European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS 2004

P. Neittaanmaki, T. Rossi, S. Korotov, E. Ofiate, J. Périaux, and D. Knérzer (eds.)
Jyvaskyla, 24-28 July 2004

TAPENADE: A TOOL FOR AUTOMATIC
DIFFERENTIATION OF PROGRAMS

Laurent Hascoét*

*INRIA Sophia-Antipolis, TROPICS team
2004 Route des lucioles, BP 93, 06902 VALBONNE, FRANCE
e-mail: Laurent.Hascoet@sophia.inria.fr

Key words: Automatic Differentiation, Adjoint code, Adjoint algorithm, Gradient, Op-
timization

Abstract. We present TAPENADE, a tool for Automatic Differentiation (AD). AD trans-
forms a program that computes or simulates a mathematical vector function into a new
program that computes derivatives of this function. Specifically, TAPENADE can produce
tangent programs that compute directional deriwatives, and adjoint programs that compute
gradients. Gradients and Adjoints are probably the most promising derivatives, as they
are required in optimization. Therefore, they receive a particular attention and develop-
ment effort in TAPENADE. This paper presents the AD principles behind TAPENADE, and
shows how they are reflected in TAPENADE’s differentiation model, internal algorithms
and output. We show the program analysis techniques that make AD-generated tangents
or adjoints perform comparably to good hand-written tangents or adjoints, at a cheaper
development cost. TAPENADE 1s available at no cost, either as a server on our web site
http://www-sop.inria.fr/tropics, or downloaded locally and called from the command
line or from a makefile.

Laurent Hascoét

1 INTRODUCTION

As computational power increases, the domains of computational simulation, optimiza-
tion, and inverse problems are developing rapidly. They widely use derivatives. When a
function is already discretized and solved, Automatic Differentiation (AD) can return its
derivatives without going back to the discretization step. AD transforms a program that
computes or simulates a mathematical vector function into a new program that computes
derivatives of this function. Further information is in the latest collection of articles [3]
and in the monograph [8].

AD is a program transformation, and is therefore performed by software tools similar
to compilers or parallelizers. This article presents TAPENADE, an AD tool with a strong
focus on the “reverse” mode, that computes gradients. Our guideline in this work is to
reuse and transpose technology from the compilation field [1] to AD, in order to produce
efficient differentiated code that can compete with hand-coded derivatives.

After a brief description in section 2 of the theoretical basis of AD, section 3 describes
the AD model implemented by TAPENADE, showing how it relates to the theoretical
description. This part is based on concrete examples to gain understanding of programs
produced by TAPENADE. Section 4 focuses on refinements to the AD model for adjoint
codes. Section 5 presents the user interface of TAPENADE, and gives pointers to further
documentation. Section 6 concludes with next developments to come in TAPENADE.

2 AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS

Automatic or Algorithmic Differentiation (AD) differentiates programs. An AD tool
takes as input a source computer program P that, given a vector argument X € IR",
computes some vector function Y = F(X) € IR™. The AD tool generates a new source
program that, given the argument X, computes some derivatives of F. In short, AD first
assumes that P represents all its possible run-time sequences of instructions, and it will in
fact differentiate these sequences. Therefore, the control of P is put aside temporarily, and
AD will simply reproduce this control into the differentiated program. In other words, P
is differentiated only piecewise. Experience shows that this is reasonable in most cases,
and going further is still an open research problem. Then, any sequence of instructions is
identified with a composition of vector functions. Thus, for a given control:

P is {Li;1y...1,}, (1)
F = fyofp-10---0fi,
where each fr is the elementary function implemented by instruction I. Finally, AD
simply applies the chain rule to obtain derivatives of F. If we write for short X the

values of all variables after each instruction I, i.e. Xy = X and Xy = fr(X% 1), the
chain rule gives the Jacobian F' of F’

F'(X) = [(Xp-1) - 1 (Xp—2) - - - f1(Xo) (2)

Laurent Hascoét

which can be mechanically translated back into a sequence of instructions I}, and these
sequences inserted back into the control of P, yielding program P’. This can be generalized
to higher level derivatives, Taylor series, etc.

In practice, the above Jacobian F'(X) is often far too expensive to compute and store.
Notice for instance that equation (2) repeatedly multiplies matrices, whose size is of the
order of m x n. Moreover, some problems are solved using only some projections of F'(X).
For example, one may need only sensitivities, which are F'(X)X for a given direction X
in the input space. Using equation (2), sensitivity is

F'(X).X = f(Xp1) - fp(Xpa) - oo fi(X0) - X, (3)

which is easily computed from right to left, interleaved with the original program instruc-
tions. This is the principle of the tangent mode of AD, which is the most straightforward,
of course available in TAPENADE.

However in optimization, data assimilation [10], inverse problems, or adjoint prob-
lems [7], the appropriate derivative is the gradient F'*(X).Y, where F'* is the transposed
Jacobian. Using equation (2), the gradient writes

FHY(X).Y = fi'(Xo0). £ (X0). ... Sy (Xpoa)- £/ (Xpo1) Y, (4)

p—1

which is most efficiently computed from right to left, because matrixxvector products are
so much cheaper than matrixxmatrix products. This is the principle of the reverse mode
of AD.

This turns out to make a very efficient program, at least theoretically [8, Section 3.4].
The computation time required for the gradient is only a small multiple of the run time
of P, multiplied by the number of outputs m, which is usually small for optimization or
inverse problems. It is independent from the number of parameters n, which can be very
large.

However, we observe that the X are required in the nverse of their computation order.
If the original program overwrites a part of Xy, the differentiated program must restore
X}, before it is used by fi*,(Xx). There are two strategies for that:

e Recompute All (RA): the X} is recomputed when needed, restarting P on input
Xo until instruction I. Brute-force RA strategy has a quadratic time cost with
respect to the total number of run-time instructions p. The TAF [6] tool uses this
strategy, together with checkpointing to reduce its time complexity.

e Store All (SA): the X}, are restored from a stack when needed. This stack is filled
during a preliminary run of P, that additionally stores variables on the stack just
before they are overwritten. Brute-force SA strategy has a linear memory cost with
respect to p. The ADIFOR [2] and TAPENADE tools use this strategy.

Practically, both RA and SA strategies need a special storage/recomputation trade-off in
order to be really profitable, and this makes them become very similar. This trade-off is

3

Laurent Hascoét

called checkpointing. Since TAPENADE uses the SA strategy and applies checkpointing to
procedure calls, we will describe checkpointing in this context.

B ﬂ - original formof X

D : forward sweep for X

5] B @@ &Kol EXEl

. : take snapshot

@ @ ‘BG q : Use snapshot

Figure 1: Reverse AD storage/recomputation tradeoff on the Call Tree

Let us define some vocabulary and graphical notations. Execution of a subroutine A
in its original form is shown as [A]. Execution of A augmented with storage of variables
on the stack, just before they are overwritten, is called the “forward sweep”, shown as
[A>. Actual computation of the gradient of A, that pops values from the stack when they
are needed to restore the X,’s, is called the “backward sweep”, shown as <a]. With no
checkpointing, plain reverse differentiation of A is just [AX&]. Checkpointing consists in
choosing a part B (a procedure call in TAPENADE) in A, which will be run without storage
during [2>. When the backward sweep <&] reaches B, it runs B again, this time with storage,
followed by the backward sweep of B and the rest of <a]. Duplicate execution of B requires
that some variables used by B (a “snapshot”) be stored. In TAPENADE, checkpointing is
applied at each procedure call. Figure 1 shows the resulting differentiated call tree for an
example initial program call tree. If the program’s call tree is well balanced, the memory
size as well as the computation time required for the reverse differentiated program grow
only like the depth of the original call tree, i.e. like the logarithm of the size of P, which
is satisfactory.

3 THE DIFFERENTIATION MODEL OF TAPENADE

The previous section showed the theoretical basis of Automatic Differentiation, em-
phasizing the reverse mode. It gave a rough idea of what a differentiated program looks
like. In this section, we plan to describe precisely the actual differentiation model of
TAPENADE. The goal is to gain a deeper understanding and familiarity with programs
produced by TAPENADE.

3.1 Symbol names

First consider symbol names. If a variable v is of differentiable type, and currently has
a non-trivial derivative (see activity 3.3), this derivative is stored in a new variable that
TAPENADE names after v as follows: vd ("v dot”) in tangent mode, and vb ("v bar”) in

Laurent Hascoét

reverse mode. Derivative names for procedures and COMMONS are built appending “_D” in
tangent mode and “_B” in reverse mode. The following table summarizes that:

original program

TAPENADE tangent

TAPENADE reverse

SUBROUTINE T1(a)
REAL a(10)

SUBROUTINE T1_D(a,ad)
REAL a(10),ad(10)

SUBROUTINE T1_B(a,ab)
REAL a(10),ab(10)
REAL b(5),bb(5)

REAL b(5) REAL b(5),bd(5)
TAPENADE checks for possible conflicts with names already used in the program, in which
case it appends 0, then 1, etc after the derivative name until conflicts disappear. Suffixes
can be changed via command line options.

3.2 Simple instructions

Now consider an assignment I;. In tangent mode (equation (3)), derivative instruction
I, implements X, = f/ (Xy—1)- Xy_1, with initial Xy = X. In reverse mode (equation (4)),
derivative instruction(s) I implement Yi_; = fi*(Xp_1).Y, with initial Y, = Y. Just
like the original program owverwrites variables, the differentiated program overwrites the
differentiated variables, writing values X r over previous values X k—1 in tangent mode, or
writing values Y _1 over previous values Y, in the reverse mode. For example, if I is
a(i)=x*b(j) + C0S(a(i)),

_ a(i) -SIN(a(i)) x Db(j) a(i)
I, implements (i) | = 0 1 0 x| b |,
X 0 0 1 b'e
- a(i) -SIN(a(i)) 0 0 a(i)
I, implements b(§) | = b 1 0 x| b)) |,
X b(j) 0 1 X
and therefore TAPENADE produces the following derivative instructions:
TAPENADE tangent TAPENADE reverse
ad(i) = xd*b(j) xb = xb + b(j)*ab(i)
+ x*bd (j) bb(j) = bb(j) + x*ab(i)
- ad(i)*SIN(a(i)) ab(i) = -SIN(a(i))*ab(i)

Other simple instructions may have side-effects that affect derivatives. For example a
READ I-O into a variable v forces the derivative of v to be reset to zero. TAPENADE
automatically inserts these reset instructions. However, the end-user should check that
this is the behavior wanted.

3.3 Activity of variables

TAPENADE allows the end-user to specify that only some output variables (the “de-
pendent”) must be differentiated with respect to only some input variables (the “indepen-
dent”). We say that variable y depends on x when the derivative of y with respect to x is

Laurent Hascoét

not trivially null. A variable is said “active” if it depends on some independent and some
dependent depends on it. Only the derivatives of the active variables need be computed.
If variable v depends on no independent, then vd is certainly null and the value of vb
does not matter. Conversely, if no dependent depends on v, then the value of vd does not
matter, and vb is certainly null. TAPENADE automatically detects active variables and
simplifies the differentiated program accordingly.

original program TAPENADE tangent TAPENADE reverse
x=1.0 x=1.0 x=1.0
Z = XXy zd = x*xyd Z = XXy
t = y**2 Z = XXy t = y**2
IF (t .GT. 100) ... t = yx*2 IF (t .GT. 100) ...
IF (t .GT. 100)
yb = yb + x*zb

In this example, x does not depend any more on the independent, and t has no influ-
ence on any dependent. Therefore, TAPENADE knows that xd and tb are null: they can
be simplified and never computed. We shall say that these derivatives are implicit-null.
Symmetrically, td and xb are non-null but useless, and therefore need not be evaluated.
Nevertheless, there are two special cases where TAPENADE explicitly resets implicit-null
variables: (1) when the control flow merges and the other incoming flow has an explicit
non-null derivative for this variable, and (2) when the end of the differentiated program
is reached and the derivative is an output. Notice also that some of the user-given inde-
pendent and dependent variables may turn out to be inactive. If so, TAPENADE removes
them automatically.

3.4 Control structure

The following example illustrates how TAPENADE builds the control structure of the
differentiated procedures.

Laurent Hascoét

original program

TAPENADE reverse: forward sweep

SUBROUTINE Si(a, n, x)

DO i=2,n,7
IF (a(i).GT.1.0) THEN
a(i) = L0OG(a(i)) + a(i-1)
IF (a(i).LT.0.0) a(i)=2%a(i)
END IF
ENDDO
END

DO i=2,n,7
IF (a(i).GT.1.0) THEN
CALL PUSHREAL4(a(i))
a(i) = L0G(a(i)) + a(i-1)
IF (a(i).LT.0.0) THEN
CALL PUSHREAL4(a(i))
a(i) = 2x*a(i)
CALL PUSHINTEGER4(3)
ELSE
CALL PUSHINTEGER4(2)
END IF
ELSE
CALL PUSHINTEGER4 (1)
END IF
ENDDO
CALL PUSHINTEGER4(i - 7)

TAPENADE tangent

TAPENADE reverse: backward sweep

SUBROUTINE S1_D(a, ad, n, x)

DO i=2,n,7
IF (a(i).GT.1.0) THEN
ad(i) = ad(i)/a(i) + ad(i-1)
a(i) = LOG(a(i)) + a(i-1)
IF (a(i).LT.0.0) THEN
ad(i) = 2xad(i)
a(i) = 2xa(i)

CALL POPINTEGER4(adTo)
DO i=adTo,2,-7
CALL POPINTEGER4(branch)
IF (branch .GE. 2) THEN
IF (branch .GE. 3) THEN
CALL POPREAL4(a(i))
ab(i) = 2*ab(i)
END IF
CALL POPREAL4(a(i))

END IF ab(i-1) = ab(i-1) + ab(i)
END IF ab(i) = ab(i)/a(i)
ENDDO END IF
END ENDDO

In tangent mode, equation (3) allows derivative instructions I, to run along with the
original Ij. In fact Ik is just before Iy, because I may overwrite a part of X,_; that is
used by f1(Xy_1) in I;. The control structures are unchanged. In reverse mode, TAPENADE
applies the Store All strategy (cf section 2), resulting in a forward sweep followed by a
backward sweep. The forward sweep runs the original procedure, storing into a stack the
variables potentially required by the derivatives. In addition, the forward sweep stores into
the same stack the control information, used by the backward sweep to reproduce between
the I, the reverse of the original control flow. The stack is used classically through several
PUSH and POP subroutines, according to the type of the value. Its internal representation
of programs as Flow Graphs allows TAPENADE to use structured programming in the
backward sweep like in the forward sweep, using very little memory space to store the
control, and with no restriction on the original control (GOTO’s, alternate procedures or

7

Laurent Hascoét

I-O returns,. ..). The principle is: the right time to store the control is when the original
control flow merges, and what must be stored then is where the control actually came
from.

3.5 Procedure calls

TAPENADE treats procedure calls differently from simple instructions, because a pro-
cedure call indeed represents a bunch of instructions, possibly with control. Therefore
the differentiated instructions cannot be put before the original call, but rather inside,
yielding a differentiated procedure, with additional arguments for the derivatives. The
following example illustrates this. In tangent mode, a call to SUB just gives a call to the
differentiated SUB_D. In reverse mode, TAPENADE checkpoints the procedure call: the for-
ward sweep calls the original SUB and the backward sweep calls the differentiated SUB_B,
that gathers its own forward and backward sweeps (cf figure 1).

original program TAPENADE reverse: forward sweep

X = x**3 CALL PUSHREAL4(x)
CALL SUB(a, x, 1.5, z) X = X*%*3
X = Xky CALL PUSHREAL4(x)
CALL SUB(a, x, 1.5, z)
X = XXy
TAPENADE tangent TAPENADE reverse: backward sweep
xd = 3*x*k*2xxd xb = y*xb
X = x*%3 CALL POPREAL4(x)
CALL SUB_D(a, ad, x, =xd, CALL SUB_B(a, ab, x, xb,
1.5, 0.0, =) 1.5, arg2b, z)
xd = y*xd CALL POPREAL4(x)
X = xX*y xb = 3kx**2%xb

One principle of TAPENADE is procedure generalization, as opposed to specialization. Even
if a procedure is called many times, with arguments sometimes active, sometimes not,
only one differentiated procedure is built, i.e. for the most general activity of arguments.
Thus, specific calls are sometimes given dummy derivatives, either to feed them with a null
derivative input, or to receive a useless derivative result. Suppose SUB is called elsewhere
with an active 3"¢ argument, whereas the 4* argument is never active. This explains the
“0.0” argument in tangent, and the “arg2b” in reverse.

In the reverse mode, checkpointing requires taking a snapshot. TAPENADE runs a
preliminary In-Out analysis to find a minimal snapshot, made of variables that are both
used by the procedure and overwritten before the differentiated procedure is called. On
the example, the In-Out analysis could prove that this is only the case for x.

4 SPECIFIC IMPROVEMENTS FOR THE ADJOINT

The above section already made it clear that the reverse mode is far more complex
than the tangent mode. This is the price for cheaper gradients. This section presents

8

Laurent Hascoét

specific aspects of the model of reverse AD. This is necessary to fully understand some
particular structures in adjoint codes, that would appear very strange otherwise.

4.1 To Be Restored analysis

We saw that intermediate values need to be stored before overwritten, but this is
only when they will be used by the differentiated instructions. A specific program static
analysis, called To Be Restored (TBR) [5, 11] does this in TAPENADE. In the following
example, TAPENADE could prove that neither x nor y were needed by the differentiated
instructions, and therefore did not PUSH them on nor POP them from the stack.

original program | reverse mode: reverse mode:
naive backward sweep | backward sweep with TBR
x = x + EXP(a) CALL POPREAL4(a) CALL POPREAL4(a)
y = X + axx2 zb = zb + 3*ab zb = zb + 3*ab
a = 3%z ab = 0.0 ab = 0.0
CALL POPREAL4(y) ab = ab + 2xaxyb
ab = ab + 2¥axyb xb = xb + yb
xb = xb + yb yb = 0.0
yb = 0.0 ab = ab + EXP(a)*xb
CALL POPREAL4(x)
ab = ab + EXP(a)*xb

4.2 Gathering incrementation instructions

Many reverse differentiated instructions increment a differentiated variable. Others
just reset them, often to zero. These instructions may fall far apart in the differentiated
program, which uses the reversed original instruction order. TAPENADE implements a
data-dependency analysis that allows it to safely move and gather initializations and in-
crements of the same differentiated variable, whenever possible. The result is a shorter
code, called the non-incremental code, which is closer to what one would write when pro-
gramming an adjoint code by hand, and which improves data locality. We illustrate the
effect of this improvement on the same example as in the previous section.

original program | reverse mode: TAPENADE reverse:
backward sweep non-incremental
with TBR backward sweep
x = x + EXP(a) CALL POPREAL4(a) CALL POPREAL4(a)
y = X + axx2 zb = zb + 3*ab zb = zb + 3*ab
a = 3%z ab = 0.0 xb = xb + yb
ab = ab + 2%a*yb ab = 2%axyb + EXP(a)*xb
xb = xb + yb yb = 0.0
yb = 0.0
ab = ab + EXP(a)*xb

Laurent Hascoét

4.3 Detection of Aliasing

Program transformation tools, and AD tools in particular, assume that two different
variables represent, different memory locations. The program can specify explicitly that
two different variables indeed go to the same place, using pointers or the EQUIVALENCE
declaration. In this case the tool must cope with that. But it is not recommended
(and forbidden by the standard) that the program hides this information, e.g declaring
a procedure with two formal arguments and giving them the same variable as an actual
argument. This is called aliasing. TAPENADE detects this situation and issues a warning
message to the user. This message should not be ignored, because it may point to a future
problem in the differentiated code, especially in the reverse mode.

There is another form of aliasing, local to an instruction, where an assigned variable
may or may not be the same as read variable. In this situation, it is impossible to
write a single reverse differentiated instruction, because the differentiated code strongly
depends on the fact that the assigned variable is also read or not. TAPENADE detects this
situation and automatically inserts a temporary variable (e.g. tmp), therefore removing
local aliasing through instruction splitting. The following example illustrates this: there

is a local aliasing in the third instruction, because equality between i and n-i could not
be decided.

original program TAPENADE reverse: TAPENADE reverse:
forward sweep backward sweep
a(i) = 3*a(i) + a(i+1) | CALL PUSHREAL4(a(i)) CALL POPREAL4(a(n-i))
a(i+2) = 2*a(i) a(i) = 3*a(i) + a(i+1)| tmpb = ab(n-i)
a(n-i) = a(i)*a(n-1i) CALL PUSHREAL4(a(i+2))| ab(i) = ab(i) + a(n-i)*tmpb
a(i+2) = 2*xa(i) ab(n-i) = a(i)*tmpb
tmp = a(i)*a(n-i) CALL POPREAL4(a(i+2))
CALL PUSHREAL4(a(n-i))| ab(i) = ab(i) + 2*ab(i+2)
a(n-i) = tmp ab(i+2) = 0.0
CALL POPREAL4(a(i))
ab(i+1l) = ab(i+1) + ab(i)
ab(i) = 3*ab(i)

4.4 Splitting complex expressions

The derivative of complex expressions often turns out to be even more complex and
longer! Even if the original expression contains no duplication, naive differentiation in-
troduces duplicate sub-expressions. TAPENADE provides an automatic splitting of expres-
sions that virtually eliminates all duplication coming from differentiation. Expressions
are not split during the forward sweep, to avoid intermediate variables that might need
to be PUSH’ed and POP’ed. Splitting occurs only in the reverse sweep, and occurs only
at carefully selected places in the differentiated expressions. The following example illus-
trates this on a “not so long” expression, to keep things readable. Splitting spares one
exponentiation and one division.

10

Laurent Hascoét

original program

reverse mode:
backward sweep

TAPENADE reverse:
split backward sweep

a*xSIN(b)
- x*xy/a

rl =

ab = ab + SIN(b)*rib
+ xx*xyxrib/(a*a)

tempb = -(rib/a)
temp = X*¥*y

bb = bb + a*COS(b)*rib ab = ab + SIN(b)*rib
xb = xb - temp*tempb/a
- y*xx*x(y-1)*rib/a bb = bb + a*CO0S(b)*rib
yb = yb xb = xb + y*xx**x(y-1)*tempb
- xxxy*L0G(x)*rib/a | yb = yb + temp*L0G(x)*tempb
rib = 0.0 rib = 0.0

4.5 Dead adjoint code

Reverse differentiation of the program P that computes function F yields program P
that computes the gradient of F. The original results of P , which are also computed by
the forward sweep of P, are not a result of P. Only the gradient is useful. Moreover in
most implementations the original results will be overwritten and lost during the backward
sweep of P. Therefore some of the last instructions of the forward sweep of P are actually
dead code. TAPENADE has a prototype mechanism to remove this dead code, and a more
complete implementation is under way. The following example shows the effect on a
small program which terminates on a test, with some dead adjoint code at the end of

each branch.

original program

reverse mode:

TAPENADE reverse:
dead adjoint code removed

IF (a.GT.0.0) THEN

IF (a .GT. 0.0) THEN

IF (a .GT. 0.0) THEN

a = L0OG(a) CALL PUSHREAL4(a)
ELSE a = LOG(a)
a = LOG(c) CALL POPREAL4(a)
CALL SUB(a) ab = ab/a ab = ab/a
ENDIF ELSE ELSE
END a = L0OG(c) a = LOG(c)
CALL PUSHREAL4(a)
CALL SUB(a)
CALL POPREAL4(a)
CALL SUB_B(a, ab) CALL SUB_B(a, ab)
cb = cb + ab/c cb = cb + ab/c
ab = 0.0 ab = 0.0
END IF END IF

5 USING THE TAPENADE TOOL

TAPENADE can be installed on the local computer and run from the command line or

from a Makefile, just like a compiler. Here is a typical call:
#> tapenade -reverse -head func -vars "x z" filel.f file2.f

11

Laurent Hascoét

Alternatively, the TAPENADE web server

http://tapenade.inria.fr:8080/tapenade/index. jsp
requires no installation and of course always runs the latest version. It can be triggered
in a few clicks from most web browsers. All TAPENADE documentation, with tutorial and
an ever-growing reference manual, is available at:

http://www-sop.inria.fr/tropics/tapenade.html

User input to TAPENADE consists in command-line options, directives in the original
code, as well as configuration files. Consider for instance black-box procedures, i.e. pro-
cedures eventually called by the code to be differentiated, whose source is hidden (e.g.
libraries). If nothing is known about a black-box procedure, the inter-procedural anal-
yses of TAPENADE will make conservative assumptions, and the code produced will be
less efficient. TAPENADE lets the user specify in a configuration file useful summarized
information about black-box procedures, about parameters read and written, and about
their derivatives. This is most useful in large industrial codes. Black-box routines are
used to correctly differentiate procedures that use complex libraries, such as MPI1. Alter-
natively, even procedures whose source is available are sometimes better differentiated by
hand. By declaring them as black-box, the user tells TAPENADE to differentiate the rest
automatically and then use the user-defined differentiated procedure.

{ﬁ—u Differentiation result - Mozilla e |t
File Edit Miew Go Bookmarks Tools Window Help
Q o *& \& §§ A httpeitapenade inria fr:8080/tapenadesresult html _J Search d m
Back i Forward Reload Siop IJ‘ het/i0 p 4 2 Print = L
Home | w§ Bookmarks
—
Brioee 3| Download differentiated file | Download PUSHPOP | A
ddicfl 7 <
» e Differentiated call graph _J
 transpiration J
® norncog ¥ psiroe b
L calcnormpean = gradnod b
F weurvn i B .o 1 /
z3 = dz {10, 10} X POPREALE (dy (ivar, is)) B
[H 411, POPREALS (dx(ivar, is))
23 = @@m(zlj z0 aish = dz(ivar, is)*dzh{ivar, is) + dy{ivar, is)*dyb(ivar,
s is) + dx{ivar, is)*dxbiivar, is)
TRBNSP(@:IX(S,), @resx) dzh (ivar, is) = ais*dzh(ivar, is}
7 IF (({nordre 'EQ, 2) . OR (nordre .EQ. 3)) THEN dybfivar; 1s) =aistdyh(ivar, is)
i Completing the non-limited nodal gradients m(lggéﬁ;f%(;:? deb{ivar, 1s)
dre .EQ. 2 .O0R dre .EQ. 3 :
o tnozdre.-EQ udsREL) volsh{is) = wolsh{izs) - aish/wols(is)++2
o POPINTEGER4 (is)
F | i
is = 1.0d0 1s(i 2 POPINTEGERd (indexl)
5 2 tealslisy POPREALARRRAY (dx(5, indexl), 3)
dxfivar, is) = dx(ivar, is)*ais : TRANSP _E(dxi(5, indexl), dxb(5, indexl), resx)
dy(ivar, is) = dy{ivar, isi*ais |y oLl POPREALS(z1)
dz(ivar, is) = dz(ivar, is)*ais g DAL EOPREELE(z2) /
=
i3 qradnod: (TC30) Type mismatch in Brqument 1 oF functiori transp, expects REAL(3), receives REAL+S ‘j
A _cradand. MEANY Trraa maematchb M mT e an + 7 Af Functdian Fronen cvmarts RRL] raccitrac REAT +90
e i N2 D @& | [

Figure 2: HTML interface for TAPENADE output

12

Laurent Hascoét

The graphical user interface shown on figure 2 helps examine TAPENADE output, ex-
hibiting correspondence between original and differentiated code. This user interface con-
sists of HTML files, and is therefore accessible from the web server as well as from a local
installation. In its bottom frame, the interface also lists messages issued by TAPENADE,
with location in the source. There are many types of messages, such as type conflicts,
wrong number of arguments or dimensions, aliasing, or variables used before initialized.
Although the temptation is strong, these messages should not be ignored right away.
Especially when reverse AD is concerned, these messages may indicate that the program
runs into one limitation of the AD technology. Generally speaking, compilers often permit
to go against the standard with no visible harm, but this often introduces errors into the
program differentiated in reverse mode.

6 CONCLUSION

We have presented the AD tool TAPENADE. We gave a basic theoretical understanding
of AD and then showed how it relates to actual program transformation. We examined
TAPENADE output in detail to gain precise understanding and confidence into the internal
analyses and decisions made by this tool.

Our goal is to promote the use of TAPENADE in the scientific computing community,
and more importantly the use of the reverse mode of AD for optimization [4, 7, 9] and
inverse problems [10]. Discussion with end-users drives our research very strongly.

We are currently extending TAPENADE in several directions. A new version that fully
accepts FORTRAN95 is coming soon, and C in next on the list. Program static analyses will
be developed further, particularly pointer analysis. There is also work to be done in the
definition of directives that drive AD efficiently. Our research work, focused on the reverse
mode, both justifies existing refinements of TAPENADE and leads to new improvements.

13

Laurent Hascoét

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

[2] A. Carle and M. Fagan. ADIFOR 3.0 overview. Technical Report CAAM-TR-00-02,
Rice University, 2000.

[3] G. Corliss, C. Faure, A. Griewank, L. Hascoét, and U. Naumann(editors). Automatic
Differentiation of Algorithms, from Simulation to Optimization. Springer, 2001. Se-
lected proceedings of AD2000, Nice, France.

[4] F. Courty, A. Dervieux, B. Koobus, and L. Hascoét. Reverse automatic differen-
tiation for optimum design: From adjoint state assembly to gradient computation.
Optimization Methods and Software, 18(5):615-627, 2003.

[6] C. Faure and U. Naumann. The taping problem in automatic differentiation. In
[3] Automatic Differentiation of Algorithms, from Simulation to Optimization, pages
293-298, 2001.

[6] R. Giering. Tangent linear and adjoint model compiler, users manual. Technical
report, 1997. [www http://www.autodiff.com /tamc].

[7] M.-B. Giles. Adjoint methods for aeronautical design. In Proceedings of the ECCO-
MAS CFD Conference, 2001.

[8] A. Griewank. Ewaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. SIAM, Frontiers in Applied Mathematics, 2000.

[9] L. Hascoét, M. Vazquez, and A. Dervieux. Automatic differentiation for optimum
design, applied to sonic boom reduction. In V.Kumar et al., editors, Proceedings of
ICCSA’03, Montreal, Canada, LNCS 2668, pages 85-94. Springer, 2003.

[10] F.-X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assimila-
tion of meteorological observations: theoretical aspects. Tellus, 38A:97-110, 1986.

[11] U. Naumann. Reducing the memory requirement in reverse mode automatic differen-
tiation by solving TBR flow equations. In Proceedings of the ICCS 2000 Conference
on Computational Science, Part II, LNCS. Springer, 2002.

14

