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Personnel (march 2005)
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DR (1) / Professors 1 1
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(3) “Civil servant (CNRS, INRIA, ...)”
(4) “Associated with a contract (Ingénieur Expert or Ingénieur Associé)”

Personnel (march 2009)

Misc. INRIA CNRS University Total
DR / Professors 2 2

CR / Assistant Professor 1 1
Permanent Engineer
Temporary Engineer

PhD Students 1 1
Post-Doc.

Total 4 4
External Collaborators 1 1 2
Visitors (> 1 month)
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Changes in staff

DR / Professors Misc. INRIA CNRS University total
CR / Assistant Professors

Arrival
Leaving

Current composition of the project-team (march 2009):

• Laurent Hascoët, DR

• Alain Dervieux, DR

• Valérie Pascual, CR

• Anca Belme, PhD student

Current position of former project-team members (including PhD stu-
dents during the (put here the evaluation period) period):

• Mauricio Araya-Polo (was PhD student): Researcher, Barcelona Computing Center,
Spain, http://www.bsc.es

• Benjamin Dauvergne (was PhD student): Engineer, “Entrouvert” company, Jouy-
en-Josas, France, http://www.entrouvert.com/fr

• Hicham Tber (was Post-Doc): Post-Doc, IFB research team (Michael Hintermüller)
U. Graz, Austria, http://www.uni-graz.at/imawww/ifb

• Massimiliano Martinelli (was PhD student and Post-Doc): Maths Engineer, T.E.A.
group, Milano, Italy, http://www.teasistemi.com

• Christophe Massol (was Development Engineer): Engineer, Sogeti High Tech,
Sophia Antipolis, France, http://www.fr.sogeti.com/FR/high tech/index.aspx

Last INRIA enlistments

• Laurent Hascoët was promoted to DR2 position in September 2006.

2 Work progress

2.1 Keywords

Automatic Differentiation, program analysis, data-flow analysis, program transformation,
scientific computing, gradient-based optimization

2.2 Context and overall goal of the project

Automatic Differentiation (AD) is one way to obtain the analytical derivatives of a mathe-
matical function when this function is provided not as a mathematical formula but rather
as a computer program.

Taking the approach known as “program transformation”, AD is akin to a sophisticated
form of compiling: AD reads in and analyzes the given computer program and produces
a new computer program that computes the derivatives.
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A prominent application field of AD in Scientific Computing is the computation of
gradients of functionals, for optimization or inverse problems. Therefore the so-called
“reverse mode” of AD, which is the most efficient way of computing gradients, deserves
most of our attention.

It turns out that the reverse mode of AD raises Computer Science questions vastly
more complex than the basic “tangent mode” of AD. Reverse AD actually needs data-flow
analysis of the same power as for optimizing or parallelizing compilers. It also requires
analysis that have no equivalent in compilers. The TROPICS team studies these questions
to develop reliable and efficient reverse AD models and the code analysis that these models
call for.

At the same time, we believe that AD cannot be a simple black-box tool used in
Scientific Computing, except for relatively simple codes. In real applications, efficiency is
achieved only through the conjunction of an efficient AD tool and of an efficient dedicated
numerical algorithm that uses the AD gradients in a clever way. The TROPICS team
develops innovative methodologies to solve and optimize numerical systems with the help
of AD, and validates them on industrial-strength applications e.g. in Computational Fluid
Dynamics (CFD).

Last but not least, validation of efficient reverse AD models and application of AD-
enabled methodologies to industrial applications both require that we develop a full-blown
AD tool. Just a demonstration tool working on a simplified mini-language is out of
question. The TROPICS team develops an industrial-size AD tool “tapenade”, into
which we integrate our models and algorithms, and that runs on large codes in actual
languages. tapenade is actually distributed with research or commercial licenses, and we
value the growing number of outside users as a mark of quality of our models.

In the following section, we will give just the necessary background to understand our
objectives of 2005, our results, and our proposed objectives for the next period.

2.2.1 A short description of AD problematics

Automatic or Algorithmic Differentiation (AD) differentiates programs. An AD tool takes
as input a source computer program P that, given a vector argument X ∈ IRn, computes
some vector function Y = F (X) ∈ IRm. The AD tool generates a new source program
that, given the argument X, computes some derivatives of F . To this end, AD assumes
that P represents all its possible run-time sequences of instructions, and it will in fact
differentiate these sequences. Therefore, the control of P is put aside temporarily, and AD
will simply reproduce this control into the differentiated program. In other words, P is
differentiated only piecewise. Experience shows this is reasonable in most cases, and going
further is still an open research problem (see Objective 2, section 2.5). Any sequence of
instructions is then identified with a composition of vector functions. For a given control:

P is {I1; I2; . . . Ip; },
F = fp ◦ fp−1 ◦ . . . ◦ f1,

(1)

where each fk is the elementary function implemented by instruction Ik. Finally, AD
simply applies the chain rule to obtain derivatives of F . Let us call Xk the values of all
variables after each instruction Ik, i.e. X0 = X and Xk = fk(Xk−1). The chain rule gives
the Jacobian F ′ of F

F ′(X) = f ′
p(Xp−1) . f ′

p−1(Xp−2) . . . . . f ′
1(X0) (2)

which can be mechanically translated back into a sequence of instructions I ′k, and these
sequences inserted back into the control of P , yielding program P ′. This can be generalized
to higher level derivatives, Taylor series, etc.
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In practice, the above Jacobian F ′(X) is often far too expensive to compute and store.
Notice for instance that equation (2) repeatedly multiplies matrices, whose size is of the
order of m×n. Moreover, most problems are solved using only some projections of F ′(X).
For example, one may need only sensitivities, which are F ′(X).Ẋ for a given direction Ẋ
in the input space. Using equation (2), sensitivity is

F ′(X).Ẋ = f ′
p(Xp−1) . f ′

p−1(Xp−2) . . . . . f ′
1(X0) . Ẋ, (3)

which is easily computed from right to left, interleaved with the original program instruc-
tions. This is the principle of the tangent mode of AD, which is the most straightforward,
available in most AD tools.

However in optimization, data assimilation adjoint problems, or inverse problems, the
appropriate derivative is the gradient F ′∗(X).Y . Using equation (2), the gradient is

F ′∗(X).Y = f ′∗
1 (X0).f ′∗

2 (X1). . . . .f ′∗
p−1(Xp−2).f ′∗

p (Xp−1).Y , (4)

which is most efficiently computed from right to left, because matrix×vector products are
so much cheaper than matrix×matrix products. This is the principle of the reverse mode
of AD.

This turns out to make a very efficient program, at least theoretically. The compu-
tation time required for the gradient is only a small multiple of the run-time of P . It is
independent from the number of parameters n. In contrast, notice that computing the
same gradient with the tangent mode would require running the tangent differentiated
program n times.

However, we observe that the Xk are required in the inverse of their computation
order. If the original program overwrites a part of Xk, the differentiated program must
restore Xk before it is used by f ′∗

k+1(Xk). This is the main problem of the reverse mode (see
Objective 1, section 2.4). There are two popular strategies for addressing this problem:

• Recompute All (RA): the Xk is recomputed when needed, restarting P on input
X0 until instruction Ik. The taf tool uses this strategy. Brute-force RA strategy
has quadratic time cost with respect to the total number of run-time instructions p.

• Store All (SA): the Xk are restored from a stack when needed, cf figure 1. This
stack is filled during a preliminary run of P , that additionally stores variables on the
stack just before they are overwritten. The adifor and tapenade tools use this
strategy. Brute-force SA strategy has a linear memory cost with respect to p.

time

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

Figure 1: The “Store-All” tactic

On industrial-size applications, the time cost of brute-force RA is unacceptable, and so
is the memory cost of brute-force SA. Both RA and SA strategies need a special stor-
age/recomputation trade-off. Incidentally, they become very similar then. This trade-off
is called checkpointing. Since tapenade uses the SA strategy, let us describe checkpoint-
ing in this context only. The plain SA strategy (cf figure 1) applied to instructions I1 to
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Ip builds a differentiated program where an initial “forward sweep” runs the original pro-
gram and stores intermediate values (black dots), and is followed by a “backward sweep”
that computes the derivatives in the reverse order, using the stored values when necessary
(white dots). Checkpointing a fragment C of the program is illustrated on figure 2. During
the forward sweep, no value is stored while in C. Later, when the backward sweep needs
values from C, the fragment is run again, this time with storage. One can see that the
maximum storage space is grossly divided by 2. This also requires some extra memoriza-
tion, called a “snapshot”, to restore the initial context of C. This snapshot is shown on
figure 2 by slightly bigger black and white dots. Checkpoints can be nested. In that case, a

time

C{
Figure 2: Checkpointing C with the “Store-All” tactic

clever choice of checkpoints can make both the memory size and the extra recomputations
grow only like the logarithm of the size of the program. However, the optimal choice is in
general NP-hard to find.

2.2.2 Applications of AD to Scientific Computing

Scientific Computing provides a lot of applications for derivatives, the most popular be-
ing Simulation, Optimization and Inverse Problems. Even in stochastic approaches to
optimization such as evolutionary methods, derivatives are used increasingly.

There are several approaches to obtain these derivatives, and we must contrast the AD
approach with the others. Let us concentrate on obtaining a gradient. At one extreme, one
can write an adjoint system, then discretize it and program it by hand. The adjoint system
is a new system, deduced from the original equations, and whose solution, the adjoint state,
leads to the gradient. A hand-written adjoint is very sound mathematically, because
the process starts back from the original equations, but this involves a long additional
implementation phase. One can use mathematical knowledge of the problem to write
remarkably efficient code. Strangely enough, the separate discretization for the original
and for the adjoint code causes subtle problems when optimizing with descent directions:
It computes a discrete gradient with is not exactly the gradient of the discrete functional.

Therefore it is safer to compute the adjoint of the discrete functional itself, i.e. apply
the reverse mode of AD to the program. Although this has often been done in the past,
we do not advocate writing the reverse differentiated code by hand, i.e. playing the role of
the AD tool. Of course a human programmer can always be more clever than a software
tool, but AD tools have made tremendous progress and will continue steadily. More
importantly, it is highly desirable that the original simulation code evolves, and rewriting
the adjoint code by hand every time is impractical.

Even if users now understand the interest of Automatic Differentiation, they are often
not satisfied with the reverse-differentiated code. Reverse AD often means massive use of
storage and recomputation, requiring post-AD hand transformation to recover efficiency.

5



See 1,2 for a catalog of post-AD manipulations. The TROPICS team aims at progres-
sively improving the AD tools, and tapenade in particular, to replace these post-AD
manipulations by automated AD strategies, possibly triggered by directives in the original
code.

Now we will give a quick panorama of the applications of AD that we know of, for
Simulation, Optimization and Inverse Problems. Simulation of complex systems can be
locally replaced by reduced models, i.e. local linearizations of the system around the cur-
rent configuration. For a better approximation, the reduced model can use second-order
derivatives. One can also approximate the local behavior of a simulation in a stochastic
way, using the so-called method of moments, which also involves first- and second-order
derivatives. Actually, second derivatives appear at several places in this panorama, which
motivates our work on that topic (see Objective 3, section 2.6). The accuracy of a simula-
tion also depends on the quality of the discretization. AD gradients can be used for mesh
adaptation (see Objective 4, section 2.7). Optimization is maybe the most natural appli-
cation of AD gradients. Optimization is one degree more complex than plain Simulation,
and efficiency of AD gradients becomes crucial. This motivates algorithmic improvements
inside the reverse AD model (see Objective 1, section 2.4), and specialized optimization
algorithms (see Objective 4, section 2.7). In the case of Robust Optimization, stability
of the optimum with respect to optimal parameters is required. This introduces second
derivatives in the optimization problem. Inverse problems aim at estimating the value of
hidden parameters from other measurable values, that depend on the hidden parameters
through a system of equations. For example, the hidden parameter might be the shape
of the ocean floor, and the measurable values are the altitude and velocity at the surface.
Another example is data assimilation in weather forecasting3. In general, the problem
is stated as a least square problem, between the observed values and the simulated val-
ues. This rapidly boils down to solving an adjoint problem, which can be done through
AD. Here also, second derivatives are required more frequently, in particular to study
correlations and sensitivity of the estimated parameters.

In the special case of steady state simulations, many works have shown that the adjoint
can be computed far more efficiently than by reverse AD of the complete pseudo-time ad-
vancing scheme at a tremendous memory cost. For instance in the “piggy-back” approach4,
computation of the adjoint state uses the iterated states in the direct order. Alternatively,
most researchers use only the fully converged state to compute the adjoint. This is usually
implemented by a delicate and error-prone modification of the code generated by AD. The
TROPICS team is proposing a methodology that combines AD and hand coding [10, 17].
This methodology can be extended to second derivatives (see Objective 3, section 2.6).

2.3 Objectives for the evaluation period

To begin with, here is an exact copy of the objectives we had given at the beginning of
the present evaluation period, in march 2005.

———— < Start 2005 objectives copy > ————
1P. Hovland, B. Mohammadi, C. Bischof, “Automatic Differentiation of Navier-Stokes computa-

tions”, research report number MCS-P687-0997, Argonne National Laboratory, 1997.
2B. Mohammadi, “Practical application to fluid flows of automatic differentiation for design problems”,

Von Karman Lecture Series, 1997.
3F. LeDimet, O. Talagrand, “Variational algorithms for analysis and assimilation of meteorological

observations: theoretical aspects”, Tellus 38A, 1986, p. 97–110.
4A. Griewank, C. Faure, “Reduced Gradients and Hessians from Fixed Point Iteration for State

Equations”, Numerical Algorithms 30(2), 2002, p. 113–139.
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Computer Science aspects: improve AD models. Our objectives are:

• (o1) Merge Store-All and Recompute-All: one open problem is to merge appar-
ently conflicting strategies for the reverse mode. We believe that a data-dependence
approach can capture into a single framework the Store-All and the Recompute-All
strategies of the reverse mode, as well as Static Single Assignment and the interaction
with Checkpointing. We will address this problem soon.

• (o2) Completely formalize intermediate values storage and checkpointing:
In reverse-mode AD, many values are stored either because they will be used in
the partial derivatives in the reverse sweep or because they are in a checkpoint.
Such storage is often redundant because there is no common formalization of these
mechanisms. We can define a precise model of reverse differentiation, and from it
define the minimal set of variables that must be stored at each point.

• (o3) Make checkpoints more flexible: Checkpointing is absolutely unavoidable
on large codes, for example for optimization of unsteady processes. Checkpointing
arbitrary pieces of code, designated by the end-user, is highly desirable. Successive
checkpoints must share their stored variables whenever possible, and this requires
tradeoffs. There exist other flavors of checkpointing (“reverse checkpoints”) that we
didn’t investigate yet, that would deserve deeper studies.

• (o4) Analyze Discontinuities: AD of programs around discontinuities is still an
open problem. The problem cannot be simply “solved” in the current state of the
art. During Mauricio Araya-Polo’s PhD work, we will study a special differentiation
mode that will evaluate the size of the neighborhood of the current input values in
which no discontinuities occur.

About tool development, we know that tapenade can be largely improved, although it
now surpasses the functions of its predecessor Odyssée. tapenade still misses treatment
of user directives for AD, and a decent analysis of pointers and dynamic memory. These
problems will be even more important when c becomes an input language (started in
2005). Pointers and memory allocation are still a challenge for the other AD tools, as
well as differentiation of c. Nevertheless, the biggest challenge for AD tools is definitely
differentiation of object-oriented languages (e.g. c++), which are spreading more and
more in Scientific Computing. To address this, we need to collaborate more with specialists
of static analysis and compilation of object languages.

Numerical Science aspects: now that AD provides analytic derivatives, convince nu-
merical scientists to use those. The open problem here is to design new efficient ways to use
AD adjoints in optimization programs. We have promoted an approach for optimization
of a steady-state simulation using AD first-order gradients. Our objectives are:

• (o5) Provide and use higher-order derivatives, and in particular Hessians,
which are of course useful in optimization. Combinations of the existing first-order
differentiation modes are a possible answer, but efficiency requires specific modes.

• (o6) Optimize unsteady simulations, which are one degree of complexity higher
than steady simulations, and require powerful checkpointing schemes.

• (o7) Continue coupled shape-mesh optimization. A thesis is starting to com-
plete our contribution on this topic.

———— < end 2005 objectives copy > ————
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The recommended format for the sequel is one section per objective, and suggests an
average of 4 objectives. This is perfectly reasonable. We will therefore group our objectives
of 2005 in the following 4 big objectives. Our objectives in 2005 also clearly mentioned
further development of our AD tool tapenade. Although the format of this report exiles
Software Development towards the later “Software” section 3.1, we view development of
tapenade as an essential objective of the team.

2.4 Objective 1:
Use Data-Flow analysis to improve reverse AD (o1, o2, and o3)

We address the specific problems of the reverse mode of AD. We use Data-Flow analysis
to reduce the memory and runtime penalties caused by data-flow reversal.

2.4.1 Personnel

Laurent Hascoët, Valérie Pascual, Mauricio Araya-Polo, Benjamin Dauvergne, and exter-
nal collaboration with Uwe Naumann (RWTH Aachen), Jean Utke (Argonne Nat. Lab.),
Mike Fagan (Rice Univ.).

2.4.2 Project-team positioning

From one point of view, this problem is interesting only to the small community of re-
searchers working on reverse AD, plus all end-users. In fact, mostly teams who develop a
software tool for reverse AD are working on this topic. This leaves us with

• the ADOL-C team in Dresden, Germany,

• the developers of the AD extension of the NAG F90 compiler in Hatfield, UK and
Aachen Germany,

• and the developers of the OpenAD platform in Argonne, IL, USA.

Because it relies on overloading, ADOL-C reverse mode stores more information than
tapenade’s reverse mode. In particular they also store a part of the original operations
in addition to the intermediate values. Their research effort is more focused on reducing
this “operations stack”.

Both the AD-enabled NAG F90 compiler and OpenAD try to optimize the reverse mode
by reducing the operations count on the computation graph of the derivatives, for any given
basic block of instructions. Although this is a very interesting theoretical problem (recently
proved NP-hard by Uwe Naumann), we believe it is not the most needed improvement
for a practical AD tool. OpenAD features a number of static data-flow analysis, some
of them needed to build good checkpointing strategies in the reverse mode. But to our
knowledge, OpenAD does not optimize the memory storage of reverse differentiated code.
Nevertheless they are studying these questions and we have a fruitful collaboration with
them and Uwe Naumann on this topic.

The private company FastOpt, developing the AD tool TAF, are certainly very close
to this topic. TAF has original strategies that would be worth studying, but as a private
company, they communicate very little on their AD models and algorithms.

From another point of view, this topic is just one of the many program analysis and
code optimization problems. The tools we use (data-flow, data-dependence graphs, use-def
or def-use chains . . . ) are well established and described in textbooks on parallelization
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or compilation 5. We have occasional contacts with teams doing program analysis, such
as ALCHEMY (INRIA Orsay), and ARENAIRE (LIP Lyon).

2.4.3 Scientific achievements

By nature, the derivative computations in reverse mode require intermediate values from
the original program, in the inverse of their normal production order. The overhead of
reverse AD thus comes from restoration (through storage or recomputation) of values re-
quired in the derivatives. Näıve implementation causes restoration that is often useless,
redundant, or inefficient. In particular, one issue is the coupling between the main restora-
tion strategies. This results in many complaints of AD users arguing with reason that they
need to edit the differentiated code by hand to make it efficient. This also results in a grow-
ing basis of “oral tradition” rules to go around these weaknesses of restoration. Generally
speaking, we advocate a more rigorous approach, based on a precise data-flow model of
restoration. In the long term, we aim at providing a uniform description of all restoration
strategies that encompasses the existing and exhibits optimal compromises. Several of our
improved data-flow-based algorithms, now implemented in tapenade, actually reduce the
need for post-differentiation hand editing.

We distinguish for convenience two nested granularity levels for the restoration prob-
lem:

• At the fine-grain level of sequences of individual instructions, the question is which
intermediate values must be restored, and through which combination of storage,
recomputation and inversion.

• At the coarse-grain level of nested checkpoints, one question is to find the smallest
snapshots, taking into account the coupling between checkpoints. When this is
clarified, a more ambitious question is to improve the very location of the checkpoints.

We build on our past study of the data-flow equations of the static analysis involved
in reverse AD 6 that clarified the fine-grain level, without checkpoints. From this, the set
of intermediate values required is well established.

During this period, we continued the fine-grain study by taking into account a new
restoration strategy: inversion. A trivial example is to inverse increments of array indices
e.g. j = j+2 by inserting j = j-2 at a correct place in the adjoint code, but there is more
to it than plain detection of induction variables. This work was done in collaboration with
Jean Utke and Uwe Naumann [16]. In a first step, we restrict to the important subcase of
control values i.e. array indices, pointer addresses, test results, as opposed to floating point
values in computations. We propose a conceptual framework akin to a data-dependence
graph that captures three restoration strategies (inversion, recomputation, and storage),
along with a heuristic to find a good combination of those.

At the fine-grain level, another performance issue is data locality in the differentiated
code. Keeping the variables distinct from their derivatives (“association by name”) pre-
serves the structure of the original variables, which is crucial e.g. to I-O. On the other
hand, keeping the derivative attached to the original variable (“association by address”)
improves data locality in differentiated instructions. In a joint work with Jean Utke and
Mike Fagan [28], we present this question and explore practical solutions that in effect
represent hybrids of the two approaches.

5S. Muchnick, “Advanced compiler design and implementation”, Academic Press, 1997.
6L. Hascoët, M. Araya-Polo, “The adjoint Data-Flow analyses: formalization, properties, and

applications”, Proceedings the AD 2004 conference, Chicago, 2004.
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At the coarse-grain level and during this period, we first analyzed the data-flow of
checkpointing, yielding a precise characterization of all possible memory-optimal options
for snapshots [27]. This characterization is formally derived from the structure of nested
checkpoints and from classical data-flow equations. It captures forms of coupling where
reducing one snapshot may lead to a higher number of values being stored at the fine-grain
level. We experimented several of these optimal options, using tapenade, on a number
of real codes. Although no option is uniformly better, we observed that the so-called
“lazy snapshot” option gives best performances in general. This option is now the default
strategy in tapenade, yielding a significant gain (around 10%) over the previous more
näıve checkpoints.

Still at the coarse-grain level, we studied the question of optimal placement of check-
points in a large application. This question has a proved optimal solution only in the
case of a fixed-length time-stepping loop with no checkpointing inside each time-step. In
contrast, we considered the case of an arbitrary program call tree, with the option to
place a checkpoint or not at each subroutine call site. Using our data-flow equations for
snapshots, and either some static analysis or some run-time profiling, we can evaluate
the performance of each placement of checkpoints, and look for an optimal. Benjamin
Dauvergne has worked on this question with Uwe Naumann in Aachen. The optimal
placement problem is NP-hard 7. Benjamin Dauvergne then developed heuristics to find
good enough placement of checkpoints [15] without running an exhaustive (exponential)
search. He obtained promising improvements on two large applications. Incidentally, this
required the development in tapenade of the NOCHECKPOINT directive, now available for
all users.

During the evaluation period, we also started to study reverse AD of message-passing
parallel programs, from the data-flow point of view. This preliminary joint work [35, 37]
with Jean Utke and Uwe Naumann is certainly one of the most promising perspectives of
future research. More at an implementation level, we have fully automated the “II-LOOP”
checkpointing strategy in tapenade. This strategy applies a very efficient specialized
checkpointing scheme to loops with Independent Iterations, i.e. a sub-class of parallel
loops. It can now be triggered by the end-user with a II-LOOP directive in the source
program.

2.4.4 Collaborations

• Joint work and paper [28] with Mike Fagan (Rice) and Jean Utke (Argonne) on alter-
native representations for derivatives variable and data structures.
• Joint work (4 weeks meeting) and paper [16] with Jean Utke and Uwe Naumann (Aachen)
on fine-grain restoration of control-flow information.
• Joint work with Uwe Naumann on the optimal placement of checkpoints. Benjamin
Dauvergne spent 4 weeks in Aachen with Naumann’s team.
• Ongoing work with Jean Utke and Uwe Naumann on reverse differentiation of MPI
parallel communication primitives. Joint articles [35, 37].

2.4.5 External support

2.4.6 Self assessment

This objective is central for the TROPICS team. We are convinced that inverse problems
and optimization problems will spread even further in Scientific Computing, and that

7U. Naumann, “Call Tree Reversal is NP-Complete”, Advances in Automatic Differentiation, Springer,
2008.
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gradient-based methods are the main key to them. We acknowledge gradients are not the
only derivatives of interest, but our choice is to invest most of our work on the reverse
mode of AD, and to apply our program data-flow analysis background on reverse AD. We
believe our data-flow approach has brought something to the AD community.

One achievement of this period is the complete data-flow formalization of snapshots
and of their coupling with other improvement strategies in reverse AD. This gives us strong
confidence in the correctness and efficiency of the checkpointing mechanism implemented
in tapenade.

We are also pleased with the data-flow formalization at the fine-grain level for reversal
of address computation, although this needs further work before it can be used inside an
AD tool.

Results on optimal placement of checkpoints on the call tree are interesting from a
theoretical viewpoint, but we need to spend the development effort to turn them into a
practical component of our AD tool.

We are extremely satisfied with the ongoing collaboration on these topics with the
Argonne and Aachen teams. Clearly we develop competitor AD tools, but we are building
a common view of their internal algorithms. This is particularly important for a small
research team such as TROPICS.

2.5 Objective 2: Analyze discontinuities (o4)

We want to give some answers to one weakness of AD compared to inefficient but sturdy
approaches such as Divided Differences: AD can silently return wrong derivatives in pres-
ence of discontinuities of the computed function.

2.5.1 Personnel

Mauricio Araya-Polo, Laurent Hascoët

2.5.2 Project-team positioning

Although the question of non-differentiability is generally recognized as a thorny problem
that can ruin hopes of gradient-based optimization, there are very few works addressing
the question. Most of these works stay at a very abstract level. In the domain of interval
arithmetic, Baker Kearfott 8 proposes and implements an extension to approximate in-
tervals in the case of non-smooth constructs. In the differentiation domain, some authors
proposed to introduce sub-differentials (i.e. an interval around the undefined differen-
tial), but they generally remain at a theoretical level due to the incurred computational
complexity.

Griewank and Walther devote the whole section 14 of their classical AD book 9 to
this question. They identify the problem in the same manner, but they concentrate on
a mathematical formalization of the problem, classifying the kinds of non-differentiability
that may occur. They address the problem of giving one-sided derivatives at the places
where the derivative is undefined. In particular they advocate use of Laurent series, which
may have a reasonable cost when one restricts to one user-given direction in the input
space. This is interesting because we ended up making the same restriction: Apparently,

8R. Baker Kearfott, “Interval extensions of non-smooth functions for global optimization and
nonlinear systems solvers”, Computing, 1996

9A. Griewank, A. Walther, “Evaluating Derivatives: principles and techniques of Algorithmic
Differentiation”, 2nd edition, SIAM, 2009
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this confirms that our initial objective of finding the complete differentiable domain in one
single run is out of reach.

2.5.3 Scientific achievements

Automatic Differentiation gives analytical derivatives, e.g. gradients, based on local prop-
erties of the function at the given input point. These derivatives are then used to ex-
trapolate the behavior of the function around this point. Since the analysis is local, these
derivatives do not take into account discontinuities that may occur in the neighborhood of
the current point. These discontinuities basically correspond to conditionals in the source
program.

In a source program, the sources of non-differentiability are the control switches, plus
the language intrinsics that may contain control switches. These places are easily located.
If a change of the input point can make one of these switches swap at run-time, then there
is an input point for which the computed function is a priori non-differentiable.

For each run-time switch, involving some intermediate variables, we can find for which
values of the intermediate variables the non-differentiability occurs, at least at first order.
This gives us a half-space of the space of intermediate variables, containing the current
values. As far as this switch is concerned, the computed function remains differentiable in
this half space.

The difficulty is to combine all these half-spaces into one subdomain of the space of
inputs, in which the computed function is differentiable. We explored several strategies
and evaluated their complexity. Reverse AD allows us to propagate one half-space on
intermediate variables into one half-space on the inputs. But this should be done once for
each run-time switch, and the cost is unreasonable. We had to abandon this reverse-based
strategy.

Therefore, Mauricio Araya-Polo proposed a strategy to evaluate the distance to the
nearest discontinuity along one given direction in the input space. This is done by extension
of the tangent mode of AD. During execution of the tangent differentiated program, each
encountered switch accumulates its constraints into one single validity interval around the
input point, along the given direction.

We proposed two possible uses of this extension:

• One can compute a polyhedral approximation of the differentiable domain around
the current input point, by repeatedly running the extended tangent code for several
directions in the input space. For instance, if these directions are set to the Carte-
sian basis of the input space, the differentiable domain can be computed at a cost
proportional to the number of inputs.

• Inside an optimization process, one uses the reverse mode of AD to compute a
gradient and from it choose a descent direction. At this moment, one can run the
cheap extended tangent code for this descent direction. This will tell to which extent
one can follow the descent direction safely.

Mauricio Araya-Polo made several demonstrative experiments on real applications.
He published partial results in a journal article [5] and a complete discussion in his PhD
thesis [1]. The distributed version of tapenade now has a command-line option to trig-
ger this functionality. Several uses were reported by external users, although on small
applications or for educational purposes.
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2.5.4 Collaborations

2.5.5 External support

2.5.6 Self assessment

This problem of non-differentiability is known as very disturbing to every AD researcher.
To our knowledge, this is the first attempt at an effective answer that can be implemented,
and we did implement it.

However, it is true that this question is consistently overlooked in AD of real appli-
cations. Most programs are full of switches. Still, people happily apply AD to then to
obtain gradients and it works! One possible reason of this surprising robustness is that
industrial-quality optimization routines always perform a line search along the descent
direction, so that going through a non-differentiability will not make optimization fail but
rather make it a little slower.

Our feeling is that this work both has a theoretical interest and provides end-users
with a useful quantitative tool. But until some end-user application clearly shows a need
for a better estimation of the differentiability domain, we do not plan to invest further
work into this topic.

2.6 Objective 3: Provide and use higher-order derivatives (o5)

We study the question of Higher-Order derivatives, beginning with second derivatives.
This work goes along two directions. One is to study sophisticated uses of the Hessian
matrix in Scientific Computing. The other is to use and improve AD to effectively compute
this Hessian. This objective corresponds to the PhD work of Massimiliano Martinelli [2].

2.6.1 Personnel

Massimiliano Martinelli, Alain Dervieux, Laurent Hascoët

2.6.2 Project-team positioning

The question of efficient computation of second derivatives in CFD was studied in the
pioneering works of Taylor-III et al 10. For our part, we started this study in close collab-
oration with Mike Giles team in Oxford.

We are aware of works that try to take advantage of the sparsity of the Hessian matrix,
described in detail in Andreas Griewank’s book. In our work however, we only took
advantage of the Hessian’s symmetry. Actually, the Hessian in our CFD application is not
very sparse.

Other INRIA teams concentrate on novel uses of Hessians in optimization, rather than
on the ways of obtaining these Hessians. This is the case for the OPALE team, in which
Massimiliano Martinelli has spent year 2008 as a Post-Doc.

2.6.3 Scientific achievements

During this period, we concentrated on second derivatives e.g. Hessian matrices. Although
some authors advocate the use of third-order derivative tensors, we left this aside. Also,
we are more interested in complete derivative objects such as rows of the Hessian, than
in directional Taylor expansions. In fact, we believe Taylor expansions are more easily
computed with operator-overloading AD tools, such as ADOL-C.

10Taylor III, A.C., Green, L.L., Newman, P.A., Putko, M.M. “Some advanced concepts in discrete
aerodynamic sensitivity analysis”, AIAA Journal 41(7), 2003
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Like we did in the past for first derivatives, we considered the case of steady-state
solvers. This very frequent case allows us to develop sophisticated strategies to avoid
reverse differentiation of each pseudo-time step, because the intermediate states in the
pseudo time-stepping have no physical meaning. This is what we did in the past for first
derivatives, and we did it this time for second derivatives [31].

Starting back from the mathematical equations of a constrained functional computed
through a steady-state iterative solver, we actually found two possible strategies for com-
puting the second derivatives of the functional. These strategies both take advantage
of the steady-state nature to compute only a limited amount of expensive derivatives.
One strategy eventually makes use of Hessian-times-vector products obtained by repeated
Tangent-on-Tangent differentiation. The other obtains these products by Tangent-on-
Reverse differentiation.

A careful cost analysis of the two strategies, with respect to the number of input pa-
rameters n shows that the Tangent-on-Reverse approach outperforms Tangent-on-Tangent
only above a relatively high n. However this contradicts former works that claimed that
Tangent-on-Tangent is always faster. This comes from a better accuracy in our cost anal-
ysis. We validated this cost analysis on a couple of examples [34].

Massimiliano Martinelli applied these results to several domains of Scientific Comput-
ing where second-order derivatives are needed. One particular application is the estimation
of uncertainties [2] on very complex systems with a computer-intensive high fidelity Navier-
Stokes model. It is too expensive to search the statistical properties of the system with
Monte-Carlo methods on the simulation itself, so we do it on a reduced-order model that is
built from first and second order derivatives obtained by AD [31, 34]. Another application
is robust design, where some sensitivity terms, obtained by AD, are themselves included
into the cost functional. This naturally introduces second-order derivative terms in the
optimization process [19].

Repeated application of Automatic Differentiation raises new questions in the case of
Tangent-on-Reverse. The restoration mechanism incurred by reverse AD, at least with the
Restore-All strategy of tapenade, uses a stack that is accessed with external PUSH and
POP routines. In the following tangent differentiation step, the derivatives of these external
routines must be provided by the end-user. We realized how easy it is to write these
derivatives wrong, and even when they are written correctly, the derivative code proves
very inefficient. Actually what we need is a correspondence between each matching PUSH
and POP, expressed e.g. with directives. These directives must be set by the first, reverse
differentiation, and used by the second, tangent differentiation [34]. Implementation of
this extension is going on in tapenade.

2.6.4 Collaborations

• We had very profitable discussions with Mike Giles (Oxford), who uses tapenade
in a project with Rolls-Royce. They use second derivatives in the design of turbines.

• We collaborate with team OPALE on the European project NODESIM-CFD, about
reduced models and robust design.

2.6.5 External support

Martinelli’s work was supported by the NODESIM-CFD “STREP” European project.
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2.6.6 Self assessment

Repeated application of AD is a classical way to obtain second derivatives, and we know
tapenade has already been used for this in the past. Still, this raised several specific
problems for the Tangent-on-Reverse approach. This work was the right occasion to
experiment with this approach in-house, and to propose solutions. Actual implementation
of these solutions in tapenade is slightly lagging behind.

Also, it is important that we now have a clear comparison between Tangent-on-Reverse
and Tangent-on-Tangent. Actually, an open question now is “what about Reverse-on-
Tangent?”.

Putting up a sophisticated strategy to compute Hessian elements for steady-state com-
putation is a key to the application of AD to robust design. We are also beginning to see
applications in sensitivity studies in Earth Sciences. Some applications are showing up
where the given simulation is now unsteady. Our sophisticated strategy above does not
apply any more. Further study is necessary there and, until this is done, the Tangent-on-
Tangent approach is probably the safest choice.

We do not think it is worth going up to third-order derivatives with the repeated
application approach. There is always an overhead, and program analysis becomes in-
creasingly costly. For really high order derivatives, we believe that the right approach is
operator-overloading AD computing directional Taylor expansions.

We may continue some research on Hessians in the future, but at the moment we do
not plan to invest more in this direction.

2.7 Objective 4: Study applications to optimization (o6 and o7)

Automatic Differentiation, especially in reverse mode, is rarely a black-box tool that sci-
entists can simply use in their numerical computation. Very frequently, there must be
a common work to develop sophisticated numerical algorithms that use AD gradients in
a more efficient way. Therefore, the TROPICS team not only develop improvements to
the AD model, described in the previous sections, but also study new algorithms for key
questions in scientific computing. The targets we have chosen are optimal control, shape
optimization, and control of approximation errors by mesh optimization.

2.7.1 Personnel

Alain Dervieux, Laurent Hascoët, Massimiliano Martinelli, Anca Belme, Benjamin Dau-
vergne, and collaboration with Youssef Mesri (INRIA team SMASH), Fréderic Alauzet,
and Adrien Loseille (INRIA team GAMMA).

2.7.2 Project-team positioning

Research teams on Optimization are far more numerous than on Automatic Differentia-
tion. Incidentally, many of them do not consider gradient-based optimization but rather
stochastic approaches. This sightly reduces the set of our potential end-users.

Rather naturally, we chose to collaborate with INRIA teams OPALE, SMASH (in
Sophia-Antipolis) and GAMMA (in Rocquencourt).

2.7.3 Scientific achievements

We have been working mostly on two classes of applications, optimization, optimal control
on one hand, and on the other hand control and correction of approximation errors due
to mesh discretization.
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One present frontier in industry research groups is optimization. Simulation itself is
well mastered. Optimization is hard because the number of optimization parameters is
high, typically several hundreds, particularly in CFD optimal shape design. Alain Dervieux
and Francois Beux edited a collection of papers on the problematic of shape design [13].
The reverse mode of AD is absolutely necessary in this context, because it is the most
efficient way to get the gradients when the number of parameters is large. However, a plain
reverse differentiation of the complete simulation algorithm can be unnecessarily costly,
especially for steady-state simulations.

During this period, we have further developed our general strategy to build the adjoint
of a steady-state simulation, using a combination of reverse AD and sophisticated hand-
written code. The central idea is to apply reverse AD on the discrete state residual, which
gives (but implicitly) the matrix that appears in the adjoint state equation. Therefore, we
resort to a matrix-free solver (GMRES) to get the adjoint state. We speed up convergence
by preconditioning with the first-order (in space) Jacobian of the state equation, combined
with an incomplete factorization ILU(k). In particular neither the pseudo-time stepping
nor the linear solver are reverse-differentiated [22]. We gave particular attention to the
issues of efficient computation of a large-scale adjoint system [11], efficient preconditioners
for this computation [7], and efficient optimization algorithms [10]. The same philosophy
was applied by Massimiliano Martinelli for second derivatives [2].

We addressed the problem of approximation errors due to mesh discretization in col-
laboration with INRIA teams GAMMA and SMASH. We managed to transform the mesh
adaptation problem into a differentiable optimal control problem, on which we can apply
the same strategy as for CFD optimization. To this end, we introduced a new methodol-
ogy that consists in stating the mesh adaptation problem in a purely functional form: the
mesh is reduced to a continuous property of the computational domain, the “continuous
metric”, and we minimize a continuous model of the error resulting from that metric. Then
the problem of searching an adapted mesh is transformed into the search of an optimal
metric. During the thesis of Youssef Mesri, the problem of coupling mesh adaptation and
shape optimization has been addressed by the design of new algorithm, the fixed point
adaptation-optimization algorithm [3].

In the case of mesh interpolation minimization, the optimum is given by a closed
formula and gives access to a complete theory demonstrating that second order accuracy
can be obtained on discontinuous field approximation [8]. In the case of adaptation for
Partial Differential Equations such as the Euler model, we need an adjoint state that we
obtain by AD. We end up with a minimization problem for the metric which in turn is
solved analytically [4, 12, 14, 17].

We started very recently to consider the problem of the correction of approximation
errors. This new subject is addressed jointly by teams OPALE and TROPICS. It is bound
to become an important application of AD. We investigate the two types of correctors, by
direct linearizations and Defect Correction, or by the adjoint-based functional correction.
The purpose is to apply these methods to large unsteady flow simulations. These studies
will contribute to the approximation error section of project NODESIM-CFD.

The work above is focused on the case of steady-state simulations. We also studied
several unsteady applications. The strategies described above do not apply to unsteady
simulations, because each time-step is physically meaningful and is taken into account for
the global cost functional. Therefore we essentially apply reverse AD to the complete sim-
ulation, and implement strategies directly into the AD tool, triggered by user directives,
to produce a more efficient code. The Numerical Science aspects are therefore less impor-
tant here, but the Computer Science aspects and tool implementation play a larger role.
During the evaluation period we have successfully built the adjoint code of the following
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large unsteady applications, each time in collaboration with the end-user.

• With INRA (agronomy) we differentiated STICS and SAIL, two Fortran codes of 26
000 lines [25, 18].

• With IFREMER, LOCEAN lab of Paris VI university, and IMAG Grenoble, we
differentiated the OPA ocean circulation model, in the small “configuration” GYRE
and the large configuration NEMO. This is a Fortran90 code of 120 000 lines [29, 39].

• With ANDRA (geology) and the JAD lab. of university of Nice, we differentiated
the TRACES code, a Fortran90 code of 22 000 lines.

Comments apply to all these codes: first, we acknowledge that reverse AD never worked
at first try on these codes. There was always a couple of month’s step of debugging tape-
nade, to catch up with the recent features in recent codes. For instance the TRACES
code was our first application with intensive pointer allocation and manipulation. Then
comes efficiency questions. The adjoint codes benefited a lot from the tapenade directives
II-LOOP for parallel loops, from the refined computation of snapshots that we have de-
veloped, and from the NOCHECKPOINT directive to control checkpointing. This is discussed
in [15].

2.7.4 Collaborations

• Collaboration with team SMASH on the European project HISAC: co-advising of
Youssef Mesri.

• Collaboration with team GAMMA on the European project HISAC: collaboration
with Fréderic Alauzet and co-advising of Adrien Loseille.

2.7.5 External support

• The “HISAC” European IP project provided partial support for Adrien Loseille and
Youssef Mesri

• The “LEFE” French ANR project provided partial support to advertise our results
on the adjoint of OPA NEMO code.

2.7.6 Self assessment

Concerning the optimal design (with optimal control methods) relying on steady numerical
models, we think that a cycle is more or less completed:

• we have identified the necessary extensions of AD methods, such as II-LOOPs, we
have worked out the new methods or new extensions, introduced them in tapenade,
experimented with our CFD platforms and with CFD software from partners, dif-
fused them so that they are applied by other teams, in particular in two European
projects (common paper with Dassault).

• we have identified and developed complementary numerical methods, trying to an-
swer various questions, arising in particular from the three European projects, AEROSHAPE
(finished before the evaluation period), HISAC, and NODESIM-CFD: efficiency of
adjoint based design with one-shot methods and multilevel preconditioning on shape
iteration, combination of mesh adaptation and shape optimization in a convergent
loop.
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The above aspects are complementary to the questions of stochastic and robust opti-
mization, and of reduced models addressed by other INRIA teams (OPALE) or outside
(IMF-Toulouse) with our without our contribution. We have hesitated and decided not to
develop a parallel demonstration platform for shape design. This was for two main rea-
sons, first it is a large investment just for ”demonstrating”, second, we planned to address
parallel Automatic Differentiation a little later, i.e. in the coming period.

The case of optimization in unsteady turbulent model is a difficult question which we
may address in the future. But before that, we are still interested in other applications
of linearizations and adjoints in steady and unsteady flows, involving error correctors and
mesh adaptation.

Concerning mesh adaptation, the methods built with GAMMA, are the first ones
combining in a natural way adjoint and Hessians. Mesh adaptation studies will be pushed
further in cooperation with the GAMMA team and Lemma company. This will be a large
part of our efforts. Our plan involves the extension of our methods to many steady (com-
pressible Navier-Stokes) and unsteady (free interfaces, LES turbulence,...) CFD models.

Concerning unsteady flows, we plan to re-design the implicit time advancing in order
to keep it sophisticated and even more efficient for hybrid RANS-LES, but also to have a
global code easy to differentiate with an AD tool. The novel platform will be differentiated
first for building strategies of numerical error correctors and static mesh adaptation (what
is the best mesh for a complete time interval).

3 Knowledge dissemination

3.0.7 Publications

2005 2006 2007 2008-9
PhD Thesis 1 2 1
H.D.R (*)
Journal 1 5 1 7
Conference proceedings (**) 6 4 3 4
Book chapter 1
Book (written)
Book (edited) 1
Patent
Technical report 1 1
Deliverable 2 2 2 2

(*) HDR Habilitation à diriger des Recherches
(**) Conference with a program committee

We are asked to mention here the major journals “in the field”, then the papers by the
team accepted in these journals in the evaluation period. Then same thing for conferences.
The TROPICS team is working in two fields. The AD field uses conferences more than
journals. The numerical field uses journals more than conferences. The adjective “major”
is also very delicate. Some very generalist journals and conferences may be considered
major (and indeed very selective), but a paper there hardly reaches its audience. Some
focused journals and conferences are indeed very popular in their respective fields and
have a better impact on the people we work with.
Journals:

1. Journal of Computational Physics: no paper
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2. International Journal of CFD : [7]

3. Applied Numerical Mathematics: [8]

4. European Journal of Computational Mechanics: [6, 12, 19, 15]

5. Scientific Programming: [16]

Conferences:

1. AD2004 and AD2008 conferences, proceedings in Springer LNCSE: [23, 26, 34, 36]

2. International Conference on Computational Science (ICCS): [27]

3. ICFD Conference on Numerical Methods for Fluid Dynamics: [33]

4. ECCOMAS conferences: [30]

3.1 Software

The TROPICS team develops the Automatic Differentiation tool tapenade. tapenade
progressively implements the results of our research about models and static analysis for
AD. From this standpoint, tapenade is a research tool. Our objective is also to promote
the use of AD in the scientific computation world, including the industry. Therefore the
team constantly improves tapenade to meet the demands of our industrial users. From
this standpoint, tapenade is also an industrial tool.

tapenade supports three modes of differentiation: tangent, vector tangent, and re-
verse. Although perfectly feasible, there is no vector reverse yet because we found no
application for it. tapenade differentiates programs written in Fortran, up to the 95
standard, or in ANSI C. Like any program transformation tool, tapenade needs so-
phisticated static analysis in order to produce an efficient output. All these analysis are
context-sensitive, flow-sensitive, and implement a limited form of array index analysis for
more accurate results. The following analysis are a must for an AD tool and tapenade
now performs them all:

• Pointer (or Alias) analysis: For any static program transformation, and in par-
ticular differentiation, it is essential to have a precise knowledge of the possible
destinations of each pointer at each code line (“points-to analysis”). Otherwise one
must make conservative assumptions leading to less efficient code.

• Activity: The end-user has the opportunity to specify which of the output variables
must be differentiated (called the dependent variables), and with respect to which
of the input variables (called the independent variables). Activity analysis propa-
gates the independent forward and the dependent backward, in order to detect all
“active” intermediate variables that both depend on the independent and influence
the dependent. Only the active variables need to be differentiated, thus making the
differentiated program smaller and faster.

• Adjoint Liveness and Read-Write: Programs produced by the reverse mode of
AD show a very particular structure, due to their mechanism to restore intermediate
values of the original program in the reverse order. This has deep consequences on
the liveness and Read-Write status of variables, that we can exploit to take away
unnecessary instructions and memory usage from the reverse differentiated program.
This makes the adjoint program smaller and faster by factors that can go up to 40%.
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• TBR: The reverse mode of AD, with the Store-All strategy, stores all intermediate
variables just before they are overwritten. However this is often unnecessary, because
derivatives of some expressions (e.g. linear expressions) only use the derivatives of
their arguments and not the original arguments themselves. In other words, the
local Jacobian matrix of an instruction may not need all the intermediate variables
needed by the original instruction. The To Be Restored (TBR) analysis finds which
intermediate variables need not be stored during the forward sweep, and therefore
makes the differentiated program smaller in memory.

Several other strategies are implemented in tapenade to improve the differentiated code.
For example, a data-dependence analysis allows tapenade to move instructions around
safely, gathering instructions to reduce cache misses. Also, long expressions are split in a
specific way, to minimize duplicate sub-expressions in the derivative expressions.

The end-user can specify properties of external or black-box routines. This is essential
for real industrial applications that use many libraries. The source of these libraries is
often hidden. However AD needs some information about these black-box routines in order
to produce efficient code. tapenade lets the user specify this information in a separate
signature file. The end-user can also improve the generated code via a (too small) number
of user directives placed in the source. For instance for the reverse mode, tapenade lets
the user specify finely which procedure calls must be checkpointed or not,

Figure 3 shows the architecture of tapenade. It is implemented mostly in java (115
000 lines) except for the separate front-ends which can be written in any more conve-
nient language. Front- and back-ends communicate with the kernel via an intermediate

Differentiation Engine

Imperative Language Analyzer

 (IL)

C parser
Fortran95 parser

Fortran77 parser

 (IL)

C printer
Fortran95 printer

Fortran77 printer

Figure 3: Overall Architecture of tapenade

abstract language (“IL”) that makes the union of the constructs of individual imperative
languages. Notice also the separation between the general-purpose program analysis and
the differentiation engine itself.

tapenade can be used simply as a web server, available at the URL:
http://tapenade.inria.fr:8080/tapenade/index.jsp
It can also be downloaded and installed from our FTP server
ftp://ftp-sop.inria.fr/tropics/tapenade/README.html
A documentation is available on our web page
http://www-sop.inria.fr/tropics/
and as an INRIA technical report (RT-0300)
http://hal.inria.fr/inria-00069880
tapenade is distributed with a license, which is free for academic research, and at a
price for industrial or commercial use. Several companies have purchased an industrial
license for tapenade (Rolls-Royce, BAe, Cargill, Credit Suisse), others are in the eval-
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uation process. At the same time, tapenade is used by many academic institutions for
education and research. Many users cannot be identified, because the log files of our
web and ftp servers give little information. However, we are aware of tapenade reg-
ular use by researchers in Argonne National Lab. (Illinois, USA), the Federal Reserve
(Washington DC, USA), CSIRO Hobart (Australia), NAL Bangalore (India), Cranfield
university (UK), Oxford university (UK), RWTH Aachen (Germany), Humboldt univer-
sity Berlin (Germany), German Aerospace Center (Germany), DLR (Germany), General
Electric Deutschland (Germany), University of Bergen (Norway), ISMAR-CNR Venezzia
(Italy), Alenia (Italy), Dassault Aviation (France), INSA Toulouse (France), Université
de Montpellier (France), CMAP Ecole Polytechnique (France) . . .

Here are some statistics on the use of tapenade: There are roughly 2 releases per
year. The latest release has been downloaded 123 times from our ftp server, between July
2008 and January 2009 from 23 different countries including Germany (29), France (23),
USA (11), Italy (6). The tapenade web server has been used more than 5000 times since
its creation in 2002 (We count only real uses, no robots). The current rate is 800 uses
(sessions) per year. These uses come from about 260 different geographical locations, from
42 different countries including France (48), Germany (33), USA (21), UK (17). More than
100 users gave us their name and application when using the Tapenade web server, and
74 have registered in the “tapenade-users” mailing list.

Competitors to tapenade are Open-AD, developed mainly at Argonne Nat. Lab.,
USA, and taf, developed by FastOpt company in Hamburg, Germany. The three tools are
roughly at a similar technical level. There exist many other AD tools that either target
a smaller application field or have more restricted functionalities. To our knowledge,
there has been no published benchmark. However several users told us they ordered an
independent comparative study of the various tools before purchasing a Tapenade license.

During the evaluation period, the team has implemented the following main improve-
ments to tapenade:

• We completed the extension to Fortran95.

• We implemented the extension to C, now in the distributed version.

• We implemented and tested pointer analysis.

• The reverse mode now accepts most uses of pointers and allocation.

• We implemented user directives NOCHECKPOINT and II-LOOP.

3.2 Teaching

L. Hascoët gave lectures on AD in courses organized by ERCOFTAC in 2005 and 2007,
and organized a one-day lecture and tutorial during EDF-CEA summer schools in
Paris in 2005 and 2006.

L. Hascoët and M. Martinelli organized a one-day tutorial after the NODESIM-CFD
conference in Sophia-Antipolis in 2007.

A. Dervieux gave a lecture ”Metric-based mesh adaptation” at “Most efficiency in FEM”,
CIRM session in Marseilles in 2007.

A. Belme, PhD student in TROPICS, gives lectures to 3rd year students of the engineering
school of Université de Nice, on Numerical Algorithms. 2 hours a week for 12 weeks
in 2009.

21



3.3 Visibility

A. Dervieux received a prize from the French Academy of Science in 2005.

M. Araya-Polo received a “best student paper” award at the WSEAS conference in Can-
cun, Mexico in 2005.

L.Hascoët was on the jury for the PhD defense of Claire Lauvernet, on data assimilation
from satellite observations, 2005.

A.Dervieux and J.A. Desideri organized the Indian-French Symposium on Modelisation
in Aeronautics and Space, in Sophia-Antipolis, 2006.

A.Dervieux and J.Sokolowsky organized a minisymposium on Optimum Design at the
CANUM conference in Nice, 2006.

L.Hascoët co-organizes the twice-a-year European AD workshop. Editions were held in
Nice in 2005 and Sophia-Antipolis in 2007.

A.Dervieux and J.A. Desideri organized the 42th AAAF Symposium on Multidisciplinary
Coupling and Optimization, in Sophia-Antipolis, 2007.

L.Hascoët was on the jury for the HDR defense of Renaud Marlet, on specialization of
programs through Partial Evaluation, 2007.

A.Dervieux and F. Beux were editors of a special issue [13] “Shape Design in Aerody-
namics, Parameterization and sensitivity” of the European Journal of Computational
Mechanics, 2008.

A.Dervieux was on the jury for the PhD defenses of Rémi Bourguet, Raphaël Kuate, and
Adrien Loseille, in 2008.

A.Dervieux continues long-term scientific collaboration with Prof Charbel Farhat at Stan-
ford University.

Bruno Koobus, external collaborator of TROPICS, defended his HDR in 2008.

4 External Funding

(k euros) 2005 2006 2007 2008
European projects
e.g. IST HISAC 24 24 24 24
e.g. IST NODESIM-CFD 54 54 54
Total 24 78 78 78

National initiatives

NEMO: TROPICS participates (for a very small funding) in the CNRS API project “Les
Enveloppes Fluides et l’Environnement” (LEFE), started in 2007. LEFE gathers
several research groups in Earth Sciences, one part of them working on 4D-Var
variational data assimilation. We collaborate with IFREMER Brest, INRA Avignon,
IMAG Grenoble and the LOCEAN team in Paris VI University.
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EVAFLO: TROPICS participates (for a very small funding) in the ANR project “Eval-
uation et Validation Automatique pour le calcul FLOttant” (EVAFLO), started in
2007. EVAFLO looks for innovative methods for reliable and certified computation
on floating points numbers. AD can be useful to compute intervals and interval ap-
proximations of derivatives. Partners are ENS Lyon (main contractor), CEA Saclay,
and University of Perpignan.

European projects

HISAC : The main objective of the HISAC -”HighSpeed AirCraft”- IP-project is to
establish the technical feasibility of an environmentally compliant supersonic small
size transport aircraft (S4TA), through a MultiDisciplinary Optimization (MDO)
approach and focused technological improvements. INRIA teams Tropics et Gamma
are contributing and have been coordinating (with the help of Dassault) the following
tasks: (WP2.3.1) Sonic Boom assessment, and (WP2.3.2) Sonic Boom minimization
methods. There are 37 partners, including: DASSAULT AVIATION (FR), ALENIA
AERONAUTICA (IT), EADS DEUTSCHLAND (GE), ROLLS ROYCE (UK). . .

NODESIM-CFD : “Non-deterministic simulation FOR CFD-based design” is a STREP
devoted to handle uncertainties in CFD simulation process by applying non-deterministic
methodologies. Output is described by a random variable, instead of a single value.
Tools for the evaluation and quantification of uncertainties in aerodynamic and ther-
mal performance predictions are developed, for enhancing design confidence, reduc-
ing risk, improving safety. NODESIM-CFD involves INRIA teams TROPICS and
OPALE. There are 17 partners, including: NUMECA (BE), AIRBUS-UK (UK),
ALENIA (IT), BAE Systems (UK), DASSAULT AVIATION (FR), DLR (GE), ON-
ERA (FR). . .

5 Objectives for the next four years

We propose four objectives for the next period, all about Automatic Differentiation. The
first two concern the reverse AD model, the third concerns Numerical methodology, and the
fourth concerns further development of tapenade. Inevitably, these objectives overlap.

• Data-Flow analysis to improve reverse AD: This general category of objectives
was already present during the last period. We have already proposed a model to
combine inversion, recomputation and storage to retrieve control values [16]. We
will extend it to general real values. The open problem here is to make the extreme
Recompute-All and Store-All strategies get closer or meet. We must also formalize
the empirical observation that any checkpointed piece of code must be reentrant, i.e.
its initial state can be fully stored and restored. This is not always easy to achieve
in the case of dynamic allocation or file I-O. Finally, it is high time we do a serious
benchmarking comparison of all the methods proposed to improve reverse AD. We
can do it because nearly all these methods are now implemented in tapenade and
we have a large enough collection of real applications. We must do it because the
merits of each method have often be measured only vaguely in the past.

• Reverse AD of MPI or OpenMP parallel programs: This objective was
present at the start of the project, and was delayed until reverse AD of sequential
programs is mature enough. This objective is now fully awake [35, 37] because
application of reverse AD e.g. to OPA and to the MIT GCM requires it. The open
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problem here is to differentiate communication primitives at an elementary level,
rather than seeing them as ad-hoc black-boxes. We want to develop a new proof of
correctness of our reverse AD of MPI communications primitives, based on the Data-
Dependence graph. We also want to implement this model and demonstrate it on
real Global Circulation simulators, in collaboration with Earth Sciences researchers.
In a similar approach, we want to propose a reverse AD model for OpenMP parallel
loops, demonstrate its correctness and validate it on applications. We will work on
this objective in collaboration with the teams in Argonne and Aachen, and TROPICS
is currently looking for a PhD student to take care of the Numerical aspects.

• Application to large unsteady applications involving turbulence: This ob-
jective is the natural continuation of the previous periods. Now that we have pro-
posed strategies for steady-state simulations, we will explore the harder case of un-
steady simulations. We also want to handle the further degree of complexity that
comes when taking into account turbulence. At the same time, we will build on
previous work on control of approximation errors (mesh adaptation), and we plan
to use gradients now for correction of approximation errors. We will investigate
the two types of correctors, direct linearization and Defect Correction on one hand,
adjoint-based functional correction on the other hand. Here also, we intend to apply
these methods to large unsteady flow simulations. This work is clearly connected to
the previous objective, as such large simulations are necessarily parallel. This am-
bitious objective is the PhD research subject of the new team member Anca Belme.
One risk is that, despite our efforts, regular reverse AD of so large codes remains
inefficient. If this happens, we will have to explore the variety of approximations
and simplifications that hand writers of these adjoints indulge themselves to, and
see which of them can be formalized and implemented in the AD tool.

• Further development of tapenade: We must make tapenade for C just as ro-
bust as for Fortran. This implies a better interface for black-box external procedures
and an improved management of standard include libraries. We must also experi-
ment with programs that mix Fortran and C. For the reverse mode, we will add the
capacity to checkpoint an arbitrary piece of code designated by the end-user. A more
exotic objective is to make tapenade a front-end for Adol-C. Adol-C requires the
end-user to designate active variables by hand, by modifying their type. tapenade
can detect active variables and therefore will generate a new source program with
the types modified. If time permits at the end of the next period, we might develop
a first attempt at differentiating Object-Oriented languages.
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[17] L. Hascoët, M. Vázquez, B. Koobus, A. Dervieux, “A Framework for Adjoint-based Shape
Design and Error Control”, CFD Journal 16, 4, 2008, p. 454–464.
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