3D ANISOTROPIC MESH ADAPTATION FOR FUNCTIONAL OUTPUTS

Adrien Loseille(*), <u>Alain Dervieux</u>(**) and Frédéric Alauzet(***)

(*)CFD, George Mason University, Fairfax, VA (**)INRIA - Tropics project Sophia-Antipolis, France (***)INRIA - Gamma Project Rocquencourt, France alain.dervieux@inria.fr

ECCM 2010, Paris, may 16-21, 2010

Mesh adaptation does:

- not simplify you algorithm,
- **not** show an *asymptotical* convergence order higher than non-adaptive algorithms when computing a *smooth* solution.

What we expect is that mesh adaptation does:

- improve the *early* phase of convergence,
- produce high order convergence for computing *non-smooth* solutions.

Example: convergence towards a smooth but stiff arctangent solution:

Abscissae: number of nodes, from 0 to 1000; ordinates: L^1 error norm, from 10^{-5} to 1. Upper curve: uniform refinement, Lower curve: adaptive refinement. Example: convergence towards a discontinuous Heaviside-like solution:

Abscissae: number of nodes, from 0 to 1000; ordinates: L^1 error norm, from 10^{-5} to 1. Upper curve: uniform refinement, Lower curve: adaptive refinement.

Starting from the initial ill-posed problem,

Find an optimal mesh $\mathcal{H}_{opt}(u)$ having N vertices such that $\mathcal{H}_{opt}(u) = \operatorname{Arg\,min}_{\mathcal{H}} \mathcal{E}(\mathcal{H})$

- Which parameter for optimisation?
- For minimising what?
 - Concept of metric-based mesh adaptation
 - 2 Multi-scale mesh adaptation
 - 3 Goal-oriented mesh adaptation

1. Concept of metric-based mesh adaptation What is a Metric ?

• Canonical Euclidean space:

$$\langle \mathsf{u} \,, \, \mathsf{v}
angle = {}^t \mathsf{u} \; \mathsf{v} \quad \Longrightarrow \quad \ell(\mathsf{a}, \mathsf{b}) = \sqrt{{}^t \mathsf{ab} \; \mathsf{ab}}$$

• Euclidean metric space:

 \mathcal{M} : $d \times d$ symmetric definite positive matrix

$$\langle \mathbf{u} \,, \, \mathbf{v}
angle_{\mathcal{M}} = {}^t \mathbf{u} \mathcal{M} \mathbf{v} \implies \ell_{\mathcal{M}}(\mathbf{a}, \mathbf{b}) = \sqrt{{}^t \mathbf{ab} \; \mathcal{M} \; \mathbf{ab}}$$

 Riemannian metric space: (M(x))_{x∈Ω}

$$\ell_{\mathcal{M}}(\mathsf{ab}) \;\;=\;\; \int_0^1 \sqrt{{}^t \mathsf{ab} \; \mathcal{M}(\mathsf{a} + t \mathsf{ab}) \; \mathsf{ab}} \; \mathsf{d} t$$

Continuous Mesh

Definition

• function $\mathbf{M} : \mathbf{x} \in \Omega \mapsto \mathcal{M}(\mathbf{x})$,

• density:
$$d = \frac{1}{h_1 h_2 h_3} = \sqrt{\lambda_1 \lambda_2 \lambda_3}$$
,

• *n* anisotropic quotients
$$r_i = \frac{h_i^3}{h_1 h_2 h_3}$$

• complexity \mathcal{C} :

$$\mathcal{C}(\mathsf{M}) = \int_{\Omega} d(\mathsf{x}) \, d\mathsf{x} = \int_{\Omega} \sqrt{\det(\mathcal{M}(\mathsf{x}))} \, d\mathsf{x}.$$

Matrix writing

$$\mathcal{M}(\mathbf{x}) = d^{\frac{2}{3}}(\mathbf{x}) \mathcal{R}(\mathbf{x}) \begin{pmatrix} r_1^{-2/3}(\mathbf{x}) & & \\ & r_2^{-2/3}(\mathbf{x}) & \\ & & r_3^{-2/3}(\mathbf{x}) \end{pmatrix} {}^t \mathcal{R}(\mathbf{x}).$$

The continuous mesh parametrisation to solve mesh adaptation writes:

Discrete	Continuous	
Element K	Metric tensor ${\cal M}$	
Mesh \mathcal{H} of Ω_h	Riemannian metric space $\mathbf{M} = (\mathcal{M}(\mathbf{x}))_{\mathbf{x} \in \Omega}$	
Number of vertices N_v	$Complexity\; \mathcal{C}(M) = \int_{\Omega} \sqrt{\det(\mathcal{M}(x))} dx$	

Generation of Adapted Discrete Meshes

• Main idea: change the distance evaluation in the mesh generator [Vallet, 1992], [Casto-Diaz et Al., 1997], [Hecht et Mohammadi, 1997]

• Fundamental concept: Unit mesh

Adapting a mesh

Work in adequate Riemannian metric space

Generating a uniform mesh w.r. to $\mathcal{M}(\mathbf{x})$

Fully anisotropic goal-oriented mesh adaptation

1 Metric-based mesh adaptation

3 Goal-oriented mesh adaptation

Starting from the initial ill-posed problem,

Find an optimal mesh $\mathcal{H}_{opt}(u)$ having N vertices such that $\mathcal{H}_{opt}(u) = \operatorname{Arg\,min}_{\mathcal{H}} \|u - \Pi_{\mathcal{H}} u\|_{L^{p}(\Omega)}$

where $\Pi_{\mathcal{H}}$ is the P_1 interpolation on mesh \mathcal{H} ,

We get a still ill-posed problem:

Find the continuous mesh \mathcal{M}_{opt} having N vertices such that $\mathcal{M}_{opt}(u) = \operatorname{Arg\,min}_{\mathcal{M}} \|u - \Pi_{\mathcal{H}} u\|_{L^{p}(\Omega)}$

Continuous Mesh Framework

We proposed a continuous mesh framework to solve this problem

Discrete	Continuous	
Element K	Metric tensor ${\cal M}$	
Mesh ${\cal H}$ of Ω_h	Riemannian metric space $\mathbf{M} = (\mathcal{M}(\mathbf{x}))_{\mathbf{x} \in \Omega}$	
Number of vertices N_{v}	Complexity $\mathcal{C}(M) = \int_{\Omega} \sqrt{\det(\mathcal{M}(x))} dx$	
Linear interpolate $\Pi_h u$	Continuous linear interpolate $\pi_{\mathcal{M}} u$	

$$\mathcal{M}(\mathbf{x}) = d^{\frac{2}{3}}(\mathbf{x}) \mathcal{R}(\mathbf{x}) \begin{pmatrix} r_1^{-2/3}(\mathbf{x}) & & \\ & r_2^{-2/3}(\mathbf{x}) & \\ & & r_3^{-2/3}(\mathbf{x}) \end{pmatrix} {}^t \mathcal{R}(\mathbf{x}).$$

L

Continuous Interpolation Error

For any *K* which is unit for \mathcal{M} and for all *u* quadratic positive form $(u(\mathbf{x}) = \frac{1}{2} {}^{t} \mathbf{x} H \mathbf{x})$:

$$\|u - \Pi_h u\|_{\mathsf{L}^1(\mathsf{K})} = \frac{\sqrt{2}}{240} \underbrace{\det(\mathcal{M}^{-\frac{1}{2}})}_{mapping} \underbrace{\operatorname{trace}(\mathcal{M}^{-\frac{1}{2}} H \mathcal{M}^{-\frac{1}{2}})}_{anisotropic \ term}$$

Continuous interpolation error:

$$\forall \mathbf{x} \in \Omega, \quad |u - \pi_{\mathcal{M}} u|(\mathbf{x}) = \frac{1}{10} \operatorname{trace} \left(\mathcal{M}(\mathbf{x})^{-\frac{1}{2}} \left| \mathcal{H}(\mathbf{x}) \right| \mathcal{M}(\mathbf{x})^{-\frac{1}{2}} \right)$$

equivalent because:

$$\frac{1}{10} \operatorname{trace} \left(\mathcal{M}(\mathbf{x})^{-\frac{1}{2}} | \mathcal{H}(\mathbf{x}) | \mathcal{M}(\mathbf{x})^{-\frac{1}{2}} \right) = 2 \frac{\| u - \Pi_h u \|_{\mathbf{L}^1(\mathcal{K})}}{|\mathcal{K}|}$$

for any K which is *unit* with respect to $\mathcal{M}(\mathbf{x})$.

A well-posed problem

Find $\mathbf{M}_{opt} = (\mathcal{M}_{opt}(\mathbf{x}))_{\mathbf{x} \in \Omega}$ of complexity N such that

$$\begin{split} E_{\mathcal{M}_{opt}}(u) &= \min_{\mathcal{M}} \|u - \pi_{\mathcal{M}} u\|_{\mathcal{M}, \mathbf{L}^{p}(\Omega)} \\ &= \min_{\mathcal{M}} \left(\int_{\Omega} |u(\mathbf{x}) - \pi_{\mathcal{M}} u(\mathbf{x})|^{p} \, \mathrm{d} \mathbf{x} \right)^{\frac{1}{p}} \end{split}$$

Solved by a calculus of variations.

Minimizing the Interpolation Error in L^{p} -norm

Optimal metric

$$\mathcal{M}_{\mathsf{L}^{p}} = D_{\mathsf{L}^{p}} \quad (\det |H_{u}|)^{\frac{-1}{2p+3}} \quad \mathcal{R}_{u}^{-1} \quad |\Lambda| \quad \mathcal{R}_{u}$$

$$\textcircled{1} \qquad \textcircled{2} \qquad \textcircled{3} \qquad \textcircled{3}$$

• Global normalization: to reach the constraint complexity N

$$D_{\mathsf{L}^{p}} = N^{\frac{2}{3}} \left(\int_{\Omega} (\det |H_{u}|)^{\frac{p}{2p+3}} \right)^{-\frac{2}{3}} \quad \text{and} \quad D_{\mathsf{L}^{\infty}} = N^{\frac{2}{3}} \left(\int_{\Omega} (\det |H_{u}|)^{\frac{1}{2}} \right)^{-\frac{2}{3}}$$

- 2 Local normalization: sensitivity to small solution variations, depends on L^p norm chosen
- Optimal anisotropy directions based on Hessian eigenvectors
- Diagonal matrix of anisotropy strengths, defined from the absolute values of Hessian eigenvalues

In contrast to error equidistribution (L^{∞} -based), the L^{p} allows capturing the different scales. Example on a non-regular solution:

Multi-Scales Mesh Adaptation

Example on a non-regular solution (cont'd):

 L^{∞} -adaptation

 L^2 -adaptation

Mesh Adaptation Algorithm for PDEs

Mesh adaptation is a non-linear problem

 \implies an iterative process is required to converge the couple mesh-solution

Supersonic CFD simulation on the supersonic business jet provided by Dassault Aviation

Objective: modelling the sonic boom

- 1.6 Mach
- an angle of attack of 3 degrees
- an altitude of 45,000 feet

Simulation carried out in serial on a MacPro

- 2.66 GHz Intel Xeon processor
- 4 GB of memory
- approximately 48 hours of CPU for the whole process (22 millions of tetrahedra)

Aircraft geometry

Computational domain

Aircraft size = 36m, mesh size from 2mm to 30cm

Domain size (meters): x : [-225, 2025] y : [-1200, 1200] z : [-1200, 1200]

- \bullet Adapted mesh with L^2 norm on the Mach Number
 - $\bullet~\approx 4.2$ million vertices
 - $\bullet~\approx 25.1$ million tetrahedra

Mesh refinements propagate 2km

- \bullet Adapted mesh with L^2 norm on the Mach Number
 - \approx 4.2 million vertices
 - $\bullet~pprox 25.1$ million tetrahedra

Mesh behind the aircraft

After 2km of propagation mesh size is \approx one meter

- Mach Number iso-values
 - Solution accurately propagated in the whole domain
 - All shocks are accurately captured

- Mach Number iso-surfaces
 - Mach cone clearly appears
 - Solution accurately propagated in the whole domain

Anisotropic ratio

ratio =
$$\sqrt{\frac{\min_i \lambda_i}{\max_i \lambda_i}} = \frac{\max_i h_i}{\min_i h_i},$$

Anisotropic ratio		
$1 < ratio \le 2$	29 609	0.12 %
$2 < ratio \leq 3$	123 788	0.49 %
$3 < ratio \leq 4$	190 705	0.76 %
$4 < ratio \leq 5$	227 993	0.91 %
$5 < {\sf ratio} \le 10$	1 032 940	4.12 %
$10 < ratio \le 50$	3 795 329	15.13 %
$50 < ratio \le 100$	3 205 727	12.78 %
$100 < ratio \le 1000$	15 446 359	61.60 %
$1000 < ratio \le 10000$	102 4491	4.09 %
Mean ratio	288	

Anisotropic quotient

$$\mathsf{quo} = \frac{\mathsf{max}_i h_i^3}{h_1 h_2 h_3},$$

Anisotropic quotient		
$1 < quo \le 2$	7 423	0.03 %
$2 < quo \le 3$	36 325	0.14 %
$3 < quo \le 4$	57 309	0.23 %
$4 < quo \le 5$	71 293	0.28 %
$5 < quo \le 10$	376 558	1.50 %
$10 < quo \le 50$	1 268 085	5.06 %
$50 < quo \le 100$	692 184	2.76 %
$100 < quo \le 1000$	3 667 454	14.62 %
$10^3 < quo \le 10^4$	7 709 552	30.74 %
$10^4 < quo \le 10^5$	9 359 580	37.32 %
$10^5 < quo$	1 831 199	7.30 %
Mean quo	30877	

Measured from L^2 norm of Mach deviation with respect to a very fine 10M nodes mesh, shown for meshes of 1M to 4M nodes.

1 Metric-based mesh adaptation

2 Multi-Scale Mesh Adaptation

3 Goal-oriented mesh adaptation

Outputs of interest

- area of interest is generally known
- ⇒ Computation of a functional $j(\mathbf{w})$ that depends on physical solution $\mathbf{w} = (\rho, \mathbf{u}, p)$.
 - Performance of solution \mathbf{w} evaluated thanks to $j(\mathbf{w})$

Exemples

- vorticity in wake $j(\mathbf{w}) = \int_{\gamma} \|\nabla \wedge (\mathbf{u} \mathbf{u}_{\infty})\|_2^2 d\gamma$
- sonic boom $j(\mathbf{w}) = \int_{\gamma} \left(\frac{p p_{\infty}}{p_{\infty}}\right)^2 d\gamma$
- drag, lift: use to quantify the performance of a design , etc...

Goal: Take into account this supplementary information in the adaptive process

Geometrical adaptation (Hessian-based)

[Castro Diaz et Al., 1997], [Habashi et Al., 2000], [Frey et Alauzet, 2005], ...

- Genericity, does not depend on the EDP and on the numerical scheme
- Anisotropy easily deduced

Goal-oriented mesh adaptation (Adjoint-based)

[Venditti et Darmofal, 2002], ...

- Explicit use of the EDP
- Strong dependency on the numerical scheme
- Anisotropy hard to prescribe

- Given a functional j(w)
- We only know w_h
- How to control $j(w) j(w_h)$

Continuous and discrete equations

$$(\Psi(w),\phi)=0$$
 and $(\Psi_h(w_h),\phi_h)=0$

Continuous and discrete adjoint equations

$$(rac{\partial \Psi}{\partial w}(w)\phi,p)=(g,\phi) \hspace{0.5cm} ext{and} \hspace{0.5cm} (rac{\partial \Psi_h}{\partial w}(w_h)\phi_h,p_h)=(g,\phi_h)$$

Adjoint estimation

• Dual formula [Giles et Süli, 2002]

$$j(w) - j(w_h) \approx (g, w - w_h) = \underbrace{-(p, \Psi(w_h))}_{A \text{ posteriori}} = \underbrace{(p_h, \Psi_h(w))}_{A \text{ priori}}$$

Formal Resolution

A priori error estimation [D, L and A, 2008]

$$j(w) - j(w_h) = \underbrace{(g, w - w_h)}_{Approximation \, error} = \underbrace{(g, w - \Pi_h w)}_{Interpolation \, error} + \underbrace{(g, \Pi_h w - w_h)}_{Implicit \, error}$$
$$(D.A.E.) = (g, w - \Pi_h w) + \left(\frac{\partial \Psi_h}{\partial w}(\Pi_h w)(\Pi_h w - w_h), p_h\right)$$

$$(T.D.) = (g, w - \Pi_h w) + (\Psi_h(\Pi_h w), p_h) - (\Psi_h(w_h), p_h) + R_1$$

$$= (g, w - \Pi_h w) + (\Psi_h(\Pi_h w), p_h) - (\Psi_h(w), p_h) + ((\Psi_h - \Psi), p_h) + R_1$$

$$(T.D.) = (g, w - \Pi_h w) + \left(\frac{\partial \Psi_h}{\partial w}(w)(\Pi_h w - w), p_h\right) + ((\Psi_h - \Psi)(w), p_h) + R_2$$

Formal Resolution

A priori error estimation [D, L and A, 2008]

$$j(w) - j(w_h) = \underbrace{(g, w - w_h)}_{Approximation \, error} = \underbrace{(g, w - \Pi_h w)}_{Interpolation \, error} + \underbrace{(g, \Pi_h w - w_h)}_{Implicit \, error}$$

$$(Only \ C. \ Terms) = (g, w - \Pi_h w) + \left(\frac{\partial \Psi}{\partial w}(w)(\Pi_h w - w), p\right)$$

$$+ ((\Psi_h - \Psi)(w), p) + R_3$$

$$(C.A.E.) = ((\Psi_h - \Psi)(w), p) + R_3$$

Use of anisotropic mesh adaptation to reach asymptotic convergence even in singular cases

$$p_h \rightarrow p$$

$$\Psi(W) = \nabla \mathcal{F}(W) = 0$$

From the previous analysis it results

$$\begin{aligned} j(w) - j(w_h) &\approx \int_{\Omega} P \left(\nabla . \mathcal{F}_h(W) - \nabla . \mathcal{F}(W) \right) d\Omega + \mathsf{BT} \\ &= \int_{\Omega} \nabla . P \left(\mathcal{F}(W) - \mathcal{F}_h(W) \right) d\Omega + \mathsf{BT} \\ &= \int_{\Omega} \nabla . P \left(\mathcal{F}(W) - \Pi_h \mathcal{F}(W) \right) d\Omega + \mathsf{BT} \end{aligned}$$

Properties

- interpolation error on the Euler fluxes
- weighted L¹ interpolation error
- sum of interpolation errors

Solve this problem in the continuous framework Find $\mathbf{M}_{opt} = (\mathcal{M}_{opt}(\mathbf{x}))_{\mathbf{x} \in \Omega}$ of complexity N such that

$$E(\mathcal{M}_{opt}) = \min_{\mathcal{M}} \int_{\Omega} \nabla . P\left(\mathcal{F}(W) - \pi_{\mathcal{M}} \mathcal{F}(W)\right) \mathrm{d}\Omega + \mathsf{BT}$$

A calculus of variations gives

$$\mathcal{M}_{opt} = \mathcal{M}_{opt}^{\mathsf{L}^1} \left(\sum_{i=1}^5 (\sum_{j=1}^3 |\nabla_{x_j} P_h(W_i)| | H(\mathcal{F}_{x_j}(W_i))|) \right)$$

Comparisons between adjoint and hessian

Application to sonic boom :

• Adjoint functional :

$$j(W) = \int_{\gamma} \left(rac{p-p_{\infty}}{p_{\infty}}
ight)^2 \, \mathrm{d}\gamma$$

• Adaptation variable : Mach number

ratio =
$$\sqrt{\frac{\min_i \lambda_i}{\max_i \lambda_i}} = \frac{\max_i h_i}{\min_i h_i},$$

Anisotropic ratio	Adjoint-based		Hessian-based	
$1 < ratio \le 2$	87 152	1.81 %	63 900	1.34 %
$2 < ratio \leq 3$	344 171	7.15 %	254 689	5.33 %
$3 < ratio \leq 4$	408 150	8.48 %	326 727	6.84 %
$4 < ratio \leq 5$	383 587	7.97 %	333 693	6.99 %
$5 < ratio \le 10$	1 417 279	29.43 %	1 464 200	30.67 %
$10 < ratio \le 50$	2 160 709	44.87 %	2 318 963	48.57 %
$50 < ratio \le 100$	14 589	0.30 %	11748	0.25 %
Mean ratio	11.404		11.721	

Anisotropic quotient

$$\mathsf{quo} = \frac{\mathsf{max}_i h_i^3}{h_1 h_2 h_3},$$

Anisotropic quotient	Adjoint-based		Hessian-based	
$1 < quo \le 2$	20 670	0.43 %	15 391	0.32 %
$2 < quo \leq 3$	98 030	2.04 %	71 910	1.51 %
$3 < quo \le 4$	135 076	2.80 %	99 694	2.09 %
$4 < quo \le 5$	140 389	2.92 %	105 367	2.21 %
$5 < quo \le 10$	570 124	11.84 %	459 995	9.64 %
$10 < quo \le 50$	1 635 197	33.96 %	1 635 882	34.27 %
$50 < quo \le 100$	731 548	15.19 %	855 954	17.93 %
$100 < quo \le 1000$	1 435 724	29.81 %	1 502 571	31.47 %
$10^3 < quo \le 10^4$	48 955	1.02 %		
$10^4 < quo \le 10^5$	4	0.00 %		
$10^5 < quo$	1	0.00 %		
Mean quo	109.74		117.24	

Computation of wing tip vortices :

• Adjoint functional :

$$j(W) = \int_{\gamma} \|
abla \wedge (\mathbf{u} - \mathbf{u}_{\infty}) \|_2^2 \, \mathrm{d}\gamma$$

• Adaptation variable : Mach number

Vorticity 100m behind the Falcon:

Vorticity 200m behind the Falcon:

Vorticity 400m behind the Falcon:

Adapted meshes :

Vorticity iso-surfaces :

Fully anisotropic goal-oriented mesh adaptation

Two adaptive techniques have been presented:

- The multi-scale anisotropic mesh adaptation.
- The goal-oriented anisotropic mesh adaptation.

- The multi-scales method shows high-order mesh convergence, although not many theoretical arguments pleade for this.
- The goal-oriented method (which shows also high-order mesh convergence for the functional, not discussed here) far supersedes the multi-scale method for well specified goals.

- Extension to unsteady simulations are currently addressed. See bibliography of the abstract and the other presentations by Alauzet and Olivier.
- Extension to other PDE models can be considered, with no a priori limitation to CFD.

Thank you for your attention

Fully anisotropic goal-oriented mesh adaptation

Business supersonic flight

- Financial motivation
- Environmental constraints

Physical phenomenon

- Multi-scale: from millimeter to kilometer
- Shock waves

State of the art: no actual low boom design

- Projects: Dassault Aviation (HISAC), Aerion Corp., GulfStream Aerospace, NASA, JAXA
- Innovative concept: Quiet Spike
- Full scale experiments very expensive and difficult

Quiet spike concept

- Initial geometry: F15
- Quiet Spike [Henne et Al., 2004, US Patent], Gulfstrean Aerospace
- Flight condition test, NASA Dryden Flight Research Center, 2006

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/Gallery/Photor/index.html NASA Photo: ED06-0184-13 Date: September 27, 2006 Photo By: Carla Thomas

NASA F-15B #836 in flight with Quiet Spike attached.

F15-Spike

Gulfstream Nasa strategy [Howe et Al., 2008], [Henne et Al., 2008], [Waithe, 2008]

- 1 Near-field: R/L < 0.3 unstructured adaptation
 - Mandatory to capture the complexity of the flow
- 2 Mid-field: $R/L \ge 0.3$ structured solver [Laflin et Al., 2006]
 - Mandatory to avoid solution diffusion

90 feet (27*m*) below the aircraft, the [adapted] unstructured has dissipated significantly, ..., unstructured solver alone seems impractical

F15-Spike: pressure field obtained at a distance of 67m (220ft) below the aircraft

F15-Spike

Gamma strategy

- 1 Near-field/mid-field: coupling multi-scale and goal-oriented unstructured mesh adaptation
 - Pressure field observed on the spike: $j(w) = \int_{\gamma} \left(rac{p p_{\infty}}{p_{\infty}} \right)^2$
 - Multi-scale adaptation on the local Mach number

F15-Spike: Accurate pressure field obtained at 120m below the aircraft with a mesh of 3.8M of ver. within 5 days of computation on 4 processors and 15G of RAM

 \implies anisotropic mesh adaptation reduces solver dissipation

Fully anisotropic goal-oriented mesh adaptation

