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ABSTRACTAd]joint methods are the choice approach to obtain gradiefttarge simulation

codes. Automatic Differentiation has already producedoadjcodes for several simulation
codes, and research continues to apply it to even largerieaigbns. We compare the ap-
proaches chosen by existing Automatic Differentiationstéo build adjoint algorithms. These
approaches share similar problems related to data-flow amdnory traffic. We present some
current state-of-the-art answers to these problems, aogvghe results on some applications.

RESUME.Les méthodes adjointes sont largement utilisées pour ohdes gradients de simu-
lations de grande taille. La Différentiation Automatiqust @ne méthode de construction des
codes adjoints qui a déja été appliquée a plusieurs codesitle téaliste, et les recherches
visent des codes encore plus gros. Nous comparons les dygsraboisies par les principaux
outils de Différentiation Automatique pour construire degles adjoints, en mettant I'accent
sur les problemes de flot de données et de consommation reéioirs présentons des déve-
loppements récents dans I'application d’un principe cigss de compromis stockage-recalcul,
et nous montrons nos résultats expérimentaux prélimigaire

KEywoRrDSAutomatic Differentiation, Reverse Mode, Checkpointidjpint methods, Gradient

MoTs-CLES Différentiation Automatique, Mode Inverse, Checkpoiptiatat Adjoint, Code Ad-
joint, Gradient
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1. Introduction

Modern Scientific Computing increasingly relies on the camagion of several
sorts of derivatives. Obviously, derivatives play a natooée in the basic simulation
activity, as well as in most of the mathematics that modelsygems to simulate.
But we are now witnessing a sharp increase in the use of diségamade possible
by the impressive power of present computers on one handpeotzhbly by new
programming concepts and tools, such as Automatic Diftegon (AD), on the other
hand.

The present issue provides ample illustration of these Inoses of derivatives.
Now that computing capacities technically allow for it,@aschers explore new usages
of derivatives. To quote some examples, simulation of a dexngystem in a neigh-
borhood of some initial configuration is no longer limitedasimple linear approxi-
mation. Second- and higher-derivatives can provide a mumie mccurate simulation,
and are now affordable. Similarly, the development of geattbased optimization of
complex systems requires efficient gradients through atjoResearchers are explor-
ing the computation of these gradients even for very longexpensive instationnary
simulations (Mankt al,, 2007). Further, gradient-based optimization, which ssve
years ago was restricting to approximate quasi-Newton austhis now considering
true Newton methods, which require second-order Hessiavadiges. Even further,
the Halley method is being considered again, and it reqairgsrd-order derivative
tensor. Second-order derivative information is also thg tkethe sensitivity of the
optimum itself, leading to so-called robust design.

In this small catalog, Adjoint Codes rank among the most [sorg kinds of
derivatives, because gradients are crucial in Optimipatand because the adjoint
method can return a gradient at a cost essentially indepefrden the number of in-
put parameters. The justification for this will be sketche®ection 2. Applications
in CFD or structural mechanics require gradients for serntsitanalysis and optimal
shape design. Applications such as climate research, noétgy, or oceanography,
require gradients for sensitivity analysis and inverséofgms e.g. variational data as-
similation. Their number of input parameters is often sainillions, which makes it
impossible to compute the gradient with direct approachel as divided differences.
The adjoint method is the appropriate strategy to builddgrggadients, and therefore
adjoint codes have been written for several applicatioftendoy hand at a huge devel-
opment cost. Moreover, hand-written adjoint codes wererokuilt from simplified
models only, to reduce development cost, but this discrgpproduced annoying ef-
fects in the optimization loop. But the increasing compexif e.g. simulations of
turbulent flow by LES models makes this simplification everrerttazardous. Present
AD tools can automatically build efficient adjoint codes floese very large and com-
plex simulations.

AD tools are still research tools. The applications showseation 5 demonstrate
that AD can now address simulations of a very decent size,aa@dnaking rapid
progress in this respect. However they will maybe never begblack-box tools like
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compilers. Interaction with the end-user is unavoidabldifterentiate the largest
codes.

In this article, we will introduce the principles of AD in Si&mn 2, emphasizing the
notions behind AD adjoint codes. We will present in Sectigch&existing AD tools
that can produce adjoint codes and we will try to compare s8pacific strategies. Be-
cause optimization of instationnary simulations is ondlehge of the years to come,
we will study in Section 4 the specific problems that must beéressed in the case
of very large and time-consuming codes. Section 5 will pneseme applications of
our AD tool Tapenadeto large instationnary simulation codes, with our first istéad
measurements of the performance of AD-generated adjodtexo

2. Building Adjoint Algorithms
through Automatic Differentiation

Automatic Differentiation (AD) is a technique to evaluatidatives of a function
F:X e R" — Y € IR" defined by a computer prograka In AD, the original
program is automatically transformed or extended to a negmmp’ that computes
the derivativegnalytically. For reference, we recommend the monograph (Griewank,
2000), selected articles of recent conferences (Caatiak, 2001; Biickeet al,, 2006),
or the AD community websiteww.autodiff.org.

After some formalization of Automatic Differentiation iregeral in section 2.1,
we focus in section 2.2 on the structure of AD-generatediatijodes, which we
call adjoint algorithms In section 2.3, we underline the principal difficulty thaese
adjoint algorithms must overcome.

2.1. Principles of Automatic Differentiation

The first principle of Automatic Differentiation is to comwlgir any numerical pro-
gram as a mathematical function, obtained by composing ldreentary functions
implemented by each simple statement. The analytic der@ésbdf the complete pro-
gram can therefore be computed using the chain rule of agcuBince these are
analytic derivatives, they have the same level of accuradhe given numerical pro-
gram, and are free from the approximation error which is reheto the “Divided
Differences”(F(X +¢) — F(X))/e

The second principle of AD is that it is “Automatic”, i.e. tlemd user doesn'’t
need to actually write the derivative program. This taskesfgrmed by a tool or by
an appropriate environment, so that producing the devieatbde actually costs very
little. This is especially important when the original coaay be modified several
times to embed new equations, new discretization choicaswralgorithms. In most
cases, actual differentiation of code can be called frorkefile. The differentiated
code is regarded as some intermediate step in the compitegspand ideally should
never be modified or post-processed by hand. Unfortunatelgality this still occurs
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sometimes, but it is considered a weakness and AD toolsrarmgtto progressively
eliminate these hand modification stages.

Let’s now introduce a bit of formalization. Consider a nuioal programp that
implements a functio’. Among the outputs of?, suppose we identify a subset
Y of variables that we want to differentiate. Symmetricaliynong the inputs of
P, suppose we identify a subsat of variables with respect to which we want to
differentiateY’. Both X andY are multi-dimensional in general, and must consist of
variables of a continuous type e.g. floating-point numb&he X are often called the
“independents” and” the “dependents”. We are looking for the derivativesFoht
the current input poink’ = X, and we will assume that there exists a neighborhood
around X, inside which the control flow oP remains the same. This means that
all conditional branches, loops, array indices, or othetrads computation are the
same for any input points in this neighborhoodX§. This is apparently a strong
assumption, since the flow of control of a program usuailyy change a lot when
the inputs change, but in practice this assumption is redderand leads to useful and
reliable derivatives. In this neighborhood, executio® &f equivalent to the execution
of a (possibly very long) sequence of simple statemépfs.i ., :

P :Il;IQ;...Ipfl;Ip .

Calling fi the mathematical function implemented by, we know that the function
F computed by is:

F=fyofp_10---0f.
Calling Wy, the set of all intermediate values after statemgntefined byil, = X,
andWy, = fi(Wx_1), we can use the chain rule to compute the derivative:of

F'(Xo) = f,(Wp—1)-f -1 (Wp—2). ... .f1(Wo)

and this can be implemented right away by a new progpgnealled thedifferenti-
atedprogram. The goal of Automatic Differentiation is to pro@wsuch a prograrp’
automatically fromp, for instance through program augmentation or programstran
formation, or even as an additional phase during compitadic®.

It turns out in practice that this full Jacobian matfi%(X ) is expensive to compute
and for most applications is not really necessary. Inste&dt applications often need
is either the “tangent” derivative:

Y =F(X).X = fi(Wp-1).fp_1(Wp—2).....f1(Wo).X
or the “adjoint” (or “reverse” or “cotangent”) derivative:
X = FUX).Y = fEWo). ... fi s (W) fE (W)Y

Intuitively, the tangent derivativé is the directional derivative of” along a given
direction X. The adjoint derivativeX is the gradient, in the input space, of the dot-
product ofY” with a given weighting’. Both formulas for tangent and adjoint deriva-
tives are better evaluated from right to left, becaiisendY” are vectors and thg, are
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matrices, and matrixvector products are much cheaper than matmatrix. More-
over eachf;, is very sparse and simple. If, is an assignment to a variablg of an
expression that usekother variablesf; is basically an identity matrix in which the
k" row is replaced with a vector with only non-zero entries. Choosing this right to
left evaluation order, on¥ or oneX costs only a small multiple of the cost Bfitself,
independently of the sizes &f andY". The slowdown factor fron® to P’ reflects the
cost ratio between elementary operations and their dérgatrhich ranges between
one and four. It depends on the actual code and on the optionsgerformed by the
compiler. In practice it is typicall.5 with the tangent mode aridwith the adjoint
mode. The key observation is that this ratio is essentiatigpendent from the length
of the programP and from the dimensions of the independent infutnd depen-
dent outputt”. The reasons for the higher cost ratio of the adjoint modeheitome
apparent when we study this mode in more detalil.

For most of the applications we are targeting at, the requdezivative is actually a
gradient of a scalar cost function. For optimization, thstéonction can be a physical
value such as the lift/drag ratio of an airplane. For invgrseblems and optimal
control, it will be the least-square discrepancy betweencbmputed final state and
a target state or more generally between all computed irggiae states and a target
trajectory. In these cases, the dimensiof X is large wherea¥ is a single scalar.
One run of the tangent code would return only one scHlaandm runs are needed
to build the complete gradient. On the other hand, the atd@gorithm returns this
complete gradient in just one run. In the sequel of this ketiwe will therefore focus
on the adjoint mode of AD.

2.2. The adjoint mode of Automatic Differentiation

The adjoint mode of AD builds a new codehat evaluates

X = F/t(X)-? = f{t(WO) ----- fltfl(Wp—Q)-f;/)t(Wp—l)-Y

p

from right to left. Therefore it computeﬁf(Wp,l)Y first, and this needs the values
W,_1 that the original prograrh knows only after statemed},_; is executed. This
implies a specific structure fa& which is often surprising at first sight: it consists
of an initial run of a copy of, followed by actual computation of the intermediate
gradientsV, x—, o initialized with

W,=Y
and computed progressively by
Wit = fif(Wi—1) W

for k = p down tol. X is found in the finalV,,.

Consider the following very simple example f@rfrom inputsa andb to resultc:
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where linesP:(1-3) are the copy fronP, usually called thdorward sweep They are
followed by thebackward sweepwvhich is made of the differentiated instructions for
each original statement, in reverse order, naregl§+6) from P:(3), P:(7-8) from P:(2),
andP:(9-11)from P:(1). The reader can easily check each differentiated instostset
by building the transposed Jacobian times vector prodfi¢tV;_1).W,, for k = 3
down tol.

Let's look at the cost of computing the gradi@randb for this simple example, by
counting the number of arithmetic operatiorsitself costs 6 arithmetic operations.
The naive divided differences approach would require adtldaee runs of, i.e. a
total cost of3 « 6 = 18 operations. Computing the same gradient using the tangent
mode (not shown here) would require two executions of thgeahmode for a total
cost of15 + 15 = 30. This cost can be easily reducedlt®+ 9 = 24 by sharing the
original values between the two derivatives computatidiss is more expensive than
divided differences. In general the two costs are comparfllarge programs, but
the accuracy of tangent derivatives is clearly better. I§in® computes the gradient
in just one run, at a cost of 15 arithmetic operations, whilalready better than
the other approaches. This advantage becomes even higtiex asmber of input
variable grows. The slowdown factor fropto P is here 2.5.

The structure of the adjoint algorithtnbecomes even more surprising when con-
trol comes into play. The control path which is actually talke the progranP and
therefore in the forward sweep 8fmust be taken exactly in reverse in the backward
sweep oP. One way to do that is to remember all control decisions dyittive forward
sweep, by storing them on a stack. During the backward swkeontrol decisions
are read from the stack when needed, and they monitor theat@ftthe backward
sweep. With this approach, conditionals frénbecome conditionals iR, and loops
in P become loops i®, although their iteration order is reversed.
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2.3. The taping problem of adjoint AD

However, there is a problem lying in the reverse order of\@give computations
in adjoint AD, which uses values fromin thereverseof their computation order. Al-
though we carefully designed the example in section 2.2 ¢édathis, real programs
often overwrite or erase variables. Overwriting actualiyioot be avoided in real sim-
ulation programs, which are iterative in essence. For atjaD, an erased variable
must be restored if the erased value is used in a derivatirguatation. This has a
cost, whichever strategy is used.

If a value is needed which is not available, because it has bessed, there are
basically three tactics to make it available again:

— The desired value may have been stored in memory just befasal. This is
the fundamental tactic and it motivates the name we giveisd‘thping” problem.

— The desired value may be recomputed forward by repeatmgtttement that
defined it, provided the inputs to this statement are theraselvailable.

— In a few situations, the desired value may be deduced fra@tersent that uses
it, provided that the statement is “invertible” and that tieer inputs to this statement
and its output are available. For exampleaifand c are available, one can invert
statemena = b+c to makeb available.

Adjoint AD on large programs must use a clever combinatiothee three tactics to
compute the gradient efficiently. We will see that, whatekierstrategy, it will always
include some amount of storage.

The number of values that are overwritten®bygrows linearly with the execution
time of P. Thus this problem becomes even more crucial for the verg mdes that
we are now considering, such as instationnary simulations.

3. Automatic Differentiation approaches and tools: Advanages and Drawbacks

There exist today a large number of AD tools. In this secti@will select only a
subset of them, which seem to us the most active tools, anchvere representative
of the existing different approaches. We aim at being objedtere, although we are
developing one of these toolEgpenade One can find a more complete catalog on the
AD community websiterww . autodiff . org. We will emphasize how the approaches
behave for building adjoints of large simulation codes. Viléfirst present the general
picture in section 3.1, together with a summary in table 1. tén compare the
merits of the main alternatives, namely OverloadiusgProgram Transformation in
section 3.2 and strategies for restoring overwritten valnesection 3.3.
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3.1. AD approaches and tools

Traditionally, the first distinction among AD tools is codeenloadingvs explicit
program transformation. Since program transformatiotstace harder to implement,
code overloading AD tools came earlier. The principal mendiehe overloading
classis the AD toohdol-C (Griewanket al,, 1996).Adol-C applies to G+ codes, us-
ing the overloading capacities of Object-Oriented stylenifarly for MATLAB, avail-
able AD packages such &aDMAT (Verma, 1999)ADiMat (Bischofet al,, 2003),
and recentiyMAD (Forth, 2006), rely on overloadingADiMat mixes overloading
with some amount of code transformation. All overloadingi$mffer an implementa-
tion of the tangent mode, and can often compute other tamijectional higher-order
derivatives such as Taylor developments.

Some of the overloading tools also offer adjoint AD capasitibut at a cost that
we will discuss in section 3.2. To our knowledge, overlogdiased tools have pro-
duced adjoint algorithms only for relatively small appticas. For adjoints of large
simulation codes, overloading becomes too expensive angrgm transformation
tools are compulsory. These tools share common organizgtiociples, that we can
summarize as four successive phases:

1) Parse the complete given program, with all subroutinesiaclude files, and
build an internal representation.

2) Perform a number of global static analyses on this inteamesentation. Most
of these are data-flow analyses that help produce a bettdt.r8sme of these analy-
ses are completely specific to differentiation.

3) Build the differentiated program, in the internal remreation format.
4) Regenerate a differentiated source code.

Phases 1 and 2 obviously look very much like what is done inglems. The internal
representation makes the tool less dependent on the targgpidge. This idea was
present right from the design stage ftapenade (Hascoétet al, 2004) andOpe-
nAD (Utke et al, 2006), for which phases 2 and 3 are language-independéig. T
makes extensions to new languages easier. There is a pbtexttia level of flexi-
bility with OpenAD, which publishes an API allowing a programmer to define new
code analyses on the internal representation. Therefer&pen” inOpenAD. The
two other frequently mentioned program transformationigcare Adifor (Bischof

et al, 1996) andTAMC/TAF (Giering et al,, 2005). Not so surprisingly, all these
transformation tools have a similar policy regarding theleation language: Their
primary target is Fortran, and they all more or less acceptr&ad5. ExcepAdifor,
they are all working on C too, although at an experimentgestdapenadeandOpe-
nAD take advantage of their architecture there, whef@$s is undergoing a major
rewriting to reach TAC”. The C++ target language is a different story, commonly
regarded as a hard problem, and postponed for future résearc

The ability to run global analyses is a strong point in faviahe program transfor-
mation approach. Program transformation AD tools sligliffer from one another
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at the level of the data-flow analyses that they perform. flih&grnal representation is
important here, since it conditions the accuracy of thecstita-flow analyses. Also,
some tools have specific analyses that allow for slightlyroapd differentiated code.
But in general, the most profitable analyses have spread toas. For instance
the activity analysis, that finds out whether a given variable somewhethd code

actually has a nontrivial derivative, is available in theiftools above.

In the adjoint mode, the program transformation tools diffe how they ad-
dress the taping problencf(section 2.3). There are mostly two approaches, namely
“Recompute-All” (RA) for TAMC/TAF and “Store-All” (SA) for Tapenade and
OpenAD. There is no adjoint mode iAdifor, but a previous attempidjfor , us-
ing SA, will serve as a basis for the adjoint modeQgfenAD. Section 3.3 compares
the “Recompute-All"and “Store-All” approaches. In reality, it turns out that both
approaches must be hybridized, and their performancesgeoyvmuch alike.

Although it doesn’t feature an adjoint mode yet, let's mentthe extension of
theNAGWare Fortran compiler (Naumanet al, 2005) that includes AD capabilities
right inside the NAG Fortran95 compiler. The advantage & tfhase 1 of program
transformation is done by the compiler, the internal formali®ady defined, and the
final phase 4 is useless. There is a slight difficulty for pegsand 3 because sep-
arate compilation, which is the standard in compilers, prés global analyses and
transformations. Therefore the differentiated code dio&®lows the structure of the
original code, very much like overloading-based tools doe &djoint mode is under
development, and will follow the code-list approach of dvading tools.

| | target | approach | adjoint | taping strategy |
OpenAD F77/F95(soonL | transfo. | yes SA
Adifor F77/F95 transfo. | no

TAMC/TAF F77/F95(soonL | transfo. | yes RA
Tapenade F77/F95(soonL | transfo. | yes SA

NAG F95 F77/F95 compiler | no
Adol-C C++ overload.| yes SA + Code-List
ADiMat MATLAB overload.| no
MAD MATLAB overload.| no

Table 1. Summarized comparison of some AD tools and environments

3.2. Overloadingvs Program Transformation

Overloading is the ability, available in some languagesigfine different imple-
mentations for the same procedure or operation. It is the bfthe procedure argu-
ments that decides which implementation is chosen for angied. Object-Oriented
programming is a generalization of Overloading. Using toamting, one can redefine
the meaning of arithmetical operations to include demnegticomputations. AD by
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code overloading requires little modification of the origliprogram: all is needed is
to change the declared type of the variables that have aadi®gv Still, this must be
done generally by hand. Then, after linking to a predefineetloading library for
arithmetical operations, the program computes the dévamt

On the other hand, explicit program transformation recgiaesery complex AD
tool, similar to a compiler, which parses the original prgrin order to analyze it
and then to create a new program that computes the derisatuee advantage of this
approach is its flexibility: it builds a totally new programvhose structure need not
follow the original. The other advantage is the possibildyrun a number of global
static analyses on the original code, that can lead to istiege optimizations in the
differentiated code. The cost of this approach is a long ldgveent effort to build the
tool, but in theory all that one can do with Overloading casodle done with program
transformation.

Specifically for the adjoint mode, overloading has a harmaicgeamust follow the
control flow and execution order of the original program.c®ithe adjoint mode needs
to run the derivative computations in the reverse orderséheomputations cannot
be run by the overloaded operations. The common answerstadd, to store the
required derivative computations themselves on a stagkotily when the overloaded
program terminates that this computation stack is used etu@dldy run in the correct
order. In other words, the overloaded statements write apregram, named a “code-
list”, from its last line to its first line, and only at the enltig code-list is executed to
get the derivatives. Storing the derivative computatianexpensive: the code-list
grows with execution time, since it contains no control stiwe. The values needed
in the derivatives computation must still be stored too. Anber of refinements can
reduce this cost, many of them inspired by the program taansdtion approach, but
overloading is lagging behind. The typical size of applmas that can be efficiently
adjointed by overloading is notably smaller than by progteansformation.

In contrast, the program transformation approach can greduwell structured
adjoint algorithm, which is smaller than a code list, and ikidone only once at dif-
ferentiation time. The compiler can exploit this contralisture to generate efficient
code. Only the values needed in the derivatives computatigst be stored.

To conclude this section, one must note that the relativétsnarOverloading and
Program transformation are getting blurred with time. Oreenback of Overloading
used to be a noticeable inefficiency of overloaded prograrnsh is now reduced by
very clever compilers. Some overloading tools are now ateraig to run a prelimi-
nary global analysis of the program, and some amount of pragransformation to
automatically change the types of variables when this igssary. This amounts to
addingactivity analysis into the overloading scheme, thus improving thal tiode.
There are also a number of strategiesAitol-C to reduce the size of the code-list.
On the other hand, the code-list strategy can be attraabivéhe program transfor-
mation tools, in the cases where reversing the flow of coranal the flow of data
become too complex. This is not the case at present, but méghtvell be for AD of
Object-Oriented programs.
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3.3. Storagevs Recomputation

As mentioned in section 2.3, an adjoint algoritRmust provide a way to retrieve
(most of) the intermediate values®fusing a combination of three elementary ways:
memory storage, forward recomputation, and backward saein present AD tools,
backward reversal is rarely used. Inserting some backweweérsal into the general
strategy, and finding the best combination, are still opeblems. We shall focus here
on what is available in real tools, namedforageand recomputation All strategies
radically modify the adjoint algorithm structure of secti@.2.

The TAMC/TAF tool initially relies on recomputation, leading to tRecompute-
All (RA) approach. The RA approach recomputes each neBdedn demand, by
restarting the program on inplity until instruction/;,. The cost is extra execution
time, grossly proportional to the square of the number oftiome instruction®. Fig-
ure 1 summarizes RA graphically. Left-to-right arrows egent execution of orig-
inal instructionsly, right-to-left arrows represent the execution of the d#faiated
instructions?k which implementV;,_; = f;*(Wy_1).W. The big black dot repre-
sents the storage of all variables needed to restart exacdudm a given point, which
is called asnapshatand the big white dots represent restoration of these asa
from the snapshot.

1 2 3 -2 -1
® =5
O > 1

time ‘_T
e o o p-1
|

1
OoO—r

C—
v O_ 1_2
A

Figure 1. The “Recompute-All” tactic

TheTapenadeandOpenAD tools initially rely on storage, leading to tistore-All
(SA) approach. The SA approach stores edghin memory, onto a stack, just before
the correspondindy.; during the forward sweep &. Then during thebackward
sweep eachiV, is restored from the stack before the correspondTngl. The cost
is memory space, essentially proportional to the numbeupftime instruction®.
Figure 2 summarizes SA graphically. Small black dots regmestorage of th&l;, on
the stack, before next instruction might overwrite thend amall white dots represent
their popping from the stack when needed. We draw these dathes than on figure 1
because it turns out we don’t need to storel&]l, but only the variables that will be
overwritten byl ;1.
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Figure 2. The “Store-All" tactic

The RA and SA approaches appear very different. The quadwati-time cost
of the RA approach appears unacceptable at first sight. Hewéwe TAF tool is
successful and performs comparably widpenade One reason for that is the run-
time cost of individual storage operations in the SA apphoaghich must not be
overlooked. These operations often damage data locdtiths tompromising later
compiler optimizations. Values are stored on and retrieivech a dynamic stack,
whose management also has some cost. Hardware can prowderane.g. pre-
fetching, but these low-level concepts are not easily mad&pm the target language
level.

In any case, pure RA and pure SA are two extreme approaches:ofth
timum usually lies in-between. Clearly recomputing the ufesof an ex-
pensive program expression can cost far more than simplegep although
costs in memory space and in run time are hard to compare. ©nother
hand, consider a computation of an indirection index in aplosuch as:

nodeIndex = leftEnd(edgelndex) .
Assume that botheftEnd andedgeIndex are available. In addition to its inher-
ent memory space, storage tactic fi@deIndex already costs one push and one pop
from the stack, i.e. more than twice the run-time of simporaputation. Therefore
recomputation is here cheaper for both memory space andmen t

But the main reason why RA and SA approaches perform com|yaoablarge
simulation codes is that neither of them can work alone agyWde quadratic run
time cost of pure RA is simply unacceptable, and the lineamorg space cost of
pure SA easily overwhelms the largest disk space availdlile.classical solution is
called checkpointingand it applies similarly to RA and SA. Checkpointing will be
discussed in detail in section 4.1. All we need to say herbas €heckpointing is
a storage/recomputation trade-off which can be recungigpplied to nested pieces
of the program. In ideal situations, optimal checkpointimgkes both the run-time
increase factor and the memory consumption grow like orgyidigarithm of the size
of the program. In other words jf is the number of run-time instructions Bf then
the run-time of will grow like p x Log(p) and the maximum memory size used will
grow like Log(p). These optimal costs remain the same, whether applied RAhz
SA approaches. This is illustrated on figures 3 and 4: RA and@#oaches visibly
come closer as the number of nested checkpointing levels. gf@n figure 3, the
part on a gray background is a smaller scale reproductionebasic RA scheme of



AD adjoints of large codes 13

figure 1. Similarly on figure 4, the gray box is a smaller scafgroduction of the basic
SA scheme of figure 2. Apart from what happens at these “légttes gray boxes),

figures 3 and 4 are identical. The question remains to conpageSA and pure RA,
but it becomes less crucial as these are applied to smadleepiof the program. We
believe SA with some amount of recomputation is more effigiespecially on small

pieces of program, because the stack can stay in cache mehmisys why we chose
SA as the basis approach for our AD td@penade

4. Space-time trade-offs for reversing large simulation cdes

We now focus on the construction of adjoint algorithms feg&simulation codes.
We recall that the adjoint approach in general is the onlgtical way to obtain gra-
dients, because of the large number of input parametershenidng simulation run
time. The adjoint algorithms obtained through AD belonghis tategory.

This section deals with the fundamental difficulty of adjaitgorithms namely,
the need to retrieve most of the intermediate values of timellsition in reverse or-
der. Section 3.3 described the RA and SA approaches, butemaiin work on the
present large simulation codes. Both need to be amendeddghriatensive use of
checkpointingwhich is described in section 4.1. This shows in partictieat RA
and SA behave similarly when checkpointing comes into @ag we will therefore
restrict to the SA approach from then on. Section 4.2 retlaionly known situation
where optimal checkpointing can be found. Section 4.3 dessithe general situa-
tion, where checkpointing is applied on structured proggaeen as call trees at the
topmost level.

4.1. Checkpointing

On large program®, neither the RA nor the SA approach can work. The SA
approach uses too much memory, grossly proportional tordhetime number of
instructions. The RA approach consumes computation timessty squaring the
run-time number of instructions. Both approaches need &auspecial trade-off
technique, known asheckpointing The idea is to select one or many pieces of the
run-time sequence of instructions, possibly nested. Foln @geceC, one can spare
some repeated recomputation in the RA case, some memorg iBAhcase, at the
cost of remembering snapshati.e. a part of the memory state at the beginning.of
We studied how to keep the snapshot size as low as possilifagt(éet al., 2006).
The structure of real programs usually forces the pieceg tsulbroutines, loops, loop
bodies, or fragments of straight-line code.

Let us compare checkpointing on RA and SA in the ideal casepofra straight-
line program. We claim that checkpointing makes RA and SAeaioser. Figure 3
shows how the RA approach can use checkpointing for one pnogieceC (the first
part of the program), and also for two levels of nested cheirtkp. The benefit comes
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Figure 3. Checkpointing on the “Recompute-All” tactic

from the checkpointed piece being executed fewer times.cbseis memory storage
of the snapshot, needed to restart the program just afteritbekpointed piece. The
benefit is higher when is at the beginning of the enclosing program piece. On very
large programs, 3 or more nested levels can be useful. Abtherllevels, the memory
space of already used snapshots can be reused. Similatye #figshows how the
SA approach can use the same one-level and two-levels chietikyy schemes. The

C

Figure 4. Checkpointing on the “Store-All” tactic

benefit comes from the checkpointed piece being executefirshéime without any
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storage of intermediate values. This divides the maximwu®a sf the stack by 2. The
cost is again the memory size of the snapshots, plus thisaimextra execution of the
program piec&€. Again, the snapshot space used for the second level of pbatlng

is reused for two different program pieces. Visibly, the tsalhemes come closer as
the number of nested checkpointing levels grow.

Let’'s analyze more precisely why checkpointing generattpioves things. Fo-
cusing on the SA approach from the top part of figure 4, thetine-cost of check-
pointing is an extra run af. The benefit lies in the maximum memory size used. Call
D the remaining of the original code, downstreanWith no checkpointing, the max-
imum memory use is reached at the end of the forward sweem ahetermediate
values computed duringand therD are stored. We will write this maximum:

peak = tapdC) + tap€D)

With checkpointing, there are two local maximal memory udiest at the end of the
forward sweep ob,

peak, = snp(C) + tape&D)

where snfC) is the snapshot needed to re-i@rand second at the end of the re-run,
i.e. forward sweep, of,

peak, = tapec)

To see whypeak, < peak, observe that tage) grows linearly with the size of:
each executed statement overwrites a variable, which neusabed in general. On
the other hand srp) is the subset of the memory state at the beginningwhich is
used byC. This set grows slower and slower@grows bigger, because the successive
assignments during progressively hide the initial values. Therefore &pgrows
less than linearly with the size afand for large enougf, we have snf) < tap€C).

4.2. Checkpointing fixed-length flat code sequences

Consider the model case of a programrmade of a sequence of piecBs,—i—p,
each piece considered atomic and taking the same time. Asalso that each piece
consumes the same amount of storage(tBp¢hat the snapshot stfy.) is sufficient
to re-run not onlyl;, but all subsequent pieces, and that all (dpp have the same
size sni/). Under those assumptions, it was shown in (Griewank, 1992ni@ et
al., 1996) that there exists an optineileckpointing schemee. an optimal choice for
the placement of the nested checkpoints.

The optimal checkpointing scheme is defined recursively,afgiven maximal
memory consumption and a maximal slowdown factor. The mgrmonsumption is
expressed ag the maximum number of snapshots that one wishes to fit in meato
the same time. The slowdown factor is expressed &g maximum number of times
one accepts to re-run anfy.. For a givens andr, I(s,r) is the maximum number
of steps that can be adjointed, starting from a stored statehacan be a snapshot.
It is achieved by running as many initial steps as possihe then place a snapshot
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and again adjoint as many tail steps as possible (or the initial sequencé; is
maximized recursively, but this time with onty- 1 recomputations allowed since one
has been consumed already, and for the tail sequénisanaximized recursively, but
with only s — 1 snapshots available, since one has been consumed alrdegfdre

ls,r)=1(s,r—1)+1l(s—1,7) ,
which shows that(s, r) follows a binomial law:

s+7r)!
Hsor) = : s!r!)

This optimal checkpointing scheme can be read in two waysst,Rivhen the
lengthp of the program grows, there exists a checkpointing schemwliiicch both
the memory consumption and the slowdown factor due to rectatipns grow only
like Log(p). Second, for real situations where the available memonylaaefore the
maximals is fixed, the slowdown factor grows like ti3&" root of p.

This model case is not so artificial after all. Many simulatandes repeat a basic
simulation step a number of times. The steps may vary a, Itk still take roughly
the same time, tape size, and the snapshot to run one stegugacessive steps is basi-
cally the same because each step build a state which is thetomthe next step. One
question remains with the numbepf iterations of the basic step. In a few cagés
actually known in advance, but in general it is unknown areddiogram iterates until
some convergence criterion is satisfied. Strictly speakimg optimal checkpointing
scheme can only be organized wheis known in advance. However, there exist ap-
proximate schemes with basically the same properties wheynamic, i.e. known
only at run-time. It is very advisable to apply these scheroptimal or not, to the
principal time-stepping loops of the program to differeui.

4.3. Checkpointing call trees

In many situations the structure of the progr@rns not as simple as a sequence
of identical steps. Even in the case of iterative simulajahe program structure
inside one given step can be arbitrary. Since AD applies ¢osthurce o, we are
here concerned with the static structurePof which is acall graphi.e. a graph of
procedures calling one another. Each procedure in turmuststred as nested control
constructs such aequences, conditionaBndloops

This strongly restricts the possible checkpointing schem@enerally speaking,
the beginning and end of a checkpointing pi€aaust be contained in the same pro-
cedure and furthermore inside the same node of the tree dfad@tructures. For
example a checkpoint cannot start in a loop body and endtaidoop. The optimal
scheme described in section 4.2 is therefore out of reach qliestion is how can one
find a good checkpointing scheme that respects these t&sisc
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Let’'s make the simplifying assumption that checkpointimgurs only on proce-
dure calls. If we really want to consider checkpointing ftler program pieces, we
can always turn these pieces into subroutines. Figure 5stimeffect of reverse AD
on a simple call graph, in the fundamental case where chéutipgis applied to each
procedure call. This is the default strategyTepenade Execution of a procedure

[x] : original form ofx

[x) : forward sweep fok
{x] : backward sweep for
¢ : take snapshot

(: use snapshot

Figure 5. Checkpointing on calls ifapenadereverse AD

in its original form is shown ag. The forward sweep, i.e. executlonmaugmented
with storage of variables on the stack just before they aesvontten, is shown as .
The backward sweep, i.e. actual computation of the reveeseadlves ofA, which
pops values from the stack to restore previous values, iwstas ‘A . For each pro-
cedure_c):all e.gB, the procedure is ruwnhoutstorage durlng the enclosing forward
sweep A . When the backward sweep reaches, it runs B i.e. B again but this
time W|th storage, and then immediately it runs the backvsarelepB and finally the
rest of & . Figure 5 also shows the places where snapshots are takersaddaurun
procedure®, C andD twice. If the program’s call graph is actually a well baladce
call tree, the memory size as well as the computation timeired for the reverse
differentiated program grow only like the depth of the onigli call tree, i.e. like the
logarithm of the size o, which compares well with the model case of section 4.2.

In this framework, the checkpointing scheme question arteotodeciding, for
each arrow of the call graph, whether this procedure calltines checkpointed piece
or not. This is obviously a combinatorial problem. With respto the number of
nodes of the call graph, there is no known polynomial alganito find the optimal
checkpointing scheme. There is no proof that it is NP nor eepdial either. In any
case, we can devise approximate methods to find good enohgimss.

The fundamental step is to evaluate statically the perfaceaf a given check-
pointing scheme. If the call graph is actually a call treés tan be done using rela-
tively simple formulas. These formulas will use the follogidata for each nodg
i.e. each proceduieof the call tree:

—time(R): the average run-time of the original procedasenot counting called
subroutines.

—time(R): the average run-time of the forward and backward sweepgsecdjoint
algorithm ofR, not counting called subroutines.
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— tap€R, i): the memory size used to store intermediate values af the tape,
between itsi*” subroutine call and the following procedure call. Indidestart atl
up, andmaxstands for the last

— snT, 7): the memory size used to store the snapshot to checkpoitittiselb-
routine called by the root procedure f

—snp_timé€T,): the time needed to write and read the snapshot, very roughly
proportional to snfT, ).

These values can be either measured through run-time pgpbfi the adjoint code,
guessed through profiling on the original program, or eversgly evaluated statically
on the source program at differentiation time. The form@B® use the navigation
primitives:

— roof(T), the procedure at the root of the sub-call-tfee
— child;(T), thei*" sub-call-tree of,

as well as the boolean ckp i), true when the considered scheme does checkpoint
the i** subroutine call made by the root procedureTofThis boolean function in-
deed defines one checkpointing scheme, and for each “ckp’afiredthe following
durations:

—time(T) as the total run-time cost af
—time(T) as the total run-time cost af the adjoint algorithm of.

We can compute these durations, recursively on each sali:toé the call tree, as
follows:

time(T) = time(rool(T)) + > _time(child;(T))

fme(r) — Tme(roolT))+

T if ckp(T,4) : time(child;(T))+snp_timeT, i
Ztlme(chlldi(T))+{ othz(rwigezo (child;(T))+snp_timéT, i)

Figure 6 shows an example call tree, together with an exaaff@ekpointing scheme,
namely on the calls tB, E, andF. The resulting adjoint algorithm is shown on the right.
Inspection of the adjoint call tree justifies the above tigngvaluations. Similarly, we
can evaluate the peak memory consumption during the adjtgotithm. Arrows on
figure 6 show the places where this peak consumption may .ogtwe formulas are
slightly more complex and we need to introduce the interatedialuegpart_mem(T)

in order to compute the final resydeak_men{T). We define

— part_mem(T, ) as the amount of memory used between the beginning of the
forward sweep? and the(i + 1)*" subroutine call done bf. In particular, the last
part_mem(T, imax) is the amount of memory used by the complae We define
part_mem(T) = part_mem(T, imax).
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Figure 6. Example Checkpointing scheme on a Call Tree

— peak_mem(T) as the peak memory consumption during execution of the whole

T.

We can compute these memory consumptions recursively dn fdztreel as fol-
lows. Notice thapart_mem(T, ¢) on a giverT is computed recursively farincreas-
ing from 0 to imax i.e._f)rom the beginning of, incorporating progressively each
successive call made by .

part_mem(T,0) tapdroot(T), 0)
part_mem(T,i) = part_mem(T,i—1) -+ tapgroot(T),:)+

if ckp(T,7) : snp(T,q)
otherwise: part_mem(child;(T))

part_mem(T) = part_mem(T,imax)

peak_memT) =
ma><<part_mem(T),

Max (part_mem(T, i—1)+ peak_men(childi(T))))
i|lcKp(T,9)

These formulas can be used to evaluate the time and memosymgmtion for
every checkpointing scheme, and therefore to search foptimal scheme. A simple
heuristic could be to sweep through the call tree to find tlegdure call (thé'” in T)
that gives the best improvement when toggling(@kp), actually toggle it, and repeat
the process until no improvement remains. We are currenheementing such a
system insiddapenade The next section presents some preliminary results.
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5. Applications

Prior to experiments, we developed an extension to the tefaeckpointing strat-
egy of Tapenade Each subroutine call can now be checkpointed or not, throug
a boolean directive called$AD NOCHECKPOINT, inserted by hand by the end-used
into the original code. In the futur@apenadewill look for a good checkpointing
scheme following the principles of section 4.3. Then the-esér can refine this
choice through directives. Until this exists, we place ehéisectives by hand on every
procedure call to make experiments. We present the resultree large instation-
nary simulation codes.

5.1. Stics

Sticsis a Fortran 77 code that simulates the growth of a field, @kito account
the plants that are actually grown, the type of soil, the slaied quantities of the
inputs in water and nitrates, and the weather during a camplgricultural cycle. This
simulation is of course instationnary, with an explicit &rstepping schemesticsis
developed by the French Institut National pour la Rechesgg@nomique (INRA)
since 1996.

For this experiment, the goal was to compute the gradiertetdtal amount of
biomass produced, with respect to most of the input parasetéhis is a typical
application for AD adjoint mode. For the particular apptioa the simulation ran for
about 400 days, i.e. 400 time steps.

The original simulation code is about 27 000 lines long, and simulation runs
for 0.4 seconds on a 3GHz PC.

For this size of program, checkpointing is of course commyigor the adjoint
algorithm. Even withTapenadés default strategy, i.e. checkpointing on all calls, the
peak memory size was larger than the available 2 Gigabytesaiory.

The immediate answer was to apply a slightly sub-optimasieerof the check-
pointing strategy described in section 4.2 to the topleweplof 400 time steps. As
a result, the adjoint algorithm actually worked, and retdtia gradient that we could
validate.

However the slowdown factor from the original simulatioritte adjoint algorithm
was much too high. We claimed in section 2 that this factor typgally 7, but on
Sticswe observed a factor closer to 100!

In addition to the “optimal” checkpointing strategy applito the toplevel loop,
we looked for a good checkpointing scheme inside the ca#l tfeeach time step.
We measured the time and memory data from section 4.3 andwne #® subroutines
where it was obviously counter-productive to apply chedékpiog. Actually these
subroutines behaved very strangely, since for them thestreivas much larger than
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the tape, which is very unusual. The snapshots were so laagé&te times to take and
read the snapshots, “snp_time” dominated the actual deveomputations.

Using the new predicate ifapenade we implemented this checkpointing scheme
by explicitly not checkpointing the 6 procedure calls. Asesult, we observed a
reduction both in time and in peak memory. The slowdown is oaly 7.4, and the
peak memory is only 80 Megabytes, comparable to the 30 Mdgalsyatic memory
size of the original simulation code.

This application shows that a good checkpointing scheméasfor AD adjoint
algorithms of long simulations. In addition, although dkgainting is generally a
trade-off that spares peak memory at the cost of run-timeddavn, there are extreme
cases where checkpointing looses in both respects andshewvoided.

5.2. Gyre

Gyre is a simple configuration of the oceanography cOd&A 9.0. It simulates the
behavior of a rectangular basin of sea water put on the tsdpétween latitudes 15
and 30, with the wind blowing to the EasDPA 9.0is developed by theOCEAN-
IPSL team in Paris VI university. It consists of about 110 000dinéFortran 90. The
Gyre simulation runs for 4320 time steps ranging on 20 days.

The time advancing uses an implicit scheme with a precartl conjugate gra-
dient for solving the linear system at each time step. Oneulgition of theGyre
configuration takes 92 seconds on a 3GHz PC.

In this experiment, in order to perform data assimilatidre goal was to obtain
a gradient of an objective function, the total heat flux asresme boundary at the
northern angle, with respect to an initial parameter, whsctine temperature field in
the complete domain 20 days before. This is a typical apipdicdor the adjoint mode
of AD.

Here again, the checkpointing strategy for iterative loopsection 4.2 is abso-
lutely necessary. Otherwise, the adjoint code exceeded8b$tes of memory after
just 80 time steps. With the checkpointing strategy on fleedoops, the adjoint code
computed an exact gradient with the following performances

—time: 748 seconds, i.e. a slowdown of 8.2

—memory: 494 Megabytes, to be compared with the 40 Megabytes statiwamne
size of the original code.

The next improvement step is to look for a better checkpoignicheme inside
the time steps: we progressively increased the number afpire calls that are not
checkpointed, until we used all the available memory of 3aBiges. As expected,
this reduced the number of duplicate executions due to gwects, and thus reduced
the slowdown factor to 5.9. We believe this can still be inye@with some work.
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Incidentally, notice that for the previous versi8r) of OPA, the adjoint code was
written by hand, which is a long development. The slowdowstidawas between
3 and 4, which is a little better than what we obtain widpenade However, the
hand adjoint reduced the memory consumption by storingstamly at certain time
steps, and recomputing them during the backward sweep épiiation. This proves
efficient, but still this is a cause for inaccuracy in the gead In comparison, the AD
adjoint algorithm returns a more accurate gradient for atiely small extra cost.

Figure 7 shows a part of the resulting gradient, with respette initial tempera-
ture distribution at a depth of 300 meters. We also show ttexpnetation of some of
its structures made by the oceanographers.

Influence of T at -300 meters & 30° North
on the heat flux 20 days later

across north section

Kelvin wave

Rossby wave

Figure 7. Oceanography gradient by reverse AD on OPA 9.0/Gyre

5.3. Nemo

Nemois a much larger configuration @PA 9.0, encompassing the North At-
lantic. Again, we want to build a gradient through adjoint ADork is ongoing and
we have few results. We recently obtained our first valid gmatd When this gradi-
ent is fully reliable for the whole simulation (450 time sgelpere) we also expect to
have at hand the first version of the checkpointing profiliegiistic described in sec-
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tion 4.3. We plan to usBlemoas our first large testbed to improve this checkpointing
profiling heuristic.

6. Outlook

We presented the current research on Automatic Differgatiaaiming at au-
tomatic generation of efficient adjoint codes for long itistanary simulations. We
described the principles of AD, which show that the adjoint®is certainly the most
reasonable way to obtain the code for the gradient of a stibalaWe suggested how
existing AD approaches and tools could compare in this @spdowever, adjoint
codes require complex data flow and memory traffic. AD toolgehget to reach the
level where these questions are properly solved. In thigpaye tried to present the
directions we are considering to address these questions.

The issue of finding good checkpointing schemes on largérarpiprograms is
central. There is a strong suspicion that this combindtquastion is NP-hard. We
believe we can devise good heuristics, suggesting effickatkpointing schemes
even for large applications. Yet, these heuristics relytaticdata-flow analyses that
are always approximate, and also on approximate modelseopéinformance of a
code on a computer architecture. Therefore interactioh thi¢ end-user is definitely
necessary to obtain really efficient checkpointing schemes

Although our example applications are still at an experitadievel, we hope they
show that AD tools are making constant progress, and proddjment codes whose
efficiency is similar to hand-coded adjoints. In a matter edis, we will probably be
able to relieve numericians from the tedious task of hanitirvgradjoints.
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