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Abstract: A new method for estimating canopy biophysical
variables from the satellite observations is developed based
on  a  variational  assimilation  technique.  This  allows
accounting for the spatial and temporal constraints in the
estimation process of crop characteristics. Inversion will be
achieved concurrently over an ensemble of pixels belonging
to a spatial and temporal window. This ensures the problem
to be better posed than when solved over single pixels and
dates.  Atmospheric  characteristics  are  assumed  steady
within  the  spatial  window,  but  vary  from  date  to  date.
Conversely,  surface  characteristics  are  assumed  to  be
steady within the limited temporal window, but  spatially
variable.  This paper explains the variational  assimilation
theory  used  here,  the  surface  and  atmosphere  radiative
transfer models considered, and the ensemble assimilation
scheme applied  to  account  for  the  spatial  and temporal
constraints.

1. Introduction

Estimates of canopy biophysical variables from the satellite
observations is one of the key issues in remote sensing. In the
last few years, a number of studies have reported encouraging
results using radiative transfer model inversion techniques. 

Recent reviews of biophysical properties retrieval methods
(Combal,  et al., 2002 ; Baret et al., 2003) showed that most of
radiative transfer inversion techniques were based on iterative
optimization  (Jacquemoud  et  al., 2000)  or  neural  networks
methods (Weiss  et al., 2002; Beal  et al., 2005).  However, the
inversion  of  radiative  transfer  models  is  a  severely  ill-posed
problem  that  may  lead  to  significant  uncertainties  in  the
biophysical  variables  estimates  when  limited  information  is
used.  The improvement  of  the performances of  the inversion
process  requires  more  information  to  be  exploited  including
better  radiative  transfer  models,  exploitation  of  proper  prior
information on the distribution of the canopy and atmosphere
variables, knowledge of uncertainties in satellite measurements,
as well as possible spatial and temporal constraints. In this study
we focus on the use of  coupled surface-atmosphere  radiative
transfer  models  (SMAC and  SAIL+PROSPECT)  and  on  the
exploitation of the possible spatial and temporal constraints to
estimate  more  accurate  LAI  values  from  the  satellite
observations. For this purpose, an ensemble of pixels belonging
to  a  spatial  and  temporal  window will  be  considered
simultaneously, representing a very large inversion problem as
compared to inversion applied to the single pixels. The coupled

model is inverted with a variational method particularly efficient
for very large inverse problems. Its implementation is based on
the  computation  of  the  adjoint  model  and  a  Bayesian  cost
function allowing accounting also for prior information on the
distribution of the variables. 

This paper explains the variational assimilation theory used
here,  the  surface  and  atmosphere  radiative  transfer  models
considered,  and the  ensemble  assimilation scheme  applied to
account for the spatial and temporal constraints.

2. Variationnal Data Assimilation Method

2.1 Principles of the method
For sake of simplicity, the method is explained in its most

synthetic form, inspired from Le Dimet and Talagrand (1985).

Let  consider  a  system  (D)  that  expresses  the  temporal
evolution of a state variable X, as a function of the direct model
F and some control variables  K and of its initial conditions U at
time 0:

(D)

The system (D) has a unique solution if U and K are known.
Considering that  observations  Xobs of the state  variable  X  are
acquired, the method consists in estimating the control variables
K for which the simulated time course of the state variable best
matches the observations. This is performed by minimizing the
cost function measuring the discrepancy between 1) the solution
X of the model and the observations Xobs, 2) the initial condition
U and corresponding prior information  U0, and 3) the control
variable K and some a priori information K0 on it.

The optimal values for the parameters are determined in such
a  way  that  they  minimize  the  cost  function  J.  They  are
characterized by the Euler-Lagrange Condition of Optimality:



where   and   are  the  gradients  of  J with
respect  to  U and  K.  Their  calculation  will  be  performed
analytically  by introducing an adjoint  variable  P  of  the state
variable X ; P is solution of the Adjoint Model (D*):

Thanks to mathematical properties of the adjoint variable P,
the backward integration of the adjoint model  (D*)  permits to
express the gradients as:

(GradJ)

2.2 Minimization Algorithm
From a computational point of view, the estimation of the

optimal parameter set is performed by plugging the value of the
gradient  (GradJ)  in  a  descent  type  method  of  optimization
(conjugate  gradient,  Quasi-Newton,  Truncated-Newton,  for
instance). At each iteration, an evaluation of the model and of
the gradient is achieved by the adjoint model. The minimisation
algorithm used  in  this  work  is  N1QN3,  which  consists  in  a
Quasi-Newton  optimization  technique  with  BFGS  update
(Gilbert and Lemarechal, 1989).

2.3 Automatic Differentiation
Computation of the adjoint model is generally a tedious task.

The  adjoint  model  is  better  calculated  with  automatic
differentiation  tools  when  the  model  is  complex  enough.
Automatic  differentiation  is  a  technique  to  evaluate  the
derivatives of a function defined by a computer program. The
basic idea is to derive each statement of the direct code to obtain
the directional derivatives (tangent mode) and transpose it to run
backward  in  time  and  calculate  the  gradient  (reverse  mode)
(Griewank, 1988).

Automatic  differentiation  was  here  performed  by  the
TAPENADE software (Hascoët  and Pascual,  2004). This tool
takes the computer source program as an input and builds a new
code  that  computes  the  gradient,  which  is  called  the  adjoint
model.

Even though automatic differentiation helped in the process
of generating the adjoint model, it was difficult for some parts of
the  direct  code  that  was  not  specifically  written  to  be
differentiated. Accurate adjoint model is mandatory because an
error  in  the  adjoint  model  will  lead  to  a  wrong  gradient
preventing from getting the right solution. The adjoint model has
therefore to be carefully checked according to Taylor and scalar
product tests.

2. The Radiative Transfer Models

Coupling  the  SAIL  canopy  reflectance  model  (Verhoef,
1984) with  the  PROSPECT  leaf  optical  properties  model
(Jacquemoud  and  Baret,  1990)  allows  to  simulate  canopy
reflectance  from  canopy  structure,  optical  properties  of
vegetation elements,  soil  background reflectance,  wavelength,
view and illumination conditions. Background reflectance was
assumed  to  be  that  of  a  typical  soil  with  variation  in  its
brightness using the brightness coefficient. 

The SMAC model (Rahman and Dedieu, 1994) simulates the
top of atmosphere reflectance as observed at the satellite level
from top of canopy reflectance and atmospheric characteristics.
SMAC was chosen because it is very computer efficient while
keeping a good compromise in terms of accuracy compared to
the physical  and analytic  6S model  from which it  is  derived
(Vermote et al, 1997). 

Coupling radiative transfer models SAIL+PROSPECT to an
atmospheric correction allows relating the top of the atmosphere
reflectance to the biophysical variables of interest such as Leaf
Area Index (LAI).

The input variables of the models are the following:

• illumination and observation configuration  that derives
from satellite orbit characteristics and swath : the solar
and view zenith angles, θs and θv and the relative azimuth
φ.

• soil background reflectance spectrum and the brightness
coefficient (Bs)

• leaf biophysical variables (N, Cab, Cw, Cm, and Cbp)

• canopy structure characteristics (LAI, ALA, Hotspot)

• atmosphere characteristics (τ550,, Patm, Cwv, C03).

3. Assimilation  Scheme  accounting  for  Temporal  and
Spatial Constraints

Implementation  of  several  constraints  requires  creating  a
macro-model (MACRO-SPS) running simultaneously on several
dates and pixels, where the spatial and temporal constraints are
described  by relations  between the variables.  Figure 1 shows
how  spatial  and  temporal  constraints  were  here  applied  to
atmosphere leaves, canopy, soil and geometry variables:

• atmosphere characteristics and geometry configuration, are
fixed on a given temporal window:
A = (τ550, Patm, Cwv, C03, θv , θs , φ)

• Leaves and canopy properties are fixed on a given spatial
window: 
C = (N, Cab, Cdm , Cs , LAI , ALA , Hotspot)

• The  background brightness  Bs  can vary both temporally
and spatially and is then unconstrained:  



Fig.  1.  Scheme  of  the  coupled  radiative  transfer  model  SAIL-
PROSPECT to SMAC (SPS) applied with several  dates and pixels
constraints on its input variables and giving the MACRO-SPS model.

4. Conclusion : application of the method

The  preliminary  steps  consisting  in  building  the  coupled
SAIL-PROSPECT-SMAC model and generating the associated
adjoint model is now achieved and ready to be actually used. In
the  next  step,  twin  experiments  considering  the  models  as
perfect  will  be  conducted  to  quantify  the  theoretical
performances as a function of radiometric uncertainties and prior
information knowledge. This will be achieved by comparison to
more classical techniques applied over single individual pixels.

Then,  the  ensemble  inversion  will  be  applied  to  actual
satellite observations to confront results to current biophysical
products available. This innovative method could then be used
to derive the best LAI values over a representative set of surface
and atmosphere types. They could eventually constitute an ideal
learning data base to train more operational algorithms such as
neural  networks  to  generate  accurate  products  over  large
temporal  and  spatial  coverage  as  required  by  the  user
community.
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