
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
41

67
--

F
R

+
E

N
G

appor t
de r echerche

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Data-Dependence Graph of Adjoint Programs

Laurent Hascoët

N° 4167

Avril 2001

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

The Data-Dependence Graph of Adjoint

Programs

Laurent Hascoët

Thème 1 � Réseaux et systèmes
Projet Tropics

Rapport de recherche n° 4167 � Avril 2001 � 17 pages

Abstract: Automatic Di�erentiation is a technique that permits generation
of adjoint programs, which compute gradients. In scienti�c computation, these
gradients are a fundamental tool for optimization or data assimilation. Com-
putation of a gradient is relatively expensive, and should therefore be opti-
mized whenever possible. The study of these program optimizations is most
often based on the data-dependence graph. Under precise assumptions, we
prove that the adjoint program's data-dependence graph is isomorphic to a
sub-graph of the original data-dependence graph. The proof relies on a re�ned
de�nition of the notion of data-dependence, and on a formal de�nition of ad-
joint programs in terms of products of local Jacobian matrices. This theorem
can be used to transpose optimizations of the original program, to the adjoint
program. It can also justify speci�c transformations on the adjoint. We give
some examples of such applications.

Key-words: Automatic Di�erentiation, Adjoint, Gradients Computation,
Optimization, Data-Dependence, Parallellization

Le graphe de dépendance des données des

programmes adjoints

Résumé : La Di�érentiation Automatique est une technique de génération
de programmes adjoints, qui calculent des gradients. En calcul scienti�que, ces
gradients sont une information essentielle pour l'optimisation ou l'assimilation
de données. Le calcul d'un gradient est une opération relativement chère,
qu'il est souhaitable d'optimiser. L'un des outils fondamentaux pour ce type
d'optimisation de programmes est le graphe de dépendances de données. Sous
des hypothèses que nous précisons, nous montrons que le graphe de dépen-
dance des données correspondant au programme adjoint est isomorphe à un
sous-graphe du graphe de dépendance des données du programme initial. La
démonstration s'appuie sur une dé�nition ra�née de la notion de dépendance
de données, et sur la dé�nition formelle des programmes adjoints en termes de
produits de matrices jacobiennes élémentaires. Ce théorème permet de trans-
poser pour le programme adjoint certaines transformations possibles sur le
programme initial, mais aussi d'appliquer des optimisations spéci�ques. Nous
en donnons quelques exemples pour des optimisations courantes.

Mots-clés : Di�érentiation Automatique, Adjoints, Calcul des Gradients,
Optimisation, Dépendance des Données, Parallélisation

DDG of Adjoint Programs 3

Contents

1 Introduction 3

2 Adjoint Programs 4

3 Data-Dependence Graphs 5

4 The Adjoint Data-Dependence Graph 8

5 Applications 14

6 Conclusion 15

1 Introduction

In Scienti�c computing, the need for evaluating some mathematical derivatives
of functions is commonplace. One such derivative, the gradient, is of particular
interest. For example, gradients are used for optimization [5], optimal design
[8] [3] [10], data assimilation [9], or inverse problems.

When these functions are implemented as programs, the technique of Au-
tomatic Di�erentiation (A.D.) generates a new program that computes the
speci�ed derivatives. In particular for gradients, the so-called reverse mode of
A.D. [2] creates adjoint programs (presented in section 2), that evaluate the
gradient in a computationnaly very e�ective manner. However, adjoint pro-
grams use a lot of memory space. Furthermore, they are not easily read by
humans. They often need optimizations (not only for memory), and this is
more safely done in a formal framework, using data-dependence graphs (ddg,
presented in section 3).

To this end, we need to relate properties of the ddg of adjoint programs,
to properties of the original program. This paper gives, in section 4, a proof
that the ddg of the adjoint program is in some sense isomorphic to a subset of
the ddg of the original program. This allows us to transpose most ddg-related
properties of the program to its adjoint, as shown in section 5. In particu-
lar, this applies to vectorization, parallelization, or other transformations that

RR n° 4167

4 L.Hascoët

reschedule the program's instructions [4]. This can also reduce dramatically
the memory consumed by the adjoint approach.

2 Adjoint Programs

Consider a program P , with instructions Ii; i 2 [1::n], that implements a math-
ematical function F : Rn ! R

m . The adjoint program P is a program (gener-
ated by A.D.) that computes the gradient of F .

Let us explain how P is built. Assume that each instruction Ii implements
a locally di�erentiable, vectorial, elementary function fi. Each particular ex-
ecution of P evaluates a long sequence Xk; k 2 [1::l] of instructions from P ,
determined by the control structures of P . This means there is some control
function c, from [1::l] to [1::n], that gives Xk the kth instruction executed, by
Xk = Ic(k). For this particular execution, function F is thus the following
composition of elementary functions fi, with V the vector of the n inputs, and
W the vector of the m outputs:

W = F (V) = fc(l)(fc(l�1)(: : : fc(2)(fc(1)(V)) : : :))

Given now a (transposed) weighting W
T
of the m outputs, the transposed

gradient V
T
of F is de�ned as the left product of W

T
by F 0, jacobian matrix

of F . Using the chain rule, it can be written as:

V
T
= W

T
:f 0c(l):f

0

c(l�1): : : : :f
0

c(2):f
0

c(1)

Since W is a vector and not a matrix, this product is best executed from the
left. Equivalently, it is often written transposed as:

V = f 0c(1)
T
:f 0c(2)

T
: : : : :f 0c(l�1)

T
:f 0c(l)

T
:W

The adjoint program P computes this product. To this end, it mainly consists
of n small sequences of �adjoint instructions� Ii, each sequence implementing
the vectorial assignment of so-called �adjoint variables�:

V := f 0i
T
� V

INRIA

DDG of Adjoint Programs 5

These Ii are surrounded by a control structure ensuring that they are ex-
ecuted in the correct order, i.e. Ic(l) �rst, then Ic(l�1) . . . , which is in fact the
inverse or the original execution order. We shall not go into further detail
about this adjoint control structure, which can be achieved in many ways. We
shall simply assume that for each particular execution order of P , the adjoint
P executes adjoint instructions in the reverse order.

Last but not least, notice that the coe�cients of the f 0i matrices may in-
volve variables, whose values must be taken from the execution of the original
instruction Ii. Therefore, to actually compute the gradient of F , one must
�rst execute completely the original program P , and only then one executes
P , which uses some values from execution of P . Since imperative programs
often overwrite their variables, these values must be saved during execution of
P , and progressively restored during execution of P . This is the main draw-
back of adjoint programs, because the memory required grows linearly with
the execution time, and can become unmanageably large.

To illustrate this, �gure 1 shows the generated adjoint program of a small
routine called normalize, which implements the normalization of a 2-D vector.
The original program contained only instructions I[1::4], and returned outputs
x, y, r from inputs x and y. The generated program is composed of the original
program followed by the adjoint instructions I[4::1]. It takes as additional inputs
the adjoint variables x, y, r (e.g. (0,0,1) if only output r is of interest), and
returns the gradient (x; y). To detail further the mechanism of generation,
we show on the right the elementary jacobian matrices of each I[1::4], and the
corresponding transposed jacobian product implemented by each I[4::1]. Notice
the save and restore operations, necessary because of the over-writings of r, x,
and y.

3 Data-Dependence Graphs

The data-dependence graph (�ddg�) [1] [7] is a graph that de�nes a partial
order between the (3-address code) operations performed by a program. When
a reordering of the program's operations or instructions does not inverse the
ddg arrows, then the semantic of the program is preserved. The ddg is a
static information: it relates textual operations from the program. When the

RR n° 4167

6 L.Hascoët

normalize(x,x,y,y,r,r)

r := x*x + y*y

r := sqrt(r)

x := x/r

y := y/r

r := r - y*y/(r*r)
y := y/r

r := r - x*x/(r*r)
x := x/r

r := r/(2*sqrt(r))

x := x + 2*x*r
y := y + 2*y*r
r := 0

r ! save

x ! save

y ! save

y restore

x restore

r restore

�
�
�
�
�
�
�
�

�

�

�

�

�
�
�

�

I1 :

I2 :

I3 :

I4 :

I4 :

I3 :

I2 :

I1 :

f 01=(r;x;y) =

0
@ 0 2x 2y

0 1 0

0 0 1

1
A

f 02=(r) = (1=(2 � sqrt(r)))

f 03=(x;r) =

�
1=r �x=(r � r)
0 1

�

f 04=(y;r) =
�

1=r �y=(r � r)
0 1

�

�
y

r

�
:=

�
1=r 0

�y=(r � r) 1

��
y

r

�

�
x

r

�
:=

�
1=r 0

�x=(r � r) 1

��
x

r

�

�
r
�
:=
�
1=(2 � sqrt(r))

��
r
�

0
@ r

x

y

1
A:=

0
@ 0 0 0

2x 1 0

2y 0 1

1
A
0
@ r

x

y

1
A

Figure 1: gradient program by A.D.

operation is enclosed in a control structure, such as a loop, it represents all
its run-time executions. Classically, the reason for a data-dependence between
two operations is the utilisation of program variables. There is a dependence
from operation o1 to o2, if these three conditions hold:

1. in some real execution, o1 may be done before o2 (notation: o1 � o2).

2. in some real execution, o1 and o2 access the same memory location,

3. either o1 or o2 perform a write into this memory location, while the other
operation writes or reads.

For many uses, considering each operation separately is a much too small
level of granularity. In the remaining of this paper, we shall consider a larger
granularity, the �nodes�, which contain one instruction or a sequence of al-
ways consecutive instructions. By �always consecutive�, we mean consecutive

INRIA

DDG of Adjoint Programs 7

in any execution of the program, and we call these nodes connex. We have
a natural projection of the ddg on these nodes. Data-dependences between
two operations in the same node, at the same run-time iteration of enclosing
loops, are not projected. We say that a projected dependence is motivated by
a variable, when one of its original dependences relates two accesses to this
variable. A projected data-dependence may very well be motivated by many
variables. Notice also that, once dependences are projected, the ordering in-
formation inside a given node is lost. Therefore, further reordering inside a
given node is forbidden.

Nodes must not be too large: each node must represent one (vectorial)
mathematical function. Therefore a single node must not write a value into
a variable, and then use this variable. In other words, only values that exist
before the node execution may be used by the node. We call these nodes valid.

Because of their importance in adjoint programs (cf �gure1), we shall give
a special role to a very particular kind of operations: increments on a variable.
Thus, we de�ne E(N; v), the e�ect of a connex and valid node N on a variable
or memory location v, by:

� E(N; v) = jn when variable v does not occur at all inside N .

� E(N; v) = jr when v is only read and not overwritten in N .

� E(N; v) = ji when v is read only once. Its value is incremented, and is
reassigned to v. There are no other occurrences of v in N .

� E(N; v) = jw otherwise.

We now introduce our main re�nement to ddg. Similarly to what happens
between reads, we notice that there is no data-dependence between two incre-

ments of a given variable, because of associativity and commutativity of the
sum. However, this is true only if increments are atomic. If this is not the
case, two increment operations done in parallel may create a race condition. In
the following, we assume increments are atomic. This can be achieved at low
level, using semaphores, or at high level, using reduction declarations. Also,
atomicity is granted when the program is run sequentially.

RR n° 4167

8 L.Hascoët

We can now give an equivalent de�nition of
data-dependence between nodes. There is a data-
dependence from node N1 to N2, motivated by vari-
able v, i� N1 � N2 and D(E(N1; v); E(N2; v)), with
relation D de�ned by the table on the right.

jw jr ji jn
jw � � �
jr � �
ji � �
jn

Figure 2 illustrates the above de�nitions, and presents the ddg of pro-
gram normalize shown on �gure 1. We de�ne the nodes as the four instruc-
tions I[1::4], plus the four adjoint composite instructions I[4::1]. One can easily
check that these nodes are all connex and valid. The arrows show the data-
dependences between them. The dependences between instructions I[1::4] are
motivated by variables x, y, and r, while dependences between the I[4::1] are
motivated by x, y, and r. The re�nement introduced above, about increments,
leads to setting no dependence between the successive increments of r in the
adjoint part. Also recall from section 2 that the values of x, y, and r used in the
adjoint nodes are provided by the save and restore mechanism, not represented
here for readability.

4 The Adjoint Data-Dependence Graph

General Context:

We consider P , a (fragment of) program or subprogram, composed of instruc-
tions Ii; i 2 [1::n]. These instructions are distributed into so-called nodes
Nj; j 2 [1::m] that contain one or many always consecutive Ii. We call
d : [1::n] �! [1::m], the function that de�nes this distribution, such that
Ii 2 Nd(i). We suppose nodes Nj are all connex and valid. We call G the
projection of the data-dependence graph of P onto the nodes Nj. We call P
the adjoint of P , with instructions Ii; i 2 [1::n] as de�ned in section 2. We saw
that each Ii may indeed consist of several assignments, but we consider it as a
single composite instruction that we will never split or rearrange. We distrib-
ute adjoint instructions Ii into adjoint nodes Nj; j 2 [1::m], by means of the
same distribution function d. Therefore there is a canonical bijection between
the Nj and the Nj. Finally, we call G the projection of the data-dependence
graph of P onto the nodes Nj.

INRIA

DDG of Adjoint Programs 9

r := x*x + y*y

r := sqrt(r)

x := x/r

y := y/r

r := r - y*y/(r*r)
y := y/r

r := r - x*x/(r*r)
x := x/r

r := r/(2*sqrt(r))

x := x + 2*x*r
y := y + 2*y*r
r := 0

Figure 2: data-dependence graph of program from �gure 1

RR n° 4167

10 L.Hascoët

Lemma 1 (validity of adjoint nodes) In the above �general context�, the

adjoint nodes Nj are connex and valid.

Proof:

For each j 2 [1::m], we know Nj is connex, i.e. for every execution of P , all
instructions in Nj are executed in sequence. By construction of the adjoint
program, every execution of P executes instructions Ii in the reverse order
of some execution of the Ii by P . Therefore every execution of P executes
instructions of Nj in sequence, and thus Nj is connex.

Let us now show that each Nj is valid, i.e. contains no variable written
and then used, inside the same execution of Nj. Consider the list vk; k 2 [1::q]
of all variables occurring in P . We can suppose with no loss of generality that
the vk are reordered so that the �rst variable written during an execution of
Nj is v1, the next one v2, and so on, and the variables that are only read or
not used come at the end. Since Nj is valid, no variable is written and then
used, inside the same execution of Nj. Therefore the value assigned to some
variable vk (if any) does not depend on the vi; i < k. The Jacobian matrix of
Nj is thus upper triangular:

J(Nj) =

0
BBBBB@

� � � � � � �
� � � � � �

� � � � �
. . .

...
�

1
CCCCCA

(1)

By de�nition (cf section 2) the adjoint of Nj is a sequence of instructions
that implements the product of the transposed Jacobian matrix J(Nj)

T by
the vector of adjoint variables vk; k 2 [1::q], and assigns the result into this
same vector: 0

BBBBB@

v1
v2
v3
...
vq

1
CCCCCA

:=

0
BBBBB@

�
� �
� � �
...

...
...

. . .

� � � � � � �

1
CCCCCA
�

0
BBBBB@

v1
v2
v3
...
vq

1
CCCCCA

(2)

INRIA

DDG of Adjoint Programs 11

We can rewrite the above with an upper triangular matrix by just reversing
the order of the adjoint variables:

0
BBBBB@

vq
...
v3
v2
v1

1
CCCCCA

:=

0
BBBBB@

� � � � � � �
. . .

...
...

...
� � �

� �
�

1
CCCCCA
�

0
BBBBB@

vq
...
v3
v2
v1

1
CCCCCA

(3)

and this is implemented by a valid adjoint node Nj, by writing the instruction
that assigns vq �rst, then the instruction for vq�1, and so on until v1. 2

We want to relate the e�ect E(N; v) of a node N of G, on some variable v,
with the e�ect E(N; v) of the corresponding node of G on v, adjoint of v.

Lemma 2 (e�ect of adjoint nodes) In the above �general context�, the

e�ect on v of the adjoint N of a given data-dependence node N is related to

the e�ect of N on v in the following manner:

� E(N; v) = jn =) E(N; v) = jn

� E(N; v) = jr =) E(N; v) 2 f ji ; jn g

� E(N; v) = ji =) E(N; v) 2 f jr ; jn g

� E(N; v) = jw =) E(N; v) 2 f jw ; jr ; ji ; jn g

Proof:

Consider any variable vk. Since N is valid, the e�ect of N on vk is de�ned,
and belongs to f jw ; jr ; ji ; jn g. Let us focus on the k-th line and column of
the Jacobian matrix J(N) of equation 1. If E(N; vk) = jn , then these line and
column are all 0, except the diagonal element, which is 1. If E(N; vk) = jr ,
then the k-th line is all 0, with 1 on the diagonal. If E(N; vk) = ji , then the
k-th column is all 0, with 1 on the diagonal. And if E(N; vk) = jw , the k-th
line and column can be anything. We summarize this as:

E(N; vk) : jn ji jr jw

J(N) :

0
B@

. . . 0
1 0

. . .

1
CA

0
B@

. . . 0
1 �

. . .

1
CA

0
B@

. . . �
1 0

. . .

1
CA

0
B@

. . . �
� �

. . .

1
CA

RR n° 4167

12 L.Hascoët

where the � elements can very well be 0 or 1, as will be shown below on some
degenerate cases. As shown above, N implements equation 3. We observe that
the matrix in equation 3 (call it J(N)), is the symmetric of J(N) with respect
to the second diagonal. We have thus:

E(N; vk) : jn ji jr jw

J(N) :

0
B@

. . . 0
1 0

. . .

1
CA

0
B@

. . . �
1 0

. . .

1
CA

0
B@

. . . 0
1 �

. . .

1
CA

0
B@

. . . �
� �

. . .

1
CA

which implies the following:

� when E(N; vk) = jn , N simply does not use nor modify vk. Therefore
vk does not occur in N and E(N; vk) = jn .

� when E(N; vk) = jr , N does not read vk, except in one instruction which
adds some value into vk. In the special case where the � values are all 0,
vk is just unmodi�ed. Therefore E(N; vk) 2 f ji ; jn g.

� when E(N; vk) = ji , N may read vk several times, to compute values
assigned to other adjoint variables, and then vk itself is just unmodi�ed.
In the special case where the � values are all 0, vk is not used at all.
Therefore E(N; vk) 2 f jr ; jn g.

� when E(N; vk) = jw , N may read vk several times, and then overwrite it
with some value, and then not use it any more. Therefore E(N; vk) may
be jw . However, since any of the � elements may be 0, and the diagonal
� may be 1, E(N; vk) may degenerate to jr , ji , or even jn . Therefore
E(N; vk) 2 f jw ; jr ; ji ; jn g. 2

Here are two examples of degenerate cases. Suppose N is instruction
y:=floor(x), where floor returns the integer part of a real number. The
derivative of floor, when de�ned, is

@floor(x)

@x
= 0

INRIA

DDG of Adjoint Programs 13

Node N is valid, and E(N; x) = jr . With respect to vector (y; x), J(N) is

equal to

�
0 0
0 1

�
. Therefore N implements

�
x

y

�
:=

�
1 0
0 0

�
�

�
x

y

�
,

thus N contains only instruction y:=0, and E(N; x) = jn .
As a second example, suppose N contains the two successive instructions

y:=2*x; x:=x+floor(x). Node N is valid, and E(N; x) = jw . On vector

(y; x), J(N) is

�
0 2
0 1

�
, and N implements

�
x

y

�
:=

�
1 2
0 0

�
�

�
x

y

�
,

thus N contains instruction x:=x +2*y followed by y:=0, and E(N; x) = ji .

From lemma 2, we are now able to go from the e�ect of adjoint nodes back
to the e�ect of the original nodes.

Lemma 3 (e�ect of original nodes) In the above �general context�, the

e�ect of a node N on a variable v can be deduced from the e�ect of its adjoint

N on v in the following manner:

� E(N; v) = jn =) E(N; v) 2 f jw ; jr ; ji ; jn g

� E(N; v) = jr =) E(N; v) 2 f jw ; ji g

� E(N; v) = ji =) E(N; v) 2 f jw ; jr g

� E(N; v) = jw =) E(N; v) = jw

Proof:

Since N and N are valid, their e�ect on variables v and v is de�ned, and must
be one of jw , jr , ji , or jn . Therefore, it su�ces to explore all possible cases
in lemma 2. 2

We now use our re�ned notion of data-dependence, as de�ned in section
3. We insist this supposes that incrementation operations (ji) are atomic.
With this hypothesis, which can be enforced in various ways, we prove that
the data-dependence graph of the adjoint program is isomorphic to a subgraph
of the original data-dependence graph. This will allow us to transpose many
properties of the original program to its adjoint.

RR n° 4167

14 L.Hascoët

Theorem 1 (adjoint data-dependences) In the above �general context�, if

G has an arrow from node Na to node Nb, then G has an arrow from node Nb

to node Na. Moreover, if the arrow from Na to Nb is motivated by a variable

w, then the arrow from Nb to Na is motivated by a variable v such that v = w.

Proof:

Consider an arrow in G, going from node Na to node Nb. By de�nition of data-
dependence, this implies that Na � Nb, which in turn implies by construction
of the adjoint program that Nb � Na. By de�nition, the data-dependence is
motivated by (at least) one variable w. This means that for any such vari-
able w, the e�ects of Na and Nb on w are such that D(E(Na; w); E(Nb; w)),
D de�ned in section 3. This implies that variable w is assigned, somewhere
in Na, Nb, or both. Since the adjoint nodes Nj only assign adjoint variables,
w is necessarily the adjoint v of some variable v in P . Considering each case
where D(E(Na; v); E(Nb; v)), we check that D(E(Nb; v); E(Na; v)). For ex-
ample, suppose E(Na; v) = jw and E(Nb; v) = ji . By lemma 2, we get
E(Na; v) 2 f ji ; jwg and E(Nb; v) 2 f jr ; jwg, and in the four resulting cases,
we can check that D(E(Nb; v); E(Na; v)). Together with Nb � Na, this shows
that there is an arrow in G, motivated by v, that goes from Nb to Na. 2

5 Applications

Consider �gure 1 again. In the original program, there is no data-dependence
between instructions I3 and I4. The theorem then tells us there is no data-
dependence between instructions I4 and I3.

Consider now a vectorial instruction, such as
A(1:n) := B(0:n-1)*B(2:n+1) + c

There are no loop-carried dependences in the loop implicitly represented here,
and therefore no loop-carried dependences in the adjoint loop. As far as de-
pendences are concerned, the adjoint is itself vectorial. Notice that the read
of c is spread among the �iterations�, and this results in a SUM reduction in the
adjoint program:

B(0:n-1) := B(0:n-1) + B(2:n+1)*A(1:n)
B(2:n+1) := B(2:n+1) + B(0:n-1)*A(1:n)
c := c + SUM(A(1:n))
A(1:n) := 0

INRIA

DDG of Adjoint Programs 15

On the other hand, the adjoint of instruction:
A(1:n) := A(0:n-1)*A(2:n+1)

would not be immediately vectorial, because of the loop-carried data-depen-
dence in the implicit loop, from the reads to the writes of A.

The theorem also applies to parallel loops. If a loop is parallel, there are no
loop-carried dependences. Therefore, provided increments are kept atomic, the
adjoint loop is parallel too. In a language such as OpenMP, we can force this
atomicity using a CRITICAL section, or alternatively with clauses that declare
the incremented adjoint variables as REDUCTION variables.

The theorem also has an interesting application in sequential programs.
Suppose a loop has data-independent iterations, i.e. there are no loop-carried
dependences. Suppose also that the loop is immediately followed by its adjoint
loop. Then the theorem implies that there are no loop-carried dependences in
the adjoint loop. The two loops, original and adjoint, can thus be merged into
a single one. The advantage is that the save and restore operations are now
interleaved, and this requires far less storage space than doing all the save's
�rst. This partly solves the main drawback of the adjoint program technique.
This application is described in more detail in [6].

6 Conclusion

Adjoint programs are very complex and heavy, and therefore their generation
by tools is welcome. But execution cost is such that further optimization is
often necessary. Nowadays, this optimization is mostly done by hand, which
is very unsafe. The theorem proved here is a foundation of a framework for
automatic correct optimization of adjoint programs. In this framework, already
existing optimizations can be checked from the data dependence viewpoint.
This may also suggest new optimizations.

We proved that the data-dependence graph of an adjoint program is iso-
morphic to a sub-graph of the original data-dependence graph. This means
there are even fewer data-dependences in the adjoint program than in the
original. Parallelization, vectorization, and more generally all rescheduling of
program operations rely on data-dependences. The present theorem allows us
to transpose most of these transformations, from the original program to its

RR n° 4167

16 L.Hascoët

adjoint. We believe this sort of synergy between A.D. and compilation theory
improves our understanding of A.D.

The application of this theorem to the reduction of the save memory size
is promising. We are currently testing it on a large size application in �uid dy-
namics. An extension of the theorem to message-passing, distributed memory
parallelism also appears an interesting research direction.

References

[1] R.Sethi A.Aho and J.Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986.

[2] A.Griewank. Evaluating Derivatives: Principles and Techniques of Algo-

rithmic Di�erentiation. SIAM, 2000.

[3] J.M.Malé B.Mohammadi and N.Rostaing-Schmidt. Automatic di�erenti-

ation in direct and reverse modes: application to optimum shapes design

in �uid mechanics. In M.Berz, C.Bischof, G.Corliss, A.Griewank, eds.,
SIAM, editor, Computational Di�erentiation: Techniques, Applications

and Tools, pages 309�318, 1996.

[4] H.Zima and B.Chapman. Supercompilers for Parallel and Vector Com-

puters. ACM Press, 1990.

[5] J.L.Lions. Optimal control of systems governed by partial di�erential equa-

tions. Springer, 1971.

[6] S.Fidanova L.Hascoët and C.Held. Adjoining Independant Computa-

tions. In G.Corliss, C.Faure, A.Griewank, L.Hascoët, U.Naumann, eds.,
SPRINGER LNCSE, editor, Automatic Di�erentiation: From Simulation

to Optimization, 2001. Selected proceedings of AD2000, Nice, France.

[7] M.Wolfe and U.Banerjee. Data Dependence and its application to Parallel

Processing. International Journal of Parallel Processing, 16(2):137�178,
1987.

[8] O.Pironneau. Optimal shape design for elliptic problems. Springer, 1982.

INRIA

DDG of Adjoint Programs 17

[9] O.Talagrand. The use of adjoint equations in numerical modelling of the

atmospheric circulation. In A.Griewank, G.Corliss, eds., SIAM, editor,
Automatic Di�erentiation of Algorithms: Theory, Implementation and

Application, pages 169�180, 1991.

[10] B.Mohammadi P.Hovland and C.Bischof. Automatic Di�erentiation of

Navier-Stokes computations. Technical report, Argonne National Labora-
tory MCS-P687-0997, 1997.

RR n° 4167

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers lès Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot St Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

