi, M)

Compute Metric

(i, Si) Mi
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A Supersonic Aircraft

Supersonic CFD simulation on the supersonic business jet provided
by Dassault Aviation
Objective: modelling the sonic boom

@ 1.6 Mach

@ an angle of attack of 3 degrees

@ an altitude of 45,000 feet

Simulation carried out in serial on a MacPro
@ 2.66 GHz Intel Xeon processor
@ 4 GB of memory

@ approximately 48 hours of CPU for the whole process
(22 millions of tetrahedra)
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A Supersonic Aircraft

Aircraft geometry Computational domain

Aircraft size = 36m, mesh size from 2mm to 30cm

Domain size (meters):
x 1 [~225, 2025] y :[-1200, 1200] z:[—1200, 1200]
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o Adapted mesh with L% norm on the Mach Number
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A Supersonic Aircraft

e Adapted mesh with L? norm on the Mach Number

o =~ 4.2 million vertices
e =~ 25.1 million tetrahedra

mesh size is &~ one meter
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A Supersonic Aircraft

@ Mach Number iso-values

e Solution accurately propagated in the whole domain
o All shocks are accurately captured
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A Supersonic Aircraft

@ Mach Number iso-surfaces
e Mach cone clearly appears
e Solution accurately propagated in the whole domain
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Anisotropic ratio

. min,- )\,‘ max; h,'
ratio = = — )
max; A,‘ min; h,‘

Anisotropic ratio H ‘
1 < ratio < 2 29609 0.12%
2 < ratio < 3 123788 0.49 %
3 < ratio < 4 190 705 0.76 %
4 < ratio <5 227993 0.91 %
5 < ratio < 10 1032940 4.12 %
10 < ratio < 50 3795329 | 15.13 %
50 < ratio < 100 3205727 | 12.78 %
100 < ratio < 1000 15446359 | 61.60 %
1000 < ratio < 10000 1024491 4.09 %

l Mean ratio H 288 \ ‘
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Anisotropic quotient

max; h?
uo =
a hihahg’

Anisotropic quotient H ‘
1< quo<?2 7423 | 0.03%
2 < quo <3 36325 | 0.14 %
3<quo<4 57309 | 0.23 %
4 <quo<5h 71293 0.28 %
5 < quo < 10 376558 1.50 %
10 < quo < 50 1268085 5.06 %
50 < quo < 100 692184 2.76 %
100 < quo < 1000 3667454 | 14.62 %
10° < quo < 10° 7709552 | 30.74 %
10* < quo < 10° 9359580 | 37.32 %
10° < quo 1831199 | 7.30 %

l Mean quo H 30877 [ H
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Mesh convergence for various aircraft geometries

Measured from L2 norm of Mach deviation with respect to
a very fine 10M nodes mesh, shown for meshes of 1M to 4M nodes.

BASEUNE TEam DOMAN
‘ssa 7sampown Do 750m DOMAN
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© Goal-oriented mesh adaptation
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Motivations for Goal-Oriented Mesh Adaptation

Outputs of interest
@ area of interest is generally known

— Computation of a functional j(w) that depends on physical solution
w = (p,u,p).

@ Performance of solution w evaluated thanks to j(w)

Exemples

e vorticity in wake j(w) :/||V/\(ufuoo)H§d'y
vy

2
@ sonic boom j(w):/ (w) dvy
¥ P

@ drag, lift: use to quantify the performance of a design , etc...

Goal: Take into account this supplementary information in the
adaptive process
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Geometrical adaptation (Hessian-based)
[Castro Diaz et Al., 1997], [Habashi et Al., 2000], [Frey et Alauzet, 2005], ...

@ Genericity, does not depend on the EDP and on the numerical
scheme

@ Anisotropy easily deduced

Goal-oriented mesh adaptation (Adjoint-based)
[Venditti et Darmofal, 2002], ...

@ Explicit use of the EDP
@ Strong dependency on the numerical scheme

@ Anisotropy hard to prescribe

e Given a functional j(w)
o We only know wy,

@ How to control j(w) — j(wp)

Fully anisotropic goal-oriented mesh adaptation



Formal Resolution

Continuous and discrete equations
(\U(W), ¢) =0 and (\Uh(Wh)v ¢h) =0
Continuous and discrete adjoint equations

(o (w)6.p) = (8:6) and (9" (wn)on pv) = (8:0n)

Adjoint estimation
@ Dual formula [Giles et Siili, 2002]

J(w) = j(wn) = (g, w —wn) = =(p,V(wy)) = (pn, Vi(w))

A posteriori A priori
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Formal Resolution

A priori error

J(w) = j(wn)

(D.A.E.)

(T.D.)

(T.D.)

estimation [D, L and A, 2008]

= (g7W_Wh) :(g,W—nhW)+(g7nhW—Wh)

Approximation error Interpolation error Implicit error

= (g, w — nhW) —+ (%\I‘:Vh(ﬂhw)(ﬂhw — Wh),ph)
= (g,w—Nw) + (Vp(Npw), pp) — (Vn(wh), pn) + R

= (g,w—Npw) + (Va(Maw), pr) — (Vr(w), pn)
+ ((Vh = V), pn) + R

= (g,w—Mpw)+ (%(W)(I’Ihw - W),p,,)

+ (Vo= V) (W), pn) + Ro
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Formal Resolution

A priori error estimation [D, L and A, 2008]

Jjw)—jwn) = (g.w—wn) =(g,w—Tlhw)+ (g, Mhw — w)
Approximation error Interpolation error Implicit error
ov
(Only C. Terms) = (g,w —Myw) + 8—W(W)(I'Ihw —w),p

+ (Wa=V)(w),p)+ Rs

(C.AE.)

(Wh = V) (w),p) + Rs

Use of anisotropic mesh adaptation to reach asymptotic
convergence even in singular cases

ph— P
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Application to Euler Equations

U(W) =V.F(W)=0
From the previous analysis it results

J(w) —j(wn) =~ /Q P (V.Fpn(W) — V.F(W))dQ + BT

/ V.P (F(W) — Fo(W))dQ + BT
Q

/ V.P (F(W) = N, F(W))dQ + BT
Q

Properties
@ interpolation error on the Euler fluxes
o weighted L! interpolation error
@ sum of interpolation errors
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Application to Euler Equations

Solve this problem in the continuous framework
Find Mgyt = (Mopt(X))xecq of complexity N such that

E(Mopt) = min /Q V.P(F(W) — mae F(W)) dQ + BT

A calculus of variations gives

i=1 j=1

opt Mlc_;;t (Z(Z |VX,Ph | |H('7:XJ(W))|))
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Comparisons between adjoint and hessian

Application to sonic boom :

@ Adjoint functional :

o0 [(752)'

@ Adaptation variable : Mach number

/
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Comparisons between adjoint and hessian
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Comparisons between adjoint and hessian
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Comparisons between adjoint and hessian
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Comparisons between adjoint and hessian
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SSBIJ: Mach = 1.6 - AOA = 3.00 - R/L = 2.00
0.02 T T T T T

0015

001

0.005

dP/P

-0.005

-0.01

-0.015

002 Adjoint 817K i

Hessian 991K
-0.025 L

0 10 20 30 40 50 60
X/L
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Anisotropic ratio

. min,- )\,‘ max; h,'
ratio = = )
max; A; min; h;

Anisotropic ratio H Adjoint-based H Hessian-based ‘
1 < ratio < 2 87152 1.81 % 63900 1.34 %
2 < ratio < 3 344171 715 % 254 689 5.33 %
3 < ratio < 4 408 150 8.48 % 326727 6.84 %
4 < ratio <5 383587 797 % 333693 6.99 %

5 < ratio < 10 1417279 | 29.43 % || 1464200 | 30.67 %
10 < ratio < 50 2160709 | 44.87 % || 2318963 | 48.57 %
50 < ratio < 100 14589 0.30 % 11748 0.25 %

[ Meanratio [ 11.404 | [ 11721 ] |
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Anisotropic quotient

max; h?
uo=——~>->=
a hihohs’
| Anisotropic quotient H Adjoint-based H Hessian-based [
1 <quo<?2 20670 0.43 % 15391 0.32 %
2<quo<3 98030 | 2.04 % 71910 | 151 %
3<quo<4 135076 | 2.80 % 99694 | 2.09 %
4 < quo <5 140389 2.92 % 105367 221 %
5 < quo < 10 570124 | 11.84 % 459995 | 9.64 %
10 < quo < 50 1635197 | 33.96 % 1635882 | 34.27 %
50 < quo < 100 731548 | 15.19 % 855954 | 17.93 %
100 < quo < 1000 || 1435724 | 29.81 % || 1502571 | 31.47 %
10% < quo < 107 48955 | 1.02 %
10* < quo < 10° 4| 0.00%
10° < quo 1] 0.00%
| Mean quo | 109.74 | | 117.24 ] |
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Comparisons between adjoint and hessian

Computation of wing tip vortices :

@ Adjoint functional :

i) = [ 1V A (= u)lfer

@ Adaptation variable : Mach number
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Vorticity 100m behind the Falcon:
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Vorticity 200m behind the Falcon:
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rticity 400m behind the Falcon:
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Adapted meshes :
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Vorticity iso-surfaces :
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Concluding remarks (1)

Two adaptive techniques have been presented:
@ The multi-scale anisotropic mesh adaptation.

@ The goal-oriented anisotropic mesh adaptation.

@ The multi-scales method shows high-order mesh convergence,
although not many theoretical arguments pleade for this.

@ The goal-oriented method (which shows also high-order mesh
convergence for the functional, not discussed here) far
supersedes the multi-scale method for well specified goals.
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Concluding remarks (2)

@ Extension to unsteady simulations are currently addressed.
See bibliography of the abstract and the other presentations
by Alauzet and Olivier.

@ Extension to other PDE models can be considered, with no a
priori limitation to CFD.
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Thank you for your attention
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Business supersonic flight

@ Financial motivation

@ Environmental constraints

Physical phenomenon
@ Multi-scale: from millimeter to kilometer

@ Shock waves

State of the art: no actual low boom design

@ Projects: Dassault Aviation (HISAC), Aerion Corp., GulfStream
Aerospace, NASA, JAXA

@ Innovative concept: Quiet Spike

o Full scale experiments very expensive and difficult
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Quiet spike concept

o Initial geometry: F15

@ Quiet Spike [Henne et Al., 2004, US Patent], Gulfstrean Aerospace

@ Flight condition test, NASA Dryden Flight Research Center,
2006

223¢ 2?3\

~ =
@, A 2E 2
/
posfons
POSITION B <=ﬂ:<$
/S
POSITIONC

POSITION D

SPIKE TELESCOPING SECTIONS |, AIRCRAFT NOSE OR TAIL _l
21

@ NASA Dryden Flight Research Center Photo Collection
I d himl
NASA Photo; ED0G-0184-13 - Date: Scptember 27, 2006 Photo By: Carla Thomas

NASA F-15B #836 in flight with Quiet Spike atached.
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F15-Spike

> e
—Jﬂ
L iR

Gulfstream Nasa strategy [Howe et Al, 2008], [Henne et Al., 2008],
[Waithe, 2008]
1 Near-field: R/L < 0.3 unstructured adaptation
e Mandatory to capture the complexity of the flow
2 Mid-field: R/L > 0.3 structured solver [Laflin et Al., 2006]

e Mandatory to avoid solution diffusion

90 feet (27m) below the aircraft, the [adapted] unstructured has
dissipated significantly, ..., unstructured solver alone seems impractical

F15-Spike: pressure field obtained at a distance of 67m (220ft)
below the aircraft
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F15-Spike

F, P
Yon 3 B ———
-

Gamma strategy

1 Near-field/mid-field: coupling multi-scale and goal-oriented
unstructured mesh adaptation

Poo
e Multi-scale adaptation on the local Mach number

2
o Pressure field observed on the spike: j(w) = f7 (m>

F15-Spike: Accurate pressure field obtained at 120m below the
aircraft with a mesh of 3.8M of ver. within 5 days of computation
on 4 processors and 15G of RAM

= anisotropic mesh adaptation reduces solver dissipation
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