
Adjoints of large simulation codes through
Automatic Differentiation

Laurent Hascoët* — Benjamin Dauvergne*

* INRIA Sophia-Antipolis, équipe TROPICS
2004 Route des lucioles, BP 93, 06901 Sophia-Antipolis, France

{Laurent.Hascoet, Benjamin.Dauvergne}@sophia.inria.fr

ABSTRACT.Adjoint methods are the choice approach to obtain gradientsof large simulation
codes. Automatic Differentiation has already produced adjoint codes for several simulation
codes, and research continues to apply it to even larger applications. We compare the ap-
proaches chosen by existing Automatic Differentiation tools to build adjoint algorithms. These
approaches share similar problems related to data-flow and memory traffic. We present some
current state-of-the-art answers to these problems, and show the results on some applications.

RÉSUMÉ.Les méthodes adjointes sont largement utilisées pour obtenir des gradients de simu-
lations de grande taille. La Différentiation Automatique est une méthode de construction des
codes adjoints qui a déjà été appliquée à plusieurs codes de taille réaliste, et les recherches
visent des codes encore plus gros. Nous comparons les approches choisies par les principaux
outils de Différentiation Automatique pour construire descodes adjoints, en mettant l’accent
sur les problèmes de flot de données et de consommation mémoire. Nous présentons des déve-
loppements récents dans l’application d’un principe classique de compromis stockage-recalcul,
et nous montrons nos résultats expérimentaux préliminaires.
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1. Introduction

Modern Scientific Computing increasingly relies on the computation of several
sorts of derivatives. Obviously, derivatives play a natural role in the basic simulation
activity, as well as in most of the mathematics that model thesystems to simulate.
But we are now witnessing a sharp increase in the use of derivatives, made possible
by the impressive power of present computers on one hand, andprobably by new
programming concepts and tools, such as Automatic Differentiation (AD), on the other
hand.

The present issue provides ample illustration of these novel uses of derivatives.
Now that computing capacities technically allow for it, researchers explore new usages
of derivatives. To quote some examples, simulation of a complex system in a neigh-
borhood of some initial configuration is no longer limited toa simple linear approxi-
mation. Second- and higher-derivatives can provide a much more accurate simulation,
and are now affordable. Similarly, the development of gradient-based optimization of
complex systems requires efficient gradients through adjoints. Researchers are explor-
ing the computation of these gradients even for very long andexpensive instationnary
simulations (Maniet al., 2007). Further, gradient-based optimization, which several
years ago was restricting to approximate quasi-Newton methods, is now considering
true Newton methods, which require second-order Hessian derivatives. Even further,
the Halley method is being considered again, and it requiresa third-order derivative
tensor. Second-order derivative information is also the key to the sensitivity of the
optimum itself, leading to so-called robust design.

In this small catalog, Adjoint Codes rank among the most promising kinds of
derivatives, because gradients are crucial in Optimization, and because the adjoint
method can return a gradient at a cost essentially independent from the number of in-
put parameters. The justification for this will be sketched in Section 2. Applications
in CFD or structural mechanics require gradients for sensitivity analysis and optimal
shape design. Applications such as climate research, meteorology, or oceanography,
require gradients for sensitivity analysis and inverse problems e.g. variational data as-
similation. Their number of input parameters is often several millions, which makes it
impossible to compute the gradient with direct approaches such as divided differences.
The adjoint method is the appropriate strategy to build these gradients, and therefore
adjoint codes have been written for several applications, often by hand at a huge devel-
opment cost. Moreover, hand-written adjoint codes were often built from simplified
models only, to reduce development cost, but this discrepancy produced annoying ef-
fects in the optimization loop. But the increasing complexity of e.g. simulations of
turbulent flow by LES models makes this simplification even more hazardous. Present
AD tools can automatically build efficient adjoint codes forthese very large and com-
plex simulations.

AD tools are still research tools. The applications shown insection 5 demonstrate
that AD can now address simulations of a very decent size, andare making rapid
progress in this respect. However they will maybe never become black-box tools like
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compilers. Interaction with the end-user is unavoidable todifferentiate the largest
codes.

In this article, we will introduce the principles of AD in Section 2, emphasizing the
notions behind AD adjoint codes. We will present in Section 3the existing AD tools
that can produce adjoint codes and we will try to compare their specific strategies. Be-
cause optimization of instationnary simulations is one challenge of the years to come,
we will study in Section 4 the specific problems that must be addressed in the case
of very large and time-consuming codes. Section 5 will present some applications of
our AD toolTapenadeto large instationnary simulation codes, with our first realistic
measurements of the performance of AD-generated adjoint codes.

2. Building Adjoint Algorithms
through Automatic Differentiation

Automatic Differentiation (AD) is a technique to evaluate derivatives of a function
F : X ∈ IRm

7→ Y ∈ IRn defined by a computer programP. In AD, the original
program is automatically transformed or extended to a new programP

′ that computes
the derivativesanalytically. For reference, we recommend the monograph (Griewank,
2000), selected articles of recent conferences (Corlisset al., 2001; Bückeret al., 2006),
or the AD community websitewww.autodiff.org.

After some formalization of Automatic Differentiation in general in section 2.1,
we focus in section 2.2 on the structure of AD-generated adjoint codes, which we
call adjoint algorithms. In section 2.3, we underline the principal difficulty that these
adjoint algorithms must overcome.

2.1. Principles of Automatic Differentiation

The first principle of Automatic Differentiation is to consider any numerical pro-
gram as a mathematical function, obtained by composing the elementary functions
implemented by each simple statement. The analytic derivatives of the complete pro-
gram can therefore be computed using the chain rule of calculus. Since these are
analytic derivatives, they have the same level of accuracy as the given numerical pro-
gram, and are free from the approximation error which is inherent to the “Divided
Differences”(F (X + ε)− F (X))/ε

The second principle of AD is that it is “Automatic”, i.e. theend user doesn’t
need to actually write the derivative program. This task is performed by a tool or by
an appropriate environment, so that producing the derivative code actually costs very
little. This is especially important when the original codemay be modified several
times to embed new equations, new discretization choices ornew algorithms. In most
cases, actual differentiation of code can be called from aMakefile. The differentiated
code is regarded as some intermediate step in the compile process, and ideally should
never be modified or post-processed by hand. Unfortunately,in reality this still occurs
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sometimes, but it is considered a weakness and AD tools are striving to progressively
eliminate these hand modification stages.

Let’s now introduce a bit of formalization. Consider a numerical programP that
implements a functionF . Among the outputs ofP , suppose we identify a subset
Y of variables that we want to differentiate. Symmetrically,among the inputs of
P , suppose we identify a subsetX of variables with respect to which we want to
differentiateY . BothX andY are multi-dimensional in general, and must consist of
variables of a continuous type e.g. floating-point numbers.TheX are often called the
“independents” andY the “dependents”. We are looking for the derivatives ofF at
the current input pointX = X0, and we will assume that there exists a neighborhood
aroundX0 inside which the control flow ofP remains the same. This means that
all conditional branches, loops, array indices, or other address computation are the
same for any input points in this neighborhood ofX0. This is apparently a strong
assumption, since the flow of control of a program usuallymaychange a lot when
the inputs change, but in practice this assumption is reasonable and leads to useful and
reliable derivatives. In this neighborhood, execution ofP is equivalent to the execution
of a (possibly very long) sequence of simple statementsIk,k=1→p :

P = I1; I2; . . . Ip−1; Ip .

Calling fk the mathematical function implemented byIk, we know that the function
F computed byP is:

F = fp ◦ fp−1 ◦ · · · ◦ f1 .

CallingWk the set of all intermediate values after statementIk, defined byW0 = X0

andWk = fk(Wk−1), we can use the chain rule to compute the derivative ofF :

F ′(X0) = f ′
p(Wp−1).f

′
p−1(Wp−2). . . . .f

′
1(W0)

and this can be implemented right away by a new programP
′, called thedifferenti-

atedprogram. The goal of Automatic Differentiation is to produce such a programP′

automatically fromP, for instance through program augmentation or program trans-
formation, or even as an additional phase during compilation of P.

It turns out in practice that this full Jacobian matrixF ′(X) is expensive to compute
and for most applications is not really necessary. Instead,what applications often need
is either the “tangent” derivative:

Ẏ = F ′(X).Ẋ = f ′
p(Wp−1).f

′
p−1(Wp−2). . . . .f

′
1(W0).Ẋ

or the “adjoint” (or “reverse” or “cotangent”) derivative:

X = F ′t(X).Y = f ′t
1 (W0). . . . .f

′t
p−1(Wp−2).f

′t
p (Wp−1).Y

Intuitively, the tangent derivativėY is the directional derivative ofF along a given
directionẊ. The adjoint derivativeX is the gradient, in the input space, of the dot-
product ofY with a given weightingY . Both formulas for tangent and adjoint deriva-
tives are better evaluated from right to left, becauseẊ andY are vectors and thef ′

k are
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matrices, and matrix×vector products are much cheaper than matrix×matrix. More-
over eachf ′

k is very sparse and simple. IfIk is an assignment to a variablevk of an
expression that usesd other variables,f ′

k is basically an identity matrix in which the
kth row is replaced with a vector with onlyd non-zero entries. Choosing this right to
left evaluation order, onėY or oneX costs only a small multiple of the cost ofF itself,
independently of the sizes ofX andY . The slowdown factor fromP to P

′ reflects the
cost ratio between elementary operations and their derivative, which ranges between
one and four. It depends on the actual code and on the optimizations performed by the
compiler. In practice it is typically2.5 with the tangent mode and7 with the adjoint
mode. The key observation is that this ratio is essentially independent from the length
of the programP and from the dimensions of the independent inputX and depen-
dent outputY . The reasons for the higher cost ratio of the adjoint mode will become
apparent when we study this mode in more detail.

For most of the applications we are targeting at, the required derivative is actually a
gradient of a scalar cost function. For optimization, the cost function can be a physical
value such as the lift/drag ratio of an airplane. For inverseproblems and optimal
control, it will be the least-square discrepancy between the computed final state and
a target state or more generally between all computed intermediate states and a target
trajectory. In these cases, the dimensionm of X is large whereasY is a single scalar.
One run of the tangent code would return only one scalarẎ , andm runs are needed
to build the complete gradient. On the other hand, the adjoint algorithm returns this
complete gradient in just one run. In the sequel of this article, we will therefore focus
on the adjoint mode of AD.

2.2. The adjoint mode of Automatic Differentiation

The adjoint mode of AD builds a new codeP that evaluates

X = F ′t(X).Y = f ′t
1 (W0). . . . .f

′t
p−1(Wp−2).f

′t
p (Wp−1).Y

from right to left. Therefore it computesf ′t
p (Wp−1).Y first, and this needs the values

Wp−1 that the original programP knows only after statementIp−1 is executed. This
implies a specific structure forP which is often surprising at first sight: it consists
of an initial run of a copy ofP, followed by actual computation of the intermediate
gradientsW k,k=p→0 initialized with

W p = Y

and computed progressively by

W k−1 = f ′t
k (Wk−1).W k

for k = p down to1. X is found in the finalW 0.

Consider the following very simple example forP, from inputsa andb to result
:
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(1) s = a*a + b*b
(2) r = sqrt(s)
(3) 
 = r + 2*s

Essentially,P will be the following, from inputsa, b, andc to resultsa andb

(1) s = a*a + b*b
(2) r = sqrt(s)
(3) 
 = r + 2*s
(4) r = c

(5) s = 2*c
(6) c = 0.0
(7) s = s + r/(2*sqrt(s))
(8) r = 0.0
(9) a = 2*a*s
(10) b = 2*b*s
(11) s = 0.0

where linesP:(1-3) are the copy fromP, usually called theforward sweep. They are
followed by thebackward sweep, which is made of the differentiated instructions for
each original statement, in reverse order, namelyP:(4-6) from P:(3), P:(7-8) from P:(2),
andP:(9-11)fromP:(1). The reader can easily check each differentiated instructions set
by building the transposed Jacobian times vector productf ′t

k (Wk−1).W k for k = 3
down to1.

Let’s look at the cost of computing the gradienta andb for this simple example, by
counting the number of arithmetic operations.P itself costs 6 arithmetic operations.
The naive divided differences approach would require at least three runs ofP, i.e. a
total cost of3 ∗ 6 = 18 operations. Computing the same gradient using the tangent
mode (not shown here) would require two executions of the tangent mode for a total
cost of15 + 15 = 30. This cost can be easily reduced to15 + 9 = 24 by sharing the
original values between the two derivatives computations.This is more expensive than
divided differences. In general the two costs are comparable for large programs, but
the accuracy of tangent derivatives is clearly better. Finally, P computes the gradient
in just one run, at a cost of 15 arithmetic operations, which is already better than
the other approaches. This advantage becomes even higher asthe number of input
variable grows. The slowdown factor fromP to P is here 2.5.

The structure of the adjoint algorithmP becomes even more surprising when con-
trol comes into play. The control path which is actually taken in the programP and
therefore in the forward sweep ofP must be taken exactly in reverse in the backward
sweep ofP. One way to do that is to remember all control decisions during the forward
sweep, by storing them on a stack. During the backward sweep,the control decisions
are read from the stack when needed, and they monitor the control of the backward
sweep. With this approach, conditionals fromP become conditionals inP, and loops
in P become loops inP, although their iteration order is reversed.
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2.3. The taping problem of adjoint AD

However, there is a problem lying in the reverse order of derivative computations
in adjoint AD, which uses values fromP in thereverseof their computation order. Al-
though we carefully designed the example in section 2.2 to avoid this, real programs
often overwrite or erase variables. Overwriting actually cannot be avoided in real sim-
ulation programs, which are iterative in essence. For adjoint AD, an erased variable
must be restored if the erased value is used in a derivative computation. This has a
cost, whichever strategy is used.

If a value is needed which is not available, because it has been erased, there are
basically three tactics to make it available again:

– The desired value may have been stored in memory just beforeerasal. This is
the fundamental tactic and it motivates the name we give to this “taping” problem.

– The desired value may be recomputed forward by repeating the statement that
defined it, provided the inputs to this statement are themselves available.

– In a few situations, the desired value may be deduced from a statement that uses
it, provided that the statement is “invertible” and that theother inputs to this statement
and its output are available. For example ifa and
 are available, one can invert
statementa = b+
 to makeb available.

Adjoint AD on large programs must use a clever combination ofthese three tactics to
compute the gradient efficiently. We will see that, whateverthe strategy, it will always
include some amount of storage.

The number of values that are overwritten byP grows linearly with the execution
time ofP. Thus this problem becomes even more crucial for the very long codes that
we are now considering, such as instationnary simulations.

3. Automatic Differentiation approaches and tools: Advantages and Drawbacks

There exist today a large number of AD tools. In this section we will select only a
subset of them, which seem to us the most active tools, and which are representative
of the existing different approaches. We aim at being objective here, although we are
developing one of these tools,Tapenade. One can find a more complete catalog on the
AD community websitewww.autodiff.org. We will emphasize how the approaches
behave for building adjoints of large simulation codes. We will first present the general
picture in section 3.1, together with a summary in table 1. Wethen compare the
merits of the main alternatives, namely Overloadingvs Program Transformation in
section 3.2 and strategies for restoring overwritten values in section 3.3.
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3.1. AD approaches and tools

Traditionally, the first distinction among AD tools is code overloadingvsexplicit
program transformation. Since program transformation tools are harder to implement,
code overloading AD tools came earlier. The principal member of the overloading
class is the AD toolAdol-C (Griewanket al., 1996).Adol-C applies to C++ codes, us-
ing the overloading capacities of Object-Oriented style. Similarly for MATLAB, avail-
able AD packages such asADMAT (Verma, 1999),ADiMat (Bischofet al., 2003),
and recentlyMAD (Forth, 2006), rely on overloading.ADiMat mixes overloading
with some amount of code transformation. All overloading tools offer an implementa-
tion of the tangent mode, and can often compute other tangentdirectional higher-order
derivatives such as Taylor developments.

Some of the overloading tools also offer adjoint AD capacities, but at a cost that
we will discuss in section 3.2. To our knowledge, overloading-based tools have pro-
duced adjoint algorithms only for relatively small applications. For adjoints of large
simulation codes, overloading becomes too expensive and program transformation
tools are compulsory. These tools share common organization principles, that we can
summarize as four successive phases:

1) Parse the complete given program, with all subroutines and include files, and
build an internal representation.

2) Perform a number of global static analyses on this internal representation. Most
of these are data-flow analyses that help produce a better result. Some of these analy-
ses are completely specific to differentiation.

3) Build the differentiated program, in the internal representation format.

4) Regenerate a differentiated source code.

Phases 1 and 2 obviously look very much like what is done in compilers. The internal
representation makes the tool less dependent on the target language. This idea was
present right from the design stage forTapenade(Hascoëtet al., 2004) andOpe-
nAD (Utke et al., 2006), for which phases 2 and 3 are language-independent. This
makes extensions to new languages easier. There is a potential extra level of flexi-
bility with OpenAD, which publishes an API allowing a programmer to define new
code analyses on the internal representation. Therefore the “Open” inOpenAD. The
two other frequently mentioned program transformation tools areAdifor (Bischof
et al., 1996) andTAMC/TAF (Giering et al., 2005). Not so surprisingly, all these
transformation tools have a similar policy regarding the application language: Their
primary target is Fortran, and they all more or less accept Fortran95. ExceptAdifor ,
they are all working on C too, although at an experimental stage.TapenadeandOpe-
nAD take advantage of their architecture there, whereasTAF is undergoing a major
rewriting to reach “TAC ”. The C++ target language is a different story, commonly
regarded as a hard problem, and postponed for future research.

The ability to run global analyses is a strong point in favor of the program transfor-
mation approach. Program transformation AD tools slightlydiffer from one another
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at the level of the data-flow analyses that they perform. Their internal representation is
important here, since it conditions the accuracy of the static data-flow analyses. Also,
some tools have specific analyses that allow for slightly improved differentiated code.
But in general, the most profitable analyses have spread to all tools. For instance
the activity analysis, that finds out whether a given variable somewhere in the code
actually has a nontrivial derivative, is available in the four tools above.

In the adjoint mode, the program transformation tools differ in how they ad-
dress the taping problem (cf section 2.3). There are mostly two approaches, namely
“Recompute-All” (RA) for TAMC/TAF and “Store-All” (SA) for Tapenade and
OpenAD. There is no adjoint mode inAdifor , but a previous attemptAdjfor , us-
ing SA, will serve as a basis for the adjoint mode ofOpenAD. Section 3.3 compares
the “Recompute-All” and “Store-All” approaches. In reality, it turns out that both
approaches must be hybridized, and their performances growvery much alike.

Although it doesn’t feature an adjoint mode yet, let’s mention the extension of
theNAGWare Fortran compiler (Naumannet al., 2005) that includes AD capabilities
right inside the NAG Fortran95 compiler. The advantage is that phase 1 of program
transformation is done by the compiler, the internal form isalready defined, and the
final phase 4 is useless. There is a slight difficulty for phases 2 and 3 because sep-
arate compilation, which is the standard in compilers, prevents global analyses and
transformations. Therefore the differentiated code closely follows the structure of the
original code, very much like overloading-based tools do. The adjoint mode is under
development, and will follow the code-list approach of overloading tools.

target approach adjoint taping strategy

OpenAD F77/F95/(soon)C transfo. yes SA
Adifor F77/F95 transfo. no
TAMC/TAF F77/F95/(soon)C transfo. yes RA
Tapenade F77/F95/(soon)C transfo. yes SA
NAG F95 F77/F95 compiler no
Adol-C C++ overload. yes SA + Code-List
ADiMat MATLAB overload. no
MAD MATLAB overload. no

Table 1. Summarized comparison of some AD tools and environments

3.2. OverloadingvsProgram Transformation

Overloading is the ability, available in some languages, todefine different imple-
mentations for the same procedure or operation. It is the type of the procedure argu-
ments that decides which implementation is chosen for a given call. Object-Oriented
programming is a generalization of Overloading. Using overloading, one can redefine
the meaning of arithmetical operations to include derivatives computations. AD by
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code overloading requires little modification of the original program: all is needed is
to change the declared type of the variables that have a derivative. Still, this must be
done generally by hand. Then, after linking to a predefined overloading library for
arithmetical operations, the program computes the derivatives.

On the other hand, explicit program transformation requires a very complex AD
tool, similar to a compiler, which parses the original program in order to analyze it
and then to create a new program that computes the derivatives. One advantage of this
approach is its flexibility: it builds a totally new program,whose structure need not
follow the original. The other advantage is the possibilityto run a number of global
static analyses on the original code, that can lead to interesting optimizations in the
differentiated code. The cost of this approach is a long development effort to build the
tool, but in theory all that one can do with Overloading can also be done with program
transformation.

Specifically for the adjoint mode, overloading has a handicap: it must follow the
control flow and execution order of the original program. Since the adjoint mode needs
to run the derivative computations in the reverse order, these computations cannot
be run by the overloaded operations. The common answer is, instead, to store the
required derivative computations themselves on a stack. Itis only when the overloaded
program terminates that this computation stack is used and actually run in the correct
order. In other words, the overloaded statements write a newprogram, named a “code-
list”, from its last line to its first line, and only at the end this code-list is executed to
get the derivatives. Storing the derivative computations is expensive: the code-list
grows with execution time, since it contains no control structure. The values needed
in the derivatives computation must still be stored too. A number of refinements can
reduce this cost, many of them inspired by the program transformation approach, but
overloading is lagging behind. The typical size of applications that can be efficiently
adjointed by overloading is notably smaller than by programtransformation.

In contrast, the program transformation approach can produce a well structured
adjoint algorithm, which is smaller than a code list, and this is done only once at dif-
ferentiation time. The compiler can exploit this control structure to generate efficient
code. Only the values needed in the derivatives computationmust be stored.

To conclude this section, one must note that the relative merits of Overloading and
Program transformation are getting blurred with time. One drawback of Overloading
used to be a noticeable inefficiency of overloaded programs,which is now reduced by
very clever compilers. Some overloading tools are now considering to run a prelimi-
nary global analysis of the program, and some amount of program transformation to
automatically change the types of variables when this is necessary. This amounts to
addingactivity analysis into the overloading scheme, thus improving the final code.
There are also a number of strategies inAdol-C to reduce the size of the code-list.
On the other hand, the code-list strategy can be attractive for the program transfor-
mation tools, in the cases where reversing the flow of controland the flow of data
become too complex. This is not the case at present, but mightvery well be for AD of
Object-Oriented programs.
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3.3. StoragevsRecomputation

As mentioned in section 2.3, an adjoint algorithmP must provide a way to retrieve
(most of) the intermediate values ofP, using a combination of three elementary ways:
memory storage, forward recomputation, and backward reversal. In present AD tools,
backward reversal is rarely used. Inserting some backward reversal into the general
strategy, and finding the best combination, are still open problems. We shall focus here
on what is available in real tools, namelystorageandrecomputation. All strategies
radically modify the adjoint algorithm structure of section 2.2.

TheTAMC/TAF tool initially relies on recomputation, leading to theRecompute-
All (RA) approach. The RA approach recomputes each neededWk on demand, by
restarting the program on inputW0 until instructionIk. The cost is extra execution
time, grossly proportional to the square of the number of run-time instructionsp. Fig-
ure 1 summarizes RA graphically. Left-to-right arrows represent execution of orig-
inal instructionsIk, right-to-left arrows represent the execution of the differentiated
instructions

←−
I k which implementW k−1 = f ′t

k (Wk−1).W k. The big black dot repre-
sents the storage of all variables needed to restart execution from a given point, which
is called asnapshot, and the big white dots represent restoration of these variables
from the snapshot.

time

I I I I I

I

I

I

I

I

1 2 3 p-2 p-1

p

p-1

2

1

1

Figure 1. The “Recompute-All” tactic

TheTapenadeandOpenAD tools initially rely on storage, leading to theStore-All
(SA) approach. The SA approach stores eachWk in memory, onto a stack, just before
the correspondingIk+1 during the forward sweep ofP. Then during thebackward

sweep, eachWk is restored from the stack before the corresponding
←−
I k+1. The cost

is memory space, essentially proportional to the number of run-time instructionsp.
Figure 2 summarizes SA graphically. Small black dots represent storage of theWk on
the stack, before next instruction might overwrite them, and small white dots represent
their popping from the stack when needed. We draw these dots smaller than on figure 1
because it turns out we don’t need to store allWk, but only the variables that will be
overwritten byIk+1.
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time

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

Figure 2. The “Store-All” tactic

The RA and SA approaches appear very different. The quadratic run-time cost
of the RA approach appears unacceptable at first sight. However, theTAF tool is
successful and performs comparably withTapenade. One reason for that is the run-
time cost of individual storage operations in the SA approach, which must not be
overlooked. These operations often damage data locality, thus compromising later
compiler optimizations. Values are stored on and retrievedfrom a dynamic stack,
whose management also has some cost. Hardware can provide answers, e.g. pre-
fetching, but these low-level concepts are not easily managed from the target language
level.

In any case, pure RA and pure SA are two extreme approaches: the op-
timum usually lies in-between. Clearly recomputing the result of an ex-
pensive program expression can cost far more than simple storage, although
costs in memory space and in run time are hard to compare. On the other
hand, consider a computation of an indirection index in a loop, such as:nodeIndex = leftEnd(edgeIndex) .
Assume that bothleftEnd andedgeIndex are available. In addition to its inher-
ent memory space, storage tactic fornodeIndex already costs one push and one pop
from the stack, i.e. more than twice the run-time of simple recomputation. Therefore
recomputation is here cheaper for both memory space and run time.

But the main reason why RA and SA approaches perform comparably on large
simulation codes is that neither of them can work alone anyway! The quadratic run
time cost of pure RA is simply unacceptable, and the linear memory space cost of
pure SA easily overwhelms the largest disk space available.The classical solution is
calledcheckpointing, and it applies similarly to RA and SA. Checkpointing will be
discussed in detail in section 4.1. All we need to say here is that Checkpointing is
a storage/recomputation trade-off which can be recursively applied to nested pieces
of the program. In ideal situations, optimal checkpointingmakes both the run-time
increase factor and the memory consumption grow like only the logarithm of the size
of the program. In other words ifp is the number of run-time instructions ofP, then
the run-time ofP will grow like p×Log(p) and the maximum memory size used will
grow likeLog(p). These optimal costs remain the same, whether applied to theRA or
SA approaches. This is illustrated on figures 3 and 4: RA and SAapproaches visibly
come closer as the number of nested checkpointing levels grow. On figure 3, the
part on a gray background is a smaller scale reproduction of the basic RA scheme of
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figure 1. Similarly on figure 4, the gray box is a smaller scale reproduction of the basic
SA scheme of figure 2. Apart from what happens at these “leaves” (the gray boxes),
figures 3 and 4 are identical. The question remains to comparepure SA and pure RA,
but it becomes less crucial as these are applied to smaller pieces of the program. We
believe SA with some amount of recomputation is more efficient, especially on small
pieces of program, because the stack can stay in cache memory. This is why we chose
SA as the basis approach for our AD toolTapenade.

4. Space-time trade-offs for reversing large simulation codes

We now focus on the construction of adjoint algorithms for large simulation codes.
We recall that the adjoint approach in general is the only practical way to obtain gra-
dients, because of the large number of input parameters and the long simulation run
time. The adjoint algorithms obtained through AD belong to this category.

This section deals with the fundamental difficulty of adjoint algorithms namely,
the need to retrieve most of the intermediate values of the simulation in reverse or-
der. Section 3.3 described the RA and SA approaches, but neither can work on the
present large simulation codes. Both need to be amended through intensive use of
checkpointing, which is described in section 4.1. This shows in particularthat RA
and SA behave similarly when checkpointing comes into play,and we will therefore
restrict to the SA approach from then on. Section 4.2 recallsthe only known situation
where optimal checkpointing can be found. Section 4.3 describes the general situa-
tion, where checkpointing is applied on structured programs seen as call trees at the
topmost level.

4.1. Checkpointing

On large programsP, neither the RA nor the SA approach can work. The SA
approach uses too much memory, grossly proportional to therun-time number of
instructions. The RA approach consumes computation time, grossly squaring the
run-time number of instructions. Both approaches need to use a special trade-off
technique, known ascheckpointing. The idea is to select one or many pieces of the
run-time sequence of instructions, possibly nested. For each pieceC, one can spare
some repeated recomputation in the RA case, some memory in the SA case, at the
cost of remembering asnapshot, i.e. a part of the memory state at the beginning ofC.
We studied how to keep the snapshot size as low as possible in (Hascoëtet al., 2006).
The structure of real programs usually forces the pieces to be subroutines, loops, loop
bodies, or fragments of straight-line code.

Let us compare checkpointing on RA and SA in the ideal case of apure straight-
line program. We claim that checkpointing makes RA and SA come closer. Figure 3
shows how the RA approach can use checkpointing for one program pieceC (the first
part of the program), and also for two levels of nested checkpoints. The benefit comes
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time

C{
time

Figure 3. Checkpointing on the “Recompute-All” tactic

from the checkpointed piece being executed fewer times. Thecost is memory storage
of the snapshot, needed to restart the program just after thecheckpointed piece. The
benefit is higher whenC is at the beginning of the enclosing program piece. On very
large programs, 3 or more nested levels can be useful. At the lower levels, the memory
space of already used snapshots can be reused. Similarly, figure 4 shows how the
SA approach can use the same one-level and two-levels checkpointing schemes. The

time

C{
time

Figure 4. Checkpointing on the “Store-All” tactic

benefit comes from the checkpointed piece being executed thefirst time without any
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storage of intermediate values. This divides the maximum size of the stack by 2. The
cost is again the memory size of the snapshots, plus this timean extra execution of the
program pieceC. Again, the snapshot space used for the second level of checkpointing
is reused for two different program pieces. Visibly, the twoschemes come closer as
the number of nested checkpointing levels grow.

Let’s analyze more precisely why checkpointing generally improves things. Fo-
cusing on the SA approach from the top part of figure 4, the run-time cost of check-
pointing is an extra run ofC. The benefit lies in the maximum memory size used. CallD the remaining of the original code, downstreamC. With no checkpointing, the max-
imum memory use is reached at the end of the forward sweep, when all intermediate
values computed duringC and thenD are stored. We will write this maximum:

peak = tape(C) + tape(D)

With checkpointing, there are two local maximal memory uses: first at the end of the
forward sweep ofD,

peak
D

= snp(C) + tape(D)

where snp(C) is the snapshot needed to re-runC, and second at the end of the re-run,
i.e. forward sweep, ofC,

peak
C

= tape(C)

To see whypeak
D

< peak, observe that tape(C) grows linearly with the size ofC:
each executed statement overwrites a variable, which must be saved in general. On
the other hand snp(C) is the subset of the memory state at the beginning ofC which is
used byC. This set grows slower and slower asC grows bigger, because the successive
assignments duringC progressively hide the initial values. Therefore snp(C) grows
less than linearly with the size ofC and for large enoughC, we have snp(C) < tape(C).

4.2. Checkpointing fixed-length flat code sequences

Consider the model case of a programP made of a sequence of piecesIk,k=1→p,
each piece considered atomic and taking the same time. Assume also that each piece
consumes the same amount of storage tape(I), that the snapshot snp(Ik) is sufficient
to re-run not onlyIk but all subsequent pieces, and that all snp(Ik) have the same
size snp(I). Under those assumptions, it was shown in (Griewank, 1992; Grimm et
al., 1996) that there exists an optimalcheckpointing scheme, i.e. an optimal choice for
the placement of the nested checkpoints.

The optimal checkpointing scheme is defined recursively, for a given maximal
memory consumption and a maximal slowdown factor. The memory consumption is
expressed ass, the maximum number of snapshots that one wishes to fit in memory at
the same time. The slowdown factor is expressed asr, the maximum number of times
one accepts to re-run anyIk. For a givens andr, l(s, r) is the maximum number
of steps that can be adjointed, starting from a stored state which can be a snapshot.
It is achieved by running as many initial steps as possible (l1), then place a snapshot
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and again adjoint as many tail steps as possible (l2). For the initial sequence,l1 is
maximized recursively, but this time with onlyr−1 recomputations allowed since one
has been consumed already, and for the tail sequence,l2 is maximized recursively, but
with only s− 1 snapshots available, since one has been consumed already. Therefore

l(s, r) = l(s, r − 1) + l(s− 1, r) ,

which shows thatl(s, r) follows a binomial law:

l(s, r) =
(s + r)!

s!r!
.

This optimal checkpointing scheme can be read in two ways. First, when the
lengthp of the program grows, there exists a checkpointing scheme for which both
the memory consumption and the slowdown factor due to recomputations grow only
like Log(p). Second, for real situations where the available memory andtherefore the
maximals is fixed, the slowdown factor grows like thesth root ofp.

This model case is not so artificial after all. Many simulation codes repeat a basic
simulation step a number of times. The steps may vary a little, but still take roughly
the same time, tape size, and the snapshot to run one step orn successive steps is basi-
cally the same because each step build a state which is the input to the next step. One
question remains with the numberp of iterations of the basic step. In a few casesp is
actually known in advance, but in general it is unknown and the program iterates until
some convergence criterion is satisfied. Strictly speaking, this optimal checkpointing
scheme can only be organized whenp is known in advance. However, there exist ap-
proximate schemes with basically the same properties whenp is dynamic, i.e. known
only at run-time. It is very advisable to apply these schemes, optimal or not, to the
principal time-stepping loops of the program to differentiate.

4.3. Checkpointing call trees

In many situations the structure of the programP is not as simple as a sequence
of identical steps. Even in the case of iterative simulations, the program structure
inside one given step can be arbitrary. Since AD applies to the source ofP, we are
here concerned with the static structure ofP , which is acall graph i.e. a graph of
procedures calling one another. Each procedure in turn is structured as nested control
constructs such assequences, conditionals, andloops.

This strongly restricts the possible checkpointing schemes. Generally speaking,
the beginning and end of a checkpointing pieceC must be contained in the same pro-
cedure and furthermore inside the same node of the tree of control structures. For
example a checkpoint cannot start in a loop body and end afterthe loop. The optimal
scheme described in section 4.2 is therefore out of reach. The question is how can one
find a good checkpointing scheme that respects these restrictions.
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Let’s make the simplifying assumption that checkpointing occurs only on proce-
dure calls. If we really want to consider checkpointing for other program pieces, we
can always turn these pieces into subroutines. Figure 5 shows the effect of reverse AD
on a simple call graph, in the fundamental case where checkpointing is applied to each
procedure call. This is the default strategy inTapenade. Execution of a procedureA

A

B

C

D

A A

B

C

D D D B B

C C C

x : original form of x

x : forward sweep for x

x : backward sweep for x

: take snapshot

: use snapshot

Figure 5. Checkpointing on calls inTapenadereverse AD

in its original form is shown asA. The forward sweep, i.e. execution ofA augmented
with storage of variables on the stack just before they are overwritten, is shown as

−→
A .

The backward sweep, i.e. actual computation of the reverse derivatives ofA, which
pops values from the stack to restore previous values, is shown as

←−
A . For each pro-

cedure call, e.g.B, the procedure is runwithoutstorage during the enclosing forward
sweep

−→
A . When the backward sweep

←−
A reachesB, it runs

−→
B , i.e. B again but this

time with storage, and then immediately it runs the backwardsweep
←−
B and finally the

rest of
←−
A . Figure 5 also shows the places where snapshots are taken and used to run

proceduresB, C andD twice. If the program’s call graph is actually a well balanced
call tree, the memory size as well as the computation time required for the reverse
differentiated program grow only like the depth of the original call tree, i.e. like the
logarithm of the size ofP, which compares well with the model case of section 4.2.

In this framework, the checkpointing scheme question amounts to deciding, for
each arrow of the call graph, whether this procedure call must be a checkpointed piece
or not. This is obviously a combinatorial problem. With respect to the number of
nodes of the call graph, there is no known polynomial algorithm to find the optimal
checkpointing scheme. There is no proof that it is NP nor exponential either. In any
case, we can devise approximate methods to find good enough schemes.

The fundamental step is to evaluate statically the performance of a given check-
pointing scheme. If the call graph is actually a call tree, this can be done using rela-
tively simple formulas. These formulas will use the following data for each nodeR,
i.e. each procedureR of the call tree:

– time(R): the average run-time of the original procedureR, not counting called
subroutines.

– time(R): the average run-time of the forward and backward sweeps of the adjoint
algorithm ofR, not counting called subroutines.
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– tape(R, i): the memory size used to store intermediate values ofR on the tape,
between itsith subroutine call and the following procedure call. Indicesi start at1
up, andimaxstands for the lasti.

– snp(T, i): the memory size used to store the snapshot to checkpoint theith sub-
routine called by the root procedure ofT.

– snp_time(T, i): the time needed to write and read the snapshot, very roughly
proportional to snp(T, i).

These values can be either measured through run-time profiling of the adjoint code,
guessed through profiling on the original program, or even grossly evaluated statically
on the source program at differentiation time. The formulasalso use the navigation
primitives:

– root(T), the procedure at the root of the sub-call-treeT,

– childi(T), theith sub-call-tree ofT,

as well as the boolean ckp(T, i), true when the considered scheme does checkpoint
the ith subroutine call made by the root procedure ofT. This boolean function in-
deed defines one checkpointing scheme, and for each “ckp” we define the following
durations:

– time(T) as the total run-time cost ofT,

– time(T) as the total run-time cost ofT, the adjoint algorithm ofT.

We can compute these durations, recursively on each sub-tree T of the call tree, as
follows:

time(T) = time(root(T)) +
∑

i

time(childi(T))

time(T) = time(root(T))+
∑

i

time(childi(T)) +

{

if ckp(T, i) : time(childi(T))+snp_time(T, i)
otherwise: 0

Figure 6 shows an example call tree, together with an examplecheckpointing scheme,
namely on the calls toB, E, andF. The resulting adjoint algorithm is shown on the right.
Inspection of the adjoint call tree justifies the above timing evaluations. Similarly, we
can evaluate the peak memory consumption during the adjointalgorithm. Arrows on
figure 6 show the places where this peak consumption may occur. The formulas are
slightly more complex and we need to introduce the intermediate valuepart_mem(T)
in order to compute the final resultpeak_mem(T). We define

– part_mem(T, i) as the amount of memory used between the beginning of the
forward sweep

−→
T and the(i + 1)th subroutine call done by

−→
T . In particular, the last

part_mem(T, imax) is the amount of memory used by the complete
−→
T . We define

part_mem(T) = part_mem(T, imax).
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Figure 6. Example Checkpointing scheme on a Call Tree

– peak_mem(T) as the peak memory consumption during execution of the whole
T.

We can compute these memory consumptions recursively on each sub-treeT as fol-
lows. Notice thatpart_mem(T, i) on a givenT is computed recursively fori increas-
ing from 0 to imax, i.e. from the beginning of

−→
T , incorporating progressively each

successive call made by
−→
T .

part_mem(T, 0) = tape(root(T), 0)

part_mem(T, i) = part_mem(T, i−1) + tape(root(T), i)+
{

if ckp(T, i) : snp(T, i)
otherwise: part_mem(childi(T))

part_mem(T) = part_mem(T, imax)

peak_mem(T) =

max
(

part_mem(T),

Max
i|ckp(T,i)

(

part_mem(T, i−1) + peak_mem(childi(T))
)

)

These formulas can be used to evaluate the time and memory consumption for
every checkpointing scheme, and therefore to search for an optimal scheme. A simple
heuristic could be to sweep through the call tree to find the procedure call (theith in T)
that gives the best improvement when toggling ckp(T, i), actually toggle it, and repeat
the process until no improvement remains. We are currently experimenting such a
system insideTapenade. The next section presents some preliminary results.
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5. Applications

Prior to experiments, we developed an extension to the default checkpointing strat-
egy of Tapenade: Each subroutine call can now be checkpointed or not, through
a boolean directive calledC$AD NOCHECKPOINT, inserted by hand by the end-used
into the original code. In the future,Tapenadewill look for a good checkpointing
scheme following the principles of section 4.3. Then the end-user can refine this
choice through directives. Until this exists, we place these directives by hand on every
procedure call to make experiments. We present the results on three large instation-
nary simulation codes.

5.1. Stics

Stics is a Fortran 77 code that simulates the growth of a field, taking into account
the plants that are actually grown, the type of soil, the dates and quantities of the
inputs in water and nitrates, and the weather during a complete agricultural cycle. This
simulation is of course instationnary, with an explicit time-stepping scheme.Stics is
developed by the French Institut National pour la RechercheAgronomique (INRA)
since 1996.

For this experiment, the goal was to compute the gradient of the total amount of
biomass produced, with respect to most of the input parameters. This is a typical
application for AD adjoint mode. For the particular application the simulation ran for
about 400 days, i.e. 400 time steps.

The original simulation code is about 27 000 lines long, and one simulation runs
for 0.4 seconds on a 3GHz PC.

For this size of program, checkpointing is of course compulsory for the adjoint
algorithm. Even withTapenade’s default strategy, i.e. checkpointing on all calls, the
peak memory size was larger than the available 2 Gigabytes ofmemory.

The immediate answer was to apply a slightly sub-optimal version of the check-
pointing strategy described in section 4.2 to the toplevel loop of 400 time steps. As
a result, the adjoint algorithm actually worked, and returned a gradient that we could
validate.

However the slowdown factor from the original simulation tothe adjoint algorithm
was much too high. We claimed in section 2 that this factor wastypically 7, but on
Sticswe observed a factor closer to 100 !

In addition to the “optimal” checkpointing strategy applied to the toplevel loop,
we looked for a good checkpointing scheme inside the call tree of each time step.
We measured the time and memory data from section 4.3 and we found 6 subroutines
where it was obviously counter-productive to apply checkpointing. Actually these
subroutines behaved very strangely, since for them the snapshot was much larger than
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the tape, which is very unusual. The snapshots were so large that the times to take and
read the snapshots, “snp_time” dominated the actual derivative computations.

Using the new predicate inTapenade, we implemented this checkpointing scheme
by explicitly not checkpointing the 6 procedure calls. As a result, we observed a
reduction both in time and in peak memory. The slowdown is nowonly 7.4, and the
peak memory is only 80 Megabytes, comparable to the 30 Megabytes static memory
size of the original simulation code.

This application shows that a good checkpointing scheme is vital for AD adjoint
algorithms of long simulations. In addition, although checkpointing is generally a
trade-off that spares peak memory at the cost of run-time slowdown, there are extreme
cases where checkpointing looses in both respects and should be avoided.

5.2. Gyre

Gyre is a simple configuration of the oceanography codeOPA 9.0. It simulates the
behavior of a rectangular basin of sea water put on the tropics between latitudes 15o

and 30o, with the wind blowing to the East.OPA 9.0 is developed by theLOCEAN-
IPSL team in Paris VI university. It consists of about 110 000 lines of Fortran 90. The
Gyre simulation runs for 4320 time steps ranging on 20 days.

The time advancing uses an implicit scheme with a preconditioned conjugate gra-
dient for solving the linear system at each time step. One simulation of theGyre
configuration takes 92 seconds on a 3GHz PC.

In this experiment, in order to perform data assimilation, the goal was to obtain
a gradient of an objective function, the total heat flux across some boundary at the
northern angle, with respect to an initial parameter, whichis the temperature field in
the complete domain 20 days before. This is a typical application for the adjoint mode
of AD.

Here again, the checkpointing strategy for iterative loopsof section 4.2 is abso-
lutely necessary. Otherwise, the adjoint code exceeded 3 Gigabytes of memory after
just 80 time steps. With the checkpointing strategy on iterative loops, the adjoint code
computed an exact gradient with the following performances:

– time: 748 seconds, i.e. a slowdown of 8.2

– memory: 494 Megabytes, to be compared with the 40 Megabytes static memory
size of the original code.

The next improvement step is to look for a better checkpointing scheme inside
the time steps: we progressively increased the number of procedure calls that are not
checkpointed, until we used all the available memory of 3 Gigabytes. As expected,
this reduced the number of duplicate executions due to checkpoints, and thus reduced
the slowdown factor to 5.9. We believe this can still be improved with some work.
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Incidentally, notice that for the previous version8.0of OPA, the adjoint code was
written by hand, which is a long development. The slowdown factor was between
3 and 4, which is a little better than what we obtain withTapenade. However, the
hand adjoint reduced the memory consumption by storing states only at certain time
steps, and recomputing them during the backward sweep by interpolation. This proves
efficient, but still this is a cause for inaccuracy in the gradient. In comparison, the AD
adjoint algorithm returns a more accurate gradient for a relatively small extra cost.

Figure 7 shows a part of the resulting gradient, with respectto the initial tempera-
ture distribution at a depth of 300 meters. We also show the interpretation of some of
its structures made by the oceanographers.

Influence of T at -300 meters

on the heat flux 20 days later

across north section

30o North

15o North

@@@@
-

HHHHHY

Kelvin wave

HHHHHHHY

Rossby wave

Figure 7. Oceanography gradient by reverse AD on OPA 9.0/Gyre

5.3. Nemo

Nemo is a much larger configuration ofOPA 9.0, encompassing the North At-
lantic. Again, we want to build a gradient through adjoint AD. Work is ongoing and
we have few results. We recently obtained our first valid gradient. When this gradi-
ent is fully reliable for the whole simulation (450 time steps here) we also expect to
have at hand the first version of the checkpointing profiling heuristic described in sec-
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tion 4.3. We plan to useNemoas our first large testbed to improve this checkpointing
profiling heuristic.

6. Outlook

We presented the current research on Automatic Differentiation, aiming at au-
tomatic generation of efficient adjoint codes for long instationnary simulations. We
described the principles of AD, which show that the adjoint mode is certainly the most
reasonable way to obtain the code for the gradient of a simulation. We suggested how
existing AD approaches and tools could compare in this respect. However, adjoint
codes require complex data flow and memory traffic. AD tools have yet to reach the
level where these questions are properly solved. In this paper, we tried to present the
directions we are considering to address these questions.

The issue of finding good checkpointing schemes on large arbitrary programs is
central. There is a strong suspicion that this combinatorial question is NP-hard. We
believe we can devise good heuristics, suggesting efficientcheckpointing schemes
even for large applications. Yet, these heuristics rely on static data-flow analyses that
are always approximate, and also on approximate models of the performance of a
code on a computer architecture. Therefore interaction with the end-user is definitely
necessary to obtain really efficient checkpointing schemes.

Although our example applications are still at an experimental level, we hope they
show that AD tools are making constant progress, and produceadjoint codes whose
efficiency is similar to hand-coded adjoints. In a matter of years, we will probably be
able to relieve numericians from the tedious task of hand-writing adjoints.
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