
“To Be Recorded” Analysis in Reverse-Mode
Automatic Differentiation

Laurent Hascoët a Uwe Naumann b Valérie Pascual a

aProjet Tropics, INRIA, Sophia-Antipolis, F-06902, France
bSoftware and Tools for Computational Engineering, RWTH Aachen University, 52056

Aachen, Germany

Abstract

The automatic generation of adjoints of mathematical models that are implemented as com-
puter programs is receiving increased attention in the scientific and engineering communi-
ties. Reverse-mode automatic differentiation is of particular interest for large-scale opti-
mization problems. It allows the computation of gradients at a small constant multiple of
the cost for evaluating the objective function itself, independent of the number of input pa-
rameters. Source-to-source transformation tools apply simple differentiation rules to gen-
erate adjoint codes based on the adjoint version of every statement. In order to guarantee
correctness, certain values that are computed and overwritten in the original program must
be made available in the adjoint program. For their determination we introduce a static data-
flow analysis called “to be recorded” analysis. Possible overestimation of this set must be
kept minimal to get efficient adjoint codes. This efficiency is essential for the applicability
of source-to-source transformation tools to real-world applications.

1 Automatically Generated Adjoints

We consider a computer program P evaluating a vector function y = F (x), where
F : IRn → IRm. Usually, P implements the mathematical model of some under-
lying real-world application and it is referred to as the original code. The goal of
automatic differentiation (AD) [3,7,15] by source transformation is to build auto-
matically a new source program P ′ evaluating some derivatives of F . This is arrow
AD in Figure 1.

We consider a simplified mathematical model, symbolized by arrow R in Figure 1:
Every particular run of P on a particular set of inputs is equivalent to a simple
sequence of p scalar assignments

vj = ϕj(vk)k≺j, j = 1, . . . , q , (1)

Preprint submitted to Elsevier Science 11 August 2004

P P ′

vj = ϕj(vk)k≺j v̄i =
∑

j:i≺j

cji · v̄j

AD

MD

R R′

Fig. 1. Automatic differentiation and mathematical differentiation

where n variables vk, k = 1 − n, . . . , 0 represent the input x ∈ IRn and the last m
variables 1 among the vj form the output y ∈ IRm. Each ϕj is some mathematical
function or arithmetic operation provided by the programming language that P is
written in and its result is assigned to one of the q unique intermediate variables.
We set q = p + m. This sequence may change when the input changes. Compared
with P , this model is extremely simplified: array indices have been solved, so that
variables vj are scalars, and these variables are assigned only once. There are no
control statements, only assignments. We say that a variable vj depends in a differ-
entiable way, or depends, on vi, and we write vi ≺ vj or i ≺ j, iff vi is effectively
an argument of ϕj and the partial derivative

cji ≡
∂ϕj

∂vi

(vk)k≺j

of ϕj with respect to vi is defined. Furthermore, we assume that the cji are jointly
continuous in some neighborhood of their arguments vk, k ≺ j. With these assump-
tions, one can write formulas that use the chain rule to get the desired derivatives.
Let us call this mathematical differentiation (arrow MD in Figure 1). The follow-
ing formulas are of particular importance (see, for example, [17], [24], [14, Section
3.3]). They compute adjoints vi for all intermediate and input variables vi according
to the recurrence

v̄i =
∑

j:i≺j

cji · v̄j, i = p, . . . , 1 − n . (2)

Initializing vp+1, . . . , vq to y, we obtain in v0, . . . , v1−n, the “transposed Jacobian
matrix times vector” product x = F ′(x)T · y at time complexity O(m). Thus,
gradients of a single output variable with respect to all inputs are obtained at a
computational cost that is a small multiple of the cost of running the original code
(see cheap gradient principle in [14, Section 3.4]).

However, for AD by source transformation [4,5,20,6,25,19,12,27] the path we fol-
low in Figure 1 is arrow AD, creating a new program P ′, then arrow R′, which

1 This restriction can be relaxed to account for more general situations where arbitrary
intermediate variables can be outputs. The current approach allows us to use a slightly
simpler notation.

2

corresponds to executing P ′. The rules to create P ′ are motivated and justified by
Equation (2), but AD is a static program analysis and transformation, which ignores
run-time information, unlike MD. Therefore, AD is based on a static representation
of programs such as call graphs of flow graphs, summarized in Section 3. Section 2
and in particular Table 2.1 describe AD transformation precisely, but we shall un-
derline here some questions that the mathematical model does not need to take into
account.

In the sequel, we shall keep the term variable for the mathematical variable repre-
sented by a program variable at a given location in the program. In particular, one
program variable a, whether located before or after an operation that overwrites
a, represents two different variables. In static analyses [18], finding the variable
associated with a program variable at some location is a difficult task, undecidable
in many cases such as pointers or arrays. Therefore, static data-flow analyses must
make conservative overestimations for information based on variables. The relation
≺ is extended to this new definition of variables: For two program variables a and
b each at a given location, a ≺ b means that a (resp. b) may represent variable va

(resp. vb) such that va ≺ vb.

In Equation (1), each variable vj is written only once. However, real programs of-
ten use the same memory location to store different variables. This overwriting
loses the value of variables. Considering Equation (2), we observe that the adjoints
are computed in reverse order from i = p down to 1 − n. Thus, the local partial
derivatives cji must be made available in reverse order as well. Their values depend,
however, on the values of the input and intermediate variables vk, k = 1−n, . . . , p.
Because of overwriting, some vk may have been lost. To recover the values of these
variables, one can either (A) store their values on a data structure that is often re-
ferred to as a tape before they are overwritten and retrieve the values when required
in the adjoint code [8] or (B) recompute them “from scratch” when they become re-
quired in the adjoint code [10]. In both cases, we say that these variables have to be
recorded (TBR). Obviously, approach (A) may lead to enormous memory require-
ments for large-scale application programs, whereas (B) may result in a quadratic
computational complexity. Sophisticated implementations of approach (B) can re-
duce this cost by reusing values of variables that become available during the com-
putation of other required variables [11]. Often a combination of the store and re-
compute strategies is employed to achieve reasonable trade-offs between memory
use and execution time. See, for instance, the checkpointing schemes in [13]. What-
ever the approach, its efficiency would strongly benefit from the knowledge about
whether some variable is actually to be recorded. This is the purpose of the TBR
analysis described in this paper.

Section 2 discusses reverse-mode AD of programs and describes intuitively the
principle of TBR analysis. Section 3 contains general introductory comments on
data-flow analysis. Sections 4 and 5 present the formal specifications of activity
and TBR analyses, using the formalism of data-flow equations. Section 6 concludes

3

with a case study and some experimental measurements.

2 Reverse AD and the Principle of TBR Analysis

The left column of Table 2.1 shows an example original code which is the body of
a subroutine that uses values from an array x to compute new values of x. The right
column shows the corresponding adjoint code, which implements Equation (2).

Since we use the store strategy to retrieve overwritten values needed by the adjoint
computation, the adjoint code is preceded by a copy of the original code, aug-
mented with instructions that store values of certain variables before they get over-
written. We call this the forward sweep, shown in the middle column of Table 2.1.
Symmetrically, the adjoint code is augmented with instructions that retrieve these
values when they are required. TBR analysis [8] observes that not all values need
be stored during the forward sweep. One needs to store only those values that are
effectively used in the adjoint code and will be overwritten during the rest of the
forward sweep.

Before describing TBR analysis, we must introduce the notion of active variables.
The user of AD often requests only the derivatives of some of the outputs y (the
“dependent” variables yD), with respect to some of the inputs x (the “independent”
variables xI). For any relation ◦, we define the closure ◦+ = ∪∞

k=1◦
k, where ◦k is the

composition of k times ◦. A static analysis can detect, for any intermediate variable
v in the original code, whether ∃x ∈ xI : x ≺+ v and ∃y ∈ yD : v ≺+ y. In that
case, v is called an active variable. Otherwise, the derivative of v should neither
be computed nor used by the adjoint code, because it is either useless or trivially
null. This strategy makes the differentiated program simpler and more efficient.
Section 4 gives the data-flow equations that define this activity analysis.

Consider now an original instruction I : a = φ(B), where B = {b1, b2, . . . , bk}
denotes the set of scalar arguments of φ. Instruction I generates a set of adjoint
statements in the adjoint code that involve ā, b̄i, and ∂φ

∂bi

(B) for i = 1, . . . , k. Ac-
tivity matters: If a on the left-hand side of I is not active, then there is no adjoint
statement. 2 Similarly, if some bi on the right-hand side of I is not active, then the
adjoint statements involve neither b̄i nor ∂φ

∂bi

(B). The variables used by the remain-

ing adjoint statements are the arguments B of the local partial derivatives ∂φ

∂bi

(B),
plus possible indices of the bi and a, when these variables are array references. Pre-
cise rules are given in Section 5. Going back to our example in Table 2.1, we can
check the following “AdjU” sets of variables required for the correct evaluation of
the adjoint:

2 Note that in this case none of the bi on the right-hand side of I can be active either.

4

Table 2.1 A possible implementation of reverse-mode AD transforms the original code in
the left column into a code that consists of a forward sweep (middle column) to compute
the values required by the adjoint code that follows (right column). Adjoint statements
are generated for all active variables occurring on right-hand sides of assignments, that
is, only for components of the vector x. Because Equation (2) computes the adjoints in
reverse order, the control flow of the adjoint code is reversed from the control flow of the
original code. This reversal can be achieved in various ways, which are outside the scope
of this paper. Here, we count the number of iterations of loops into an integer COUNT and
execute the adjoint loops the same number of times, but in reverse order. Similarly for
conditionals, each time the original control flow merges, we remember where the control
comes from, and this indicates where the adjoint control flow must go to. The PUSH(w)
(resp. POP(w)) subroutine pushes (resp. pops) the value of variable w onto (resp. from) a
stack that implements the tape. A similar tactic is implemented in our AD tool TAPENADE
[27].

Original Code Forward Sweep Adjoint Code

i=0;j=10;a=3.14159

while (check(j)) {

if (max(i,j)>7) {

x(i)=j+sin(x(i))

} else {

x(j)=

j*cos(x(j))+a

}

i=i+1

j=j-1; a=a/2

}

i=0;j=10;a=3.14159

COUNT=0

while (check(j)) {

if (max(i,j)>7) {

PUSH(x(i))

x(i)=j+sin(x(i))

PUSH(true)

} else {

PUSH(x(j))

x(j)=

j*cos(x(j))+a

PUSH(false)

}

PUSH(i)

i=i+1

PUSH(j)

j=j-1; a=a/2

COUNT=COUNT+1

}

PUSH(COUNT)

POP(COUNT)

while (COUNT>0) {

COUNT=COUNT-1

POP(j)

POP(i)

POP(test)

if (test) {

POP(x(i))

x(i)=

cos(x(i))*x(i)

} else {

POP(x(j))

x(j)=

-j*sin(x(j))

*x(j)

}

}

AdjU(x(i)=j+sin(x(i))) = {x} ∪ {i} ∪ {i} = {x,i} ,

AdjU(x(j)=j*cos(x(j))+a) = {x,j} ∪ {j} ∪ {j} = {x,j} .

For example, a is not in the second AdjU set because it is not used in the adjoint
instructions. Using these AdjU sets, TBR analysis follows the flow of the original
code, looking for overwriting of these variables. When a program variable that is
required for the evaluation of the adjoint (or, simply, a required variable) is over-
written, TBR analysis inserts a PUSH instruction just before the overwriting and

5

symmetrically restores the variable with a POP instruction before it is required in
the adjoint code. In both statements above, a component of the array variable x is
used by the adjoint. Without array region analysis (see Section 3) any component
of x must be recorded when overwritten. The indices i or j are also necessary
to access the correct element of the adjoint vector x. But the overwriting occurs
later, and so does the PUSH/POP pair. On the other hand, a, although repeatedly
overwritten, is not an element of any AdjU set and therefore does not need to be
recorded.

3 Data Flow Analyzes

Our AD transformation is static, as are the data-flow analyses it relies on. Because
static analyses have no knowledge of data or behavior at run time, most of them are
undecidable; that is, there always exists a particular program for which the result
of the analysis is uncertain. Therefore, in order to obtain safe results, conserva-
tive over-approximations of the computed information are generated. For instance,
such approximations are made when analyzing the activity or the TBR status of
some individual element of an array. Static and dynamic array region analyses [26]
provide very good approximations. Otherwise, we make a coarse approximation, in
which the activity (resp. “requiredness”) of one element implies the activity (resp.
“requiredness”) of the whole array.

Data flow analysis depends on the internal representation of programs, as discussed
in classical literature on compiler theory (see, in particular, [1]). The most appro-
priate description appears to be in terms of data-flow equations, defined on call
graphs of control flow graphs (or simply flow graphs), which we have selected for
TAPENADE.

• The call graph is a directed graph with one node for each subroutine or function
of the program, and an arrow from node A to node B iff A possibly calls B.
Recursion leads to cycles in the call graph.

• A subroutine or function is represented by a flow graph. There is one flow graph
per node in the call graph. A flow graph is a directed graph whose nodes are basic
blocks [1]. Arrows in the flow graph represent the flow of control, that is, the
possible destinations of the execution pointer after completion of a basic block.
At run time, a test located at the end of the basic block decides on the direction
of control flow. The entry block (resp. exit block) represents the beginning (resp.
end) of the subroutine. No actual computation is associated with them. They may
be considered as anchors for all edges entering (resp. leaving) a flow graph.

At the lowest level, the individual instructions are represented simply as abstract

6

syntax trees. 3 A symbol table is associated with each basic block giving access to
properties of variables, constants, function names, type names, and so on. Symbol
tables are nested to implement lexical scoping [1].

Data flow analyses must be carefully designed to avoid or control combinatorial ex-
plosion. The classical solution is to choose a hierarchical model. In this model, in-
formation, or at least a computationally expensive part of it, is synthesized. Specif-
ically, it is computed bottom-up, starting on the lowest (and smallest) levels of the
program representation and then recursively combined at the upper (and larger) lev-
els. Consequently, this synthesized information must be made independent of the
context (i.e., the rest of the program). When the synthesized information is built, it
is used in a final pass, essentially top-down and context dependent, that propagates
information from the “extremities” of the program (its beginning or end) to each
particular subroutine, basic block, or instruction. We follow this approach for both
activity and TBR analyses.

Each data-flow analysis is described concisely by data-flow equations. In their most
general form, these equations apply to unstructured flow graphs [1], because real
programs have unstructured flow graphs in general. On the other hand, these gen-
eral equations can be specialized to structured flow graphs, that is, cleanly nested
loops and conditionals, yielding structured data-flow equations. Examples of this
specialization process are given in Lemmas 4 and 5. The structured data-flow equa-
tions may be applicable to a smaller class of programs but are usually more efficient
and also more illustrative. Solving data-flow equations defining a set S , for exam-
ple, the set of all active variables, on general unstructured flow graphs with loops
requires an iterative algorithm. Starting with an initial state (InS0, OutS0), each it-
eration i > 0 computes a new state (InSi, OutSi), which is made of two mappings
from each block B to InSi(B) the value of S before B, and to OutSi(B) the value
of S after B. Each iteration i applies the data-flow equations on each block B (ex-
cluding the entry and exit blocks) to build InSi(B) and OutSi(B) using the previous
state (InSi−1, OutSi−1). We will use the following lemma to prove that the iterative
process terminates.

Lemma 1 Iterative resolution of data-flow equations for a set S reaches a fixed
point in a finite number of iterations if the set of possible elements of S is finite and
∀i > 0, ∀B, InSi−1(B) ⊆ InSi(B) and OutSi−1(B) ⊆ OutSi(B).

Proof. Since there is only a finite number of possible elements in S , there is a
finite number of possible states of the iterative process. Set inclusion induces a
partial order ⊆ on states and the hypothesis says that for each iteration i > 0,
(InSi−1, OutSi−1) ⊆ (InSi, OutSi). If the iterative resolution does not reach a fixed

3 Certain AD-related semantic transformations benefit from the representation of expres-
sions as directed acyclic graphs, sharing common subexpressions. See, for example, the
preaccumulation techniques for local gradients of scalar assignments in [22]. The tree rep-
resentation is sufficient for the purpose of this paper.

7

point, all the inclusions are strict, and thus the successive states form an infinite set
of states. This is impossible since there is only a finite number of different states.

The logic behind static data-flow analysis is based on sets of (mathematical) vari-
ables. However, its result is given in terms of program variables. Due to the conser-
vative nature of data-flow analysis the named program variables themselves repre-
sent sets of mathematical variables. A particular mathematical variable gets associ-
ated with a program variable at a given point only at runtime.

4 Activity Analysis

As explained in Section 2, activity analysis detects the variables for which a deriva-
tive must be computed, that is, all v such that ∃x ∈ xI : x ≺+ v and ∃y ∈ yD :
v ≺+ y. Therefore, given the set xI of independent input variables and the set yD

of dependent output variables, both sets provided by the end-user, activity analysis
must perform two tasks:

• Forward from the beginning of the program, it must propagate the set of all
variables that possibly depend on some independent input.

• Backward from the end of the program, it must propagate the set of all variables
on which some dependent output possibly depends.

Those are two static interprocedural data-flow analyses. Therefore, we must con-
trol combinatorial explosion by selecting appropriate synthesized (i.e., bottom-up)
information.

4.1 Differentiable Dependency Analysis

The bottom-up analysis that we need here is the differentiable dependency analy-
sis, which computes, for each particular structured code fragment (i.e., instruction,
basic block, or subroutine) all pairs of variables (vb.va), vb just before it and va just
after it, such that vb ≺+ va. We call this set Dep. It can be implemented very effi-
ciently as a matrix of Booleans similar to the approach taken in [21], but we shall
stick to sets for the present description. We shall give the data-flow equations that
compute Dep at each level of the program representation.

For an individual instruction, there are two main cases: assignments and subroutine
calls. We shall examine subroutine calls when we deal with the interprocedural
aspect. First let us focus on assignments. After an assignment, the assigned variable
depends on all variables that occur on the right-hand side. This set (call it DP) is
given by the following constructive definition.

8

e: e1 op e2 ϕ(e1) e1[e2] v c

DP(e): DP(e1) ∪ DP(e2) DP(e1) DP(e1) {v} ∅

Here, op ∈ {+,−, ∗, . . .}, ϕ ∈ {sin, exp, tan, . . .}, e1[e2] is an array reference, 4

v is a single variable, c is a constant, and e1, e2 are subexpressions. All variables
other than the assigned variable remain unchanged. They depend just on them-
selves. Thus, for an assignment I : v = e

Dep(I) = {(d.v), ∀d ∈ DP(e)} ∪ {(w.w), ∀w 6= v} .

When dealing with arrays, we must overestimate Dep as follows: if the left-hand
side v is an array reference, then some parts of the array may retain their old values,
and therefore we must add dependency (v.v) to Dep(I).

For a basic block, and more generally for any sequence of structured program
pieces pi, we define the sequential composition ⊗ of the Dep sets as follows:

Dep(p1; p2) = Dep(p1) ⊗ Dep(p2)

= {(vb.va) : ∃v : (vb.v) ∈ Dep(p1) ∧ (v.va) ∈ Dep(p2)} .

For a subroutine S, Dep(S) is built from the Dep set of each basic block in its
flow graph by using data-flow equations. For each basic block B, we introduce
InDep(B) (resp. OutDep(B)), the dependencies from the entry block of S to the
beginning (resp. end) of B. The data-flow equations given in Figure 2 relate the
InDep and the OutDep sets of adjacent basic blocks. These equations form a system

...

B

...

InDep(B) =
⋃

P pred . of B

OutDep(P)

OutDep(B) = InDep(B) ⊗ Dep(B)

Fig. 2. General data-flow equations for differentiable dependency analysis; As a forward
data-flow analysis the set of dependencies at the entry of a block is the union of the sets
of dependencies upon exit of all the immediate predecessors of the block. The block itself
further modifies these dependencies. Note that when the flow graph contains loops, B can
be a predecessor of itself and thus the data-flow equations must be solved iteratively.

that can be solved iteratively. InDep0(B) = OutDep0(B) = ∅ for each block B,
except the entry block for which OutDep0 = Id. Here, Id is the “identity”, meaning
that every variable depends on itself only.

4 Note that e1 can be another expression itself, such as in the C-expression x[i][j].
Program variables occurring in index expressions do not represent (mathematical) variables
as in Equation (eqn:sac) and are therefore not in DP.

9

Lemma 2 The solution of the data-flow equations in Figure 2 is obtained as a fixed
point after a finite number of iterations.

Proof. Since InDep and OutDep are both finite it is sufficient to show that

OutDepi(B) ⊆ OutDepi+1(B)

for i = 0, 1,

By Lemma 1)

InDepi(B) =
⋃

P pred . of B

OutDepi−1(P) ⊆
⋃

P pred . of B

OutDepi(P) = InDepi+1(B)

for i = 0, 1, Considering in addition that D1 ⊆ D2 ⇒ D1 ⊗ D ⊆ D2 ⊗ D, for
Dep sets D1, D2, and D, the above equation implies

OutDepi(B) = InDepi(B) ⊗ Dep(B) ⊆

InDepi+1(B) ⊗ Dep(B) = OutDepi+1(B) .

The InDep set of the exit block of S is exactly the desired Dep(S).

B →
B1

B2

Dep(B) = Dep(B1) ⊗ Dep(B2)

B → B1 B2 Dep(B) = Dep(B1) ∪ Dep(B2)

B → B1 Dep(B) = (Dep(B1))
+

Fig. 3. Structured data-flow equations for the differentiable dependency analysis; For cas-
cades of blocks the dependencies are built by sequential composition. Branches with com-
mon source and target points lead to the union of the dependencies defined in each of them.
Loop dependencies are defined iteratively by computation of the closure of the loop body.

In the case of structured flow graphs, the data-flow equations can be specialized into
structured data-flow equations as shown in Figure 3. They compute the Dep sets
explicitly, recursively bottom-up on the structured flow graph, rather than iteratively

10

on the unstructured flow graph. Structured data-flow equations are less general but
more efficient. In particular, there is no more iterative solving, except inside the
equation for loops, to compute the closure of Dep(B1), seen as a relation.

Subroutine calls are handled at the call graph level. For an individual instruction
I : call S(. . .) the set Dep(I) is basically equal to Dep(S) (with a technical step
of translating the variable names, as the name space of S differs from that of the
calling subroutine). Therefore, the Dep set of each subroutine can be computed as
soon as the Dep sets of all subroutines possibly called inside it have been computed.
Consequently, when the call graph is acyclic, the Dep sets of each subroutine are
computed by a bottom-up sweep. Otherwise they must be computed iteratively.
This iterative computation does not pose any fundamental problems. For the sake
of brevity, we shall not describe it here.

4.2 Varied and Useful Variables

After the Dep sets are synthesized, activity analysis goes on propagating two data-
flow sets through the program:

• The varied variables are variables v such that ∃x ∈ xI, x ≺+ v. InVary(p) (resp.
OutVary(p)) denotes the set of varied variables just before (resp. after) a given
program piece p. For the whole program P , by definition, InVary(P) = xI,
which is then propagated forward on the program flow.

• The useful variables are variables v such that ∃y ∈ yD, v ≺+ y. The notation
InUseful(p) (resp. OutUseful(p)) is used for the set of useful variables just before
(resp. after) a given program piece p. For the whole program P , by definition,
OutUseful(P) = yD, which is then propagated backward on the program flow.

A variable is active when it is varied and useful. Both analyses run top-down on the
call graph. Solutions must be obtained iteratively if the call graph contains cycles.
For an acyclic call graph, subroutines are analyzed in an order obtained by topo-
logical sorting. This approach ensures that all calls to subroutine S are analyzed
before looking at S itself.

For a subroutine S, both analyses run similarly on the flow graph. The data-flow
equations are shown in Figure 4 for unstructured flow graphs and in Figure 5 for
some sample structured flow graphs. The OutVary set of the entry block of S is
initialized to InVary(S), which is the union of the varied variables before S, on
all calling contexts. Similarly, the InUseful set of the exit block of S is initialized
to OutUseful(S), which is the union of the useful variables after S, on all calling
contexts. Iterative resolution of the equations of Figure 4 terminates. The proof is
the same as for Lemma 2. For these equations, we extended the operator ⊗ on sets
V of variables as follows.

11

V ⊗ Dep(B) = {va : ∃vb ∈ V : (vb.va) ∈ Dep(B)} ,
Dep(B) ⊗ V = {vb : ∃va ∈ V : (vb.va) ∈ Dep(B)} .

...

B

...

InVary(B) =
⋃

P pred . of B

OutVary(P)

OutVary(B) = InVary(B) ⊗ Dep(B)

OutUseful(B) =
⋃

S succ. of B

InUseful(S)

InUseful(B) = Dep(B) ⊗ OutUseful(B)

Fig. 4. General data-flow equations for activity analysis; Comments similar to those made
in Figure 2 apply. The analyses of varied and useful variables are mutually symmetric if the
dependencies induced by a given block are interpreted in a symmetric way.

B → B1 B2

InVary(B1)= InVary(B2)= InVary(B)

OutVary(B) = OutVary(B1) ∪ OutVary(B2)
OutUseful(B1)=OutUseful(B2)=OutUseful(B)

InUseful(B) = InUseful(B1) ∪ InUseful(B2)

B → B1

InVary(B1) = InVary(B) ⊗ (Id ∪Dep(B))

OutVary(B) = OutVary(B1)
OutUseful(B1) = (Id ∪Dep(B)) ⊗ OutUseful(B)

InUseful(B) = InUseful(B1)

Fig. 5. Examples of structured data-flow equations for activity analysis; The equations for
branches are straight-forward. For loops, iterative equations are avoided through direct use
of Dep(B), whose definition in Figure 3 is iterative.

For a subroutine call I : call S(. . .), the following rules accumulate the activity
information for the present calling context into InVary(S) and OutUseful(S), their
respective unions for all calling contexts. These sets are used upon initialization
when analyzing S itself:

InVary(S) = InVary(S) ∪ InVary(I) ,
OutUseful(S) = OutUseful(S) ∪ OutUseful(I) .

12

5 TBR Analysis

As defined in Section 2, TBR analysis determines the set of variables to be recorded,
namely, the variables that are effectively required in the adjoint code and whose
values are lost during the remainder of the forward calculation as the result of
overwriting. Thus, TBR analysis follows the flow of the original code, propagat-
ing forward the set of required variables, and flags assignments that overwrite such
variables, so that their value will be recorded. As before, we identify a bottom-up
analysis in order to control combinatorial explosion.

5.1 Bottom-Up TBR Analysis

For each structured piece p of the program, we synthesize a summary of the effect
of p on TBR propagation. Concretely, this effect is composed of two parts:

• The killed variables Kill(p), those variables present at the beginning of p whose
values are completely lost inside p, independent of the actual control flow inside
p.

• The adjoint-used variables AdjU(p), those variables present at the end of p which
are used in the adjoint code for p.

Both the Kill and AdjU sets are computed as sets of program variables each of
which represents a set of (mathematical) variables. For all program variables in
AdjU we cannot guarantee that none of the (mathematical) variables they repre-
sent is used in the adjoint section of the code. Again, this is consequence of the
conservative approach to static data-flow analysis.

For an individual instruction I , let us again focus on assignments. Subroutine calls
are treated later, when we look at interprocedural TBR analysis. The Kill set of an
assignment is the set of completely overwritten variables. If array region analysis is
not performed, assignment to an array element does not kill the entire array and the
Kill set is empty. As defined in Section 2, the AdjU set of an assignment is empty
if the variable on the left-hand side is not active. Otherwise, a variable is used in
the adjoint of an assignment a = φ(B), B = (b1, . . . , bk), if it appears in ∂φ

∂bi

(B),
i = 1, . . . , k, or, in other words, if it appears in a subexpression e of φ(B) that
is an argument of a nonlinear operation ϕ, such as sin(e) or e*v, whose result
is active. Furthermore, variables in the index expressions of the bi and a are also
used whenever the latter are array references. This leads us to the operational rules
below, expressed recursively on the structure of the syntax tree. We use the same
notation as for the DP sets in Section 4.1.

13

e: e1=e2 (assignment) e1+e2 e1−e2 ϕ(e1)

AdjU(e): if e2 active then AdjU(e1) ∪ AdjU(e2) Vars(e1)

(AdjU(e1) ∪ AdjU(e2)) \ Kill(e1=e2)

e: e1∗e2 e1/e2 e1[e2] v c

AdjU(e): (if e1 active then AdjU(e1) ∪ Vars(e2))
⋃

AdjU(e1) ∪ Vars(e2) ∅ ∅

(if e2 active then AdjU(e2) ∪ Vars(e1))

In the above, an expression is called active when its value, considered as a tempo-
rary variable, is active. Vars(e) is the set of all variables occurring in expression e.
Concerning the AdjU rule for an assignment, remember that the overwritten vari-
able represents different mathematical variables before and after this assignment.
Therefore, the variable after the assignment is new, not yet used by any adjoint
instruction, and therefore erased from the AdjU set. The same reasoning applies
inside a basic block or to any sequence of structured program pieces (cf. top of
Figure 7): The Kill and AdjU sets are jointly defined by composition of the Kill and
AdjU sets of these pieces. Variables in the Kill set are removed from the AdjU set
after the operation that overwrites them.

For a subroutine S, AdjU(S) and Kill(S) are built jointly and iteratively on the
flow graph. For each basic block B, we introduce InAdjU(B) (resp. OutAdjU(B))
and InKill(B) (resp. OutKill(B)), the required and killed variables from the entry
block of S to the beginning (resp. end) of B. The data-flow equations are given
in Figure 6. They essentially state that a variable is required after basic block B
if it is required on at least one path leading to B and is not killed in B, or else if
it is required inside B. These equations are solved iteratively. The initial state is
InAdjU0(B) = OutAdjU0(B) = InKill0(B) = OutKill0(B) = ∅ for each block B.

Lemma 3 The solution of the data-flow equations in Figure 6 is obtained as a fixed
point after a finite number of iterations.

Proof. By induction on the iteration rank i, for all i > 1 and for all B, the in-
ductive assumption that OutAdjUi−1(P) ⊆ OutAdjUi(P) applied to the first equa-
tion of Figure 6 implies that InAdjUi(B) ⊆ InAdjUi+1(B). Observing that Kill(B)
and AdjU(B) are constant throughout the whole iterative process implies, with the
third equation, that OutAdjUi(B) ⊆ OutAdjUi+1(B). Similarly, the second equa-
tion implies that InKilli(B) ⊆ InKilli+1(B), and therefore the fourth equation gives
OutKilli(B) ⊆ OutKilli+1(B). Since on the other hand all these sets are subsets
of the set of all variables they can have at most a finite number of elements and
Lemma 1 ensures that the iteration terminates.
After resolution, InAdjU and InKill of the exit block of S are exactly the desired
AdjU(S) and Kill(S). In the case of structured flow graphs, the data-flow equations
can be specialized, as shown in Figure 7 and proved by Lemma 4. The specialized

14

...

B

...

InAdjU(B) =
⋃

P pred . of B

OutAdjU(P)

InKill(B) =
⋂

P pred . of B

OutKill(P)

OutAdjU(B) = (InAdjU(B) \ Kill(B)) ∪ AdjU(B)

OutKill(B) = InKill(B) ∪ Kill(B)

Fig. 6. General data-flow equations for bottom-up TBR analysis; Variables that are used in
the adjoint of the program up to the entry point of B are those that are in the corresponding
sets for all predecessors of B in the flow graph. Variables that are guaranteed to be killed
prior to the execution of B are guaranteed to be killed by all predecessors of B. Values of
variables that are used in an adjoint statement at the exit point of B are used in the adjoint
of B or in the adjoint of some predecessor of B while not being overwritten inside of B.

If a value is required for the adjoint of some subblock of B and it is overwritten later in B,

then this is represented in the definition of AdjU(B) (see example below).

rules are explicit: no iterative resolution is needed.

B →
B1

B2

AdjU(B) = (AdjU(B1) \ Kill(B2)) ∪ AdjU(B2)

Kill(B) = Kill(B2) ∪ Kill(B1)

B → B1 B2

AdjU(B) = AdjU(B1) ∪ AdjU(B2)

Kill(B) = Kill(B1) ∩ Kill(B2)

B → B1

AdjU(B) = AdjU(B1)

Kill(B) = Kill(B1)

Fig. 7. Structured data-flow equations for bottom-up TBR analysis; Notice that these equa-
tions are explicit: no iterative solving is needed to obtain the sets Kill(B) and AdjU(B),
even in the case of loops. This is to be compared with the implicit equations in Figure 6,
that require iterative solving for loops.

Lemma 4 Specialization of the data-flow equations of Figure 6 to structured flow
graphs gives the equations of Figure 7.

Proof. Consider each structured flow-graph as a small subroutine B to which we
apply the unstructured data-flow equations for AdjU(B) and Kill(B), which are, by
definition, equivalent to InAdjU and InKill of the exit block. The only nontrivial

15

part of the proof is for the loop. We find

AdjU(B) = OutAdjU(B1) = (InAdjU(B1) \ Kill(B1)) ∪ AdjU(B1) .

Two arrows reach B1, one from the entry block. According to the unstructured
equation we get

InAdjU(B1) = OutAdjU(B1) ∪ ∅ = OutAdjU(B1) ,

and AdjU(B) appears as the solution of the fixed point equation

X = (X \ Kill(B1)) ∪ AdjU(B1) .

Since OutAdjU0(B1) is initialized to ∅, the above equation obviously reaches its
fixed point for X = AdjU(B1). The same proof applies to the Kill set.

5.1.0.1 Example Consider

I1 : y = sin(x1 + x2)

I2 : z = y

I3 : x1 = x2

I4 : v = z ∗ x2 .

An adjoint code is

Ī4 : z̄+ = v̄ ∗ x2

x̄2+ = v̄ ∗ z

Ī3 : x̄2+ = x̄1

Ī2 : ȳ+ = z̄

Ī1 : x̄1 = cos(x1 + x2) ∗ z̄

x̄2+ = x̄1 .

Application of the first two equations from Figure 7 results in

AdjU(I1) = {x1, x2}; Kill(I1) = {y}

AdjU(I2) = ∅; Kill(I2) = {z}

AdjU(I3) = ∅; Kill(I3) = {x1}

AdjU(I4) = {x1, z}; Kill(I4) = {v} .

Let B1 = (I1, I2) and B2 = (I3, I4). Then

AdjU(B1) = {x1, x2}; Kill(B1) = {y, z}

AdjU(B2) = {x1, z}; Kill(B2) = {x1, v} .

16

Finally, if B3 = (B1, I3), then

AdjU(B3) = {x2}; Kill(B1) = {y, z, x1} .

The bottom-up character of TBR analysis ensures that the value of x1 is saved
inside B3 before being overwritten by I3. The new value is not required for any
adjoint statement in B3. Only for B4 = (B3, I4) we get AdjU(B4) = {x1, x2}
since any statement succeeding B4 that overwrites x1 or x2 violates the correct-
ness of the adjoint for B4. Again, the values of x1 or x2 have to be recorded.

5.2 Top-Down TBR Analysis

After the AdjU and Kill sets are synthesized, the second step of TBR analysis com-
putes and propagates the required variables, whose present value is possibly used
by the adjoint of some previous instruction. InReq(p) (resp. OutReq(p)) denotes
the set of the required variables just before (resp. after) a given program piece p.
Each time an individual instruction overwrites a required variable (i.e., a variable
present in the InReq set), we flag the overwritten variable as “to be recorded,” and
a PUSH/POP pair is inserted in the automatically generated derivative code. For the
whole program P , InReq(P) is initialized to ∅ and is then propagated forward on
the program flow. Subroutines are swept top-down on the call graph in an order
obtained by topological sorting. This procedure ensures that a called subroutine is
analyzed after all of its calling sites have been analyzed.

For a subroutine S, the data-flow equations are shown in Figure 8. The InReq set
of the entry block of S is initialized to InReq(S), which is the union of the re-
quired variables before the call to S, on all calling contexts. Iterative resolution of
the equations of Figure 8 terminates. The proof is the same as for Lemma 3. The
second equation is obtained by the following reasoning: Suppose that the value of
a program variable v is required at the entry of B. If v is overwritten inside B then
a PUSH/POP pair is inserted in the automatically generated code and the status of
v is set to “not required.” The program variable keeps this status until the end of B
unless it is in AdjU(B) and therefore required to compute some adjoint statement
that is not succeeded by another assignment to v.

Figure 9 shows specialized data-flow equations for some sample structured flow
graphs, with proofs given in Lemma 5. The specialized rules are explicit; that is, no
iterative resolution is needed. Consequently, TBR analysis of structured subroutines
requires no iteration to correctly establish the status of any variable that is over-
written by some assignment within the subroutine. This result was demonstrated in
[23]. Here, Lemmas 4 and 5 are a reformulation in the present formalism.

Lemma 5 Specialization of the data-flow equations of Figure 8 to structured flow
graphs gives the equations of Figure 9.

17

...

B

...

InReq(B) =
⋃

P pred . of B

OutReq(P)

OutReq(B) = (InReq(B) \ Kill(B)) ∪ AdjU(B)

Fig. 8. General data-flow equations for top-down TBR analysis

B → B1 B2

InReq(B1) = InReq(B2) = InReq(B)

OutReq(B) = OutReq(B1) ∪ OutReq(B2)

B → B1

InReq(B1) = InReq(B) ∪ AdjU(B1)

OutReq(B) = (InReq(B) \ Kill(B1)) ∪ AdjU(B1)

Fig. 9. Structured data-flow equations for top-down TBR analysis

Proof. The only nontrivial part is about the loop. The general data-flow equations
from Figure 8, specialized for the structured loop, yield

InReq(B1) = InReq(B) ∪ OutReq(B1) ,

OutReq(B1) = (InReq(B1) \ Kill(B1)) ∪ AdjU(B1) .

Substituting OutReq(B1) into the first equation gives

InReq(B1) = InReq(B) ∪ (InReq(B1) \ Kill(B1)) ∪ AdjU(B1) ,

which is a fixed point equation for InReq(B1). Since InReq0(B1) is initialized to ∅,
the fixed point is reached in two steps, giving

InReq(B1) = InReq(B) ∪ AdjU(B1) ,

which is the first data-flow equation for structured loops. Similarly, OutReq(B) is
equal to OutReq(B1) and

OutReq(B) = ((InReq(B) ∪ AdjU(B1)) \ Kill(B1)) ∪ AdjU(B1) ,

which can be simplified to get the second data-flow equation for structured loops:

OutReq(B) = (InReq(B) \ Kill(B1)) ∪ AdjU(B1) .

Finally, at the instruction level, the following rule propagates the “required” infor-
mation forward across any instruction I:

OutReq(I) = (InReq(I) \ Kill(I)) ∪ AdjU(I) .

18

Variables overwritten by I must be flagged as “to be recorded” if they belong to
InReq(I). In addition, for a subroutine call I : call S(. . .), the following rule
accumulates the required information for the present calling context into InReq(S).
A top-down sweep on the call graph ensures that InReq(S) eventually contains the
union for all calling contexts when S itself is analyzed; i.e.,

InReq(S) = InReq(S) ∪ InReq(I) .

6 Case Study and Experimental Results

We have applied TAPENADE with and without TBR analysis to a variant of the
Bratu problem [2]. It models the thermal explosion of solid fuels, which can be
described by the system of differential equations

x′′(τ) + s · e
x(τ)

1+t·x(τ) = 0,

where τ ∈ (−1, 1) and x(−1) = x(1) = 0. The problem has been discretized by
using step size h as

Fi = xi−1 − 2xi + xi+1 + h2[fi−1 + 10fi + fi+1]/12

for i = 1, . . . , 10000, with x0 = x10001 = 0 and fi = s · exp(xi/(1 + txi)).
Of interest are the derivatives of the component functions Fi with respect to the
current state xi as well as the parameters s and t. The original code implementing
the discretized problem is shown in Appendix A. Appendix B lists the source of
the main loop of the adjoint code generated by TAPENADE with TBR analysis.
The values of the intermediate variables exp5, . . . , exp10 resulting from the
canonicalization of the input code must be pushed onto the tape because they are
used nonlinearly in active terms inside the loop body. For example, exp8 appears
in h*h*prm(1)/1.2*exp8. Neither f(i) nor f(i-1) or f(i+1) is involved
in the computation of any local partial derivative. This fact is recognized by the
TBR analysis, and their values are not recorded.

With TBR analysis switched off, the value of all variables that appear on the left-
hand side of some assignments must be recorded. In particular, additional push
and pop statements have to be inserted for f(i-1), f(i), and f(i+1). This
strategy is implemented, for example, in ADIFOR 3.0 [5] and Odyssée 1.7 [9].
While it took 377 sec. to run the code in Appendix B on a 233 MHz Pentium II
(Linux) machine, the lack of TBR analysis increased the execution time to 466 sec.

Further experimental implementations of the ideas formalized in this paper showed
even more promising reductions of the memory requirement when following a pure
“store all” strategy. In [8] TBR analysis was applied to a large industrial thermal-
hydraulic code developed at EDF-DER in France (70, 000 lines, 500 subprograms,

19

1, 000 parameters). The tape size could be decreased by a factor of 5. More re-
cently, we made measurements on a Navier-Stokes solver differentiated in the re-
verse mode of AD by TAPENADE, more specifically on the part of the solver
that assembles the second-order state equation residual [16]. The following table
gives the results both in execution time and tape memory space. In addition to the
two extreme approaches, namely with and without TBR analysis, we experimented
with a simpler analysis that records variables only if they have been initialized. The
execution time of the original nondifferentiated subprograms is 0.15 s.

AD (no TBR) AD (only initialized) AD (TBR)

memory (Mb): 2.09 0.38 0.12

run time (s): 1.01 0.91 0.77

7 Conclusion

Data-flow analysis is a very powerful tool for generating efficient tangent-linear
or adjoint code by forward or reverse mode automatic differentiation, respectively.
Knowing the activity status of a (program) variable may result in significant gains
regarding the computational complexity by saving a potentially large number of
trivial (multiplications by zero) operations. Building on this knowledge we have
proposed TBR analysis with the objective to exploit linearity leading to a significant
decrease in the memory requirement of reverse mode. The potential benefits were
demonstrated on a large industrial code.

We believe that data-flow analyses that combine classical compiler concepts with
doman-specific (e.g., mathematical) knowledge will play an increasingly important
role in the future. In particular, semantic transformations of numerical program may
benefit greatly from such techniques.

Acknowledgments

While working at the Mathematics and Computer Science Division of Argonne Na-
tional Laboratory until June 2004 Naumann was partly supported by the Mathemat-
ical, Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of Science, U.S. Department
of Energy, under Contract W-31-109-ENG-38. Further funding was provided by
NSF under ITR contract OCE-0205590.

20

A Bratu Problem

subroutine bratu(dim,parmax,x,prm,F)
integer dim, parmax, i
double precision x(dim), prm(parmax), F(dim)
double precision h

h = 2.0/(dim+1)
F(1) = -2*x(1)+h*h*prm(1)/12.0
+ *(1+10*exp(x(1)/(1.0+prm(2)*x(1))))
F(2) = x(1)+h*h*prm(1)/12.0*exp(x(1)/(1.0+prm(2)*x(1)))

do 1 i=2,dim-1
F(i-1) = F(i-1)+x(i)+h*h*prm(1)/12.0

+ *exp(x(i)/(1.0+prm(2)*x(i)))
F(i) = F(i)-2*x(i)+h*h*prm(1)/1.2*exp(x(i)/(1.0+prm(2)*x(i)))
F(i+1) = x(i)+h*h*prm(1)/12.0*exp(x(i)/(1.0+prm(2)*x(i)))

1 continue

F(dim-1) = F(dim-1)+x(dim)+h*h*prm(1)/12.0*exp(x(dim)/(1.0
* +prm(2)*x(dim)))
F(dim) = F(dim)-2*x(dim)
F(dim) = F(dim)+h*h*prm(1)/12.0*(1+10*exp(x(dim)/(1.0
* +prm(2)*x(dim))))
end

B Adjoint Bratu Problem (with TBR analysis)

SUBROUTINE BRATU_B(dim, parmax, x, xb, prm, prmb, f, fb)
INTEGER dim, parmax
DOUBLE PRECISION f(dim), fb(dim)
DOUBLE PRECISION prm(parmax), prmb(parmax), x(dim), xb(dim)
REAL*8 exp1, exp11, exp11b, exp13, exp13b, exp1b, exp3,

+ exp3b, exp5, exp5b, exp7, exp7b, exp9, exp9b
REAL*8 exp10, exp10b, exp12, exp12b, exp14, exp14b, exp2,

+ exp2b, exp4, exp4b, exp6, exp6b, exp8, exp8b
DOUBLE PRECISION h
INTEGER adTo, i
...
DO i=2,dim-1
CALL PUSHREAL8(exp5)
exp5 = x(i) / (1.0+prm(2)*x(i))
CALL PUSHREAL8(exp6)
exp6 = EXP(exp5)

21

f(i-1) = f(i-1) + x(i) + h * h * prm(1) / 12.0 * exp6
CALL PUSHREAL8(exp7)
exp7 = x(i) / (1.0+prm(2)*x(i))
CALL PUSHREAL8(exp8)
exp8 = EXP(exp7)
f(i) = f(i) - 2 * x(i) + h * h * prm(1) / 1.2 * exp8
CALL PUSHREAL8(exp9)
exp9 = x(i) / (1.0+prm(2)*x(i))
CALL PUSHREAL8(exp10)
exp10 = EXP(exp9)
f(i+1) = x(i) + h * h * prm(1) / 12.0 * exp10

ENDDO
CALL PUSHINTEGER4(i - 1)
...
CALL POPINTEGER4(adTo)
DO i=adTo,2,-1
exp10b = exp10b + h * h * prm(1) * fb(i+1) / 12.0
exp9b = exp9b + EXP(exp9) * exp10b
xb(i) = xb(i) + fb(i+1) + (1 / (1.0+prm(2)*x(i)) - x(i)

+ * prm(2) / (1.0+prm(2)*x(i))**2) * exp9b
prmb(1) = prmb(1) + exp10 * h * h * fb(i+1) / 12.0
fb(i+1) = 0.D0
CALL POPREAL8(exp10)
exp10b = 0.0
CALL POPREAL8(exp9)
prmb(2) = prmb(2) - x(i) * x(i) * exp9b / (1.0+prm(2)*x(

+ i))**2
exp9b = 0.0
exp8b = exp8b + h * h * prm(1) * fb(i) / 1.2
exp7b = exp7b + EXP(exp7) * exp8b
exp6b = exp6b + h * h * prm(1) * fb(i-1) / 12.0
exp5b = exp5b + EXP(exp5) * exp6b
xb(i) = xb(i) + ((1 / (1.0+prm(2)*x(i)) - x(i) * prm(2) /

+ (1.0+prm(2)*x(i))**2) * exp7b - 2 * fb(i) + fb(i-1)) +
+ (1 / (1.0+prm(2)*x(i)) - x(i) * prm(2) /
+ (1.0+prm(2)*x(i))**2) * exp5b

prmb(1) = prmb(1) + exp8 * h * h * fb(i) / 1.2
CALL POPREAL8(exp8)
exp8b = 0.0
CALL POPREAL8(exp7)
prmb(2) = prmb(2) - x(i) * x(i) * exp7b / (1.0+prm(2)*x(

+ i))**2
exp7b = 0.0
prmb(1) = prmb(1) + exp6 * h * h * fb(i-1) / 12.0
CALL POPREAL8(exp6)
exp6b = 0.0
CALL POPREAL8(exp5)

22

prmb(2) = prmb(2) - x(i) * x(i) * exp5b / (1.0+prm(2)*x(
+ i))**2

exp5b = 0.0
ENDDO
...

END

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

[2] B. Averik, R. Carter, and J. Moré. The MINPACK-2 test problem collection
(preliminary version). Technical Report 150, Mathematical and Computer Science
Division, Argonne National Laboratory, 1991.

[3] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational
Differentiation: Techniques, Applications, and Tools. SIAM, Philadelphia, PA, 1996.

[4] C. Bischof, A. Carle, P. Khademi, and A. Maurer. The ADIFOR 2.0 system for
automatic differentiation of Fortran 77 programs. IEEE Comp. Sci. & Eng., 3(3):18–
32, 1996.

[5] A. Carle and M. Fagan. ADIFOR 3.0. Technical Report CAAM-TR-00-02, Rice
University, 2000.

[6] M. Cohen, U. Naumann, and J. Riehme. Toward differentiation-enabled Fortran 95
compiler technology. In Proceedings of the 2003 ACM Symposium on Applied
Computing, pages 143–147, 2003.

[7] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Automatic
Differentiation of Algorithms – From Simulation to Optimization, New York, 2002.
Springer.

[8] C. Faure and U. Naumann. The taping problem in automatic differentiation. In [7],
2001.

[9] C. Faure and Y. Papegay. Odyssée user’s guide, version 1.7. Technical Report 0224,
INRIA, September 1998.

[10] R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Trans. Math.
Software, 24:437–474, 1998.

[11] R. Giering and T. Kaminski. Towards an optimal trade-off between recalculation and
taping in reverse mode AD. In [7], 2001.

[12] R. Giering and T. Kaminski. Applying TAF to generate efficient derivative code
of Fortran 77-95 programs. In Proceedings of Applied Mathematics in Mechanics,
volume 2, pages 54–57, 2003.

23

[13] A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation. Optimization Methods and Software, 1:35–54, 1992.

[14] A. Griewank. Evaluating Derivatives. Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia,
2000.

[15] A. Griewank and G. Corliss, editors. Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM, Philadelphia, PA, 1991.

[16] L. Hascoët, M. Vazquez, and A. Dervieux. Automatic differentiation for optimum
design, applied to sonic boom reduction. In V. Kumar, M. Gavrilova, C. Tan, and
P. Ecuyer, editors, Computational Science and its Applications – ICCSA 2003, number
2668 in LNCS, pages 85–94. Springer, 2003.

[17] M. Iri. History of automatic differentiation and rounding estimation. In [15], pages
1–16. SIAM, 1991.

[18] J. Knoop. Optimal Interprocedural Program Optimization. Number 1428 in LNCS
Tutorial. Springer, New York, 1998.

[19] K. Kubota. PADRE2 - Fortran precompiler for automatic differentiation and estimates
of rounding errors. In [3], pages 367–374. SIAM, 1996.

[20] S. Lee and P. Hovland. Sensitivity analysis using parallel ODE solvers and automatic
differentiation in C: SensPVODE and ADIC. In [7], chapter 26, pages 223–229.
Springer, New York, NY, 2001.

[21] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, Inc., San Francisco, 1997.

[22] U. Naumann. Optimal pivoting in tangent-linear and adjoint systems of nonlinear
equations. Technical Report ANL/MCS-P944-0402, Mathematical and Computer
Science Division, Argonne National Laboratory, April 2002.

[23] U. Naumann. Reducing the memory requirement in reverse mode automatic
differentiation by solving TBR flow equations. In P. Sloot, C. Tan, J. Dongarra, and
A. Hoekstra, editors, Computational Science – ICCS 2002, Part II, volume 2330 of
LNCS, pages 1039–1048, Berlin, 2002. Springer.

[24] L. Rall and G. Corliss. An introduction to automatic differentiation. In [3], pages
1–17. SIAM, 1996.

[25] N. Rostaing, S. Dalmas, and A. Galligo. Automatic differentiation in Odyssée. Tellus,
45A:558–568, 1993.

[26] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. In Proceedings of the ACM SIGPLAN’00 Conference on
Programming Language Design and Implementation. ACM, 2000.

[27] The TROPICS Team. Tapenade 2.0. http://www-sop.inria.fr/tropics,
2003.

24

