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ABSTRACT. The numerical prediction of interaction phenomena between a compressible flow
model with a moving domain and other physical models requires that the work performed on the
fluid is properly translated into total fluid energy variation. We present a numerical model rely-
ing on an Arbitrary Lagrangian-Eulerian (ALE) unstructured vertex-centered finite volume that
satisfies this condition together with the Geometric Conservation Law. We apply this numerical
scheme to the solution of a 3D fluid-structure interaction problem. The results are contrasted
with those obtained by the energy non-conservative counterpart.

RESUME. La prédiction numérique de 'interaction entre un fluide dans un domaine mobile et un
autre modele nécessite que le travail appliqué a sa frontiere soit traduit en une variation appro-
priée de son énergie interne. On présente un modele numérique reposant sur une formulation
Arbitraire Lagrange Euler (ALE) en volumes finis non-structurés et centrés sommet satisfaisant
cette propriété ainsi que la Loi de Conservation Géométrique. Le schéma est appliqué a un pro-
bleme d’interaction fluide-structure 3D. Les résultats sont mis en contraste avec ceux obtenus
par un schéma analogue non-conservatif pour I’énergie totale.
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1. Introduction

The motivation of this study is the improvement of fluid numerical models in mov-
ing domain with the purpose of application to complex interaction problems such as
fluid-structure unsteady interaction. Let us explain in detail the problems that arise in
this kind of compound dynamical systems by concentrating on a decisive issue: the
numerical prediction of the unsteady interaction between a compressible flow and a
structure requires that the global numerical scheme satisfies some conservation prop-
erties.

To start with, fixed mesh calculations compulsorily require conservation formula-
tions (mass, momentum, energy) for the fluid model. Two main motivations for this
choice follows. Firstly, physical soundness of many computations requires that im-
portant extensive quantities are conserved during time evolution. Secondly, a certain
class of conservative schemes allows the application of the Lax-Wendroff convergence
theorem towards weak solution. The effect of this convergence appears not only in the
capture of shocks but also in very irregular meshes. In the case of moving meshes, the
Arbitrary Lagrangian Eulerian (ALE) formulation of Hirt, Amsden and Cook (Hirt et
al., 1974) gave an answer to the first above conservation issue.

A second notion of conservation arose rather early for moving mesh methods. The
Geometric Conservation Law (GCL), introduced in (Thomas et al., 1979), and its dis-
crete versions (DGCL) ensure that a uniform flow is not perturbed by approximation
errors during the mesh motion. Many important arguments can be invoked for the
design of schemes respecting this condition.

— It was first shown, for example in (Lesoinne et al., 1996)(Koobus et al., 1999), that
its practical impact on accuracy and stability is of paramount importance.

— Since degree zero polynomial solutions are exactly obtained, the GCL can be under-
stood as a consistency condition (of Bramble-Hilbert type). A mathematical analysis
has demonstrated the role of the GCL for time-space accuracy order for ALE schemes
(Guillard et al., 2000).

— Also the GCL guarantees that the uniform solution will not show spurious under-
shoot or overshoot, that is, erroneous extrema. In (Farhat er al., 2001; Cournede et
al., 2006), it is proved that the discrete GCL is a sufficient condition in order that
some schemes satisfy the maximum principle for passive species. The DGCL is then
a nonlinear stability condition.

A third important conservation aspect in the discretization of fluid-structure inter-
action is the energy conservation. A theoretical review for different models is, for
instance, that of (Grandmont ez al., 2000). From a numerical point of view, the global
energy conservation issue can be crucial, particularly in problems where the energy
transfered to the structure is produced by thermodynamic effects. Two main sources
of spurious loss of energy can be identified and distinguished:

a. The time advancing method. Basically, the time integration can be done in
three different ways. Explicitly (1), implicitly and loosely coupled (2) or implicitly
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and strongly coupled (3), which is also called monolithic approach (see for example
(Leyland et al., 2000)). Case (1) has often proven to be too expensive in terms of CPU
time. On the implicit side, up to our knowledge, only a small subset of monolithic
schemes (3) allows a strictly energy conservation integration. The drawback is again
their very high computational cost. For that reason, loosely coupled implicit schemes
(2) are the most widespread choice. Among them, recently proposed staggered al-
gorithms satisfy the energy conservation through the interface not exactly but up to
second order in time (or third order: see the paper (Piperno et al., 2000)). Energy
conservative schemes are also addressed in (Mani, 2003) and (Le Tallec et al., 2005).

b. The space integration.The spatial-oriented study of the energy budget for mov-
ing boundary problems, with coupling or not, and solved by means of ALE schemes
can be carried out following two lines.

The first line concerns the work relationship between coupled fluid and structure:
is the work performed on the fluid by the moving interface the same done by the solid
through this interface? Since, in general, the structural model does not involve an
energy equation, this kind of study concerns kinetic energy in the coupling of moment
and displacement equations.

This line is considered in papers like (Farhat et al., 1998) or (Piperno et al., 2000).
Both systems (fluid, structure) are treated by their own equations, and a third one
is included which governs the spatial fluid grid movement. All three are coupled
through the moving interface. In (Farhat er al., 1998), the space discretization issue
is analyzed, focusing on the load forces distribution at the interface, as seen either
by the fluid or the solid. In (Piperno et al., 2000), several ideas for the implicit time
integration scheme are proposed, based on a staggered formulation.

The second line concerns the work-energy relationship within the fluid, regardless
the structure: is the work performed on the fluid by the moving interface properly
translated in a variation of the total energy of the fluid? And this concerns essentially
compressible fluids.

The total energy conservation issue is important in many engineering applications
related to energy, for example in thermal engines or power plant turbines. It is con-
sidered in a series of papers (Fanion et al., 2000; Le Tallec et al., 2000; Fernandez
et al., 2002), in which it is used as a stability criterion for building a transpiration
condition.

The present paper also focuses on that second line with a special examination of
boundary conditions for ALE. The action of the moving boundary on the fluid system
produces a variation in its energy status. It is clear for the continuum problem, but the
discrete form remains full of questions. The core of this problem remains in the flow
equations discretization alone. How can an ALE scheme cope with this equivalence?
How can the work performed on the system be properly defined? How does the fluid
energy, defined as an extensive system property and related to the work, change? Are
there fully energy preserving schemes that also satisfy the other conservation relations
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(mass, momentum) and the Geometric Conservation Law? Once the questions are
solved, their conclusions can be easily adapted to the coupled schemes.

The paper is organized as follows. First, the continuum problem is set: the Euler
equations for compressible inviscid flow are written down and the energy budget is
presented. This is done in a fixed Eulerian reference system but a moving domain
Q(t) is considered. Then, the flow equations are discretized in space with unstruc-
tured finite volume, following an ALE approach which deals with the moving bound-
ary difficulty, and satisfies also the GCL. That section follows (Nkonga et al., 1994),
keeping and extending the notations of this reference. The variables approximation
and integral quardrature on the surface is geometrically complex and will be carefully
described. Next, the analysis on the energy conservation issue is conducted, resulting
in a new ALE scheme. Then, we apply this scheme to a piston model flow and to a
flutter analysis of the AGARD Wing 445.6 in order to contrast the results with those
obtained by a counterpart of this scheme which does not satisfy the total fluid energy
conservation. Finally, we conclude this paper in Section 6.

Notations and conventions

The following notations and conventions are here adopted:
NCI: Variables notation:

— Scalars: p, p, E, etc.
— Vectors: u, U, x, etc.

— Tensors: T, o, etc. Space indicial notation for vectors and tensors is here
scarcely preferred, only for neatness criteria.

— Extensive variables: &, V, etc., in upper case script style.

— Variables defined at nodes: p;, u;, etc. Subindices always refer to nodal number,
unless otherwise stated.

— Variables defined at cell boundaries: «;;, v;;, etc., labelled with two subindices.

— Variables defined at the domain boundaries: u, p, ,é\ etc., labelled or not.

ij
Einstein’s summation on repeated indices (index contraction) is never assumed unless
otherwise stated.

NC2: Considering integrals, the following notation is adopted, unless otherwise
stated. For any field f,

/Af:=/AfdA,

where A can be volume, surface or time interval, and dA labels the corresponding
differential.
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2. The physical problem: the Euler equations for compressible flow

The physical problem under study is the inviscid compressible flow. Its physics
is modelled by the Euler equations, basically the Navier - Stokes set without viscous
terms. For compressible flows, this set of equations comprises transport equations for
the mass, the momentum and the energy (see for instance (Landau et al., 1987)). Due
to compressibility pressure p, density p and temperature 7' changes are related through
a state equation, which couples the energy budget with the mass and force balances.

Suppose a fluid is contained in a given spatial domain  C R", where n is the
space dimension. All the variables that describe its behaviour are then functions of
position x and time ¢, being ¢ € [0,00). In conservative form, the unknowns of the
Euler equations are respectively the density p, the momentum U = pu, and the total
energy per unit volume ¥ = pe. The velocity vector is noted as u and e = €° + %uQ
is the total energy per unit mass, being e° the fluid’s internal energy and u? = wu - u.
Hence, the conservation form is

ap 0 B

o 0w =0

ou; 0

o o, U Phu) =0

OE 0

ot o (ui(E +p)) =0, (1]

where the subindices note space components, i.e. 4,7 = 1,...,n and repeated indices
contract. As viscous forces are absent, the stress tensor is 0;; = — pd;;. To close
the equations, a state law is needed: the ideal gas state law p = pRT for instance.
Under this hypothesis, the internal energy is e° = C,7. R is the universal gas con-
stant and C, and C,, are the specific heat at constant volume and at constant pressure
respectively.

In addition to [T}, a set of properly defined boundary (discussed later) and initial
conditions are needed to tackle the solution of the problem. Initial conditions are of
the kind

u(z,0) := u’(x), forall x € Q2
p(x,0) := p°(x), forall x € Q
T(x,0) :=T°(x), forallz € Q [2]

and the rest of the initial variables can be derived from them.
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Figure 1. Sketch of the generic problem

2.1. Moving domains

The core of the fluid-structure interaction problems is the boundary condition that
couples both systems. By its motion, the solid performs work against the internal
forces of the fluid, producing a change in its energetic status. To focus on this is-
sue, a generic problem is considered, sketched in Figure |1l Suppose that 2 = Q(¢),
whose boundary is divided in three disjoint subsets: a fixed wall I'i, and a moving
wall Ty (t), and an input / output T, boundary (additionally, let all boundaries be
adiabatic ones):

ON(t) = Taw UTo UT (1), 3]

Under these assumptions, the boundary conditions should be compatible with both
the wall (moving or not) impermeability and adiabaticity, strongly imposed as Dirich-
let’s (on some velocity components) or weakly imposed as Neumann’s (on the traction
or the heat flow). Hereafter, s denotes the velocity distribution for all the points be-
longing to the moving wall measured in a fixed Eulerian frame. For the sake of clarity,
in the rest of the analysis, fixed boundaries like I'y, and I';, are represented by I" and
moving walls like T'yy (2) by T'(2).

The conservation form of the flow equations is derived from a simple fact: some
important properties are conserved as fluid gets in and out of a given volume. To
evaluate this balance, all of the differential equations [[T]] can be integrated in space as
follows. Let us write them generically as:

v
E‘FV-F(Q})—O,
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where v and F’ represents the transported quantity and its flux respectively. Integrated
in space, (recall NC2 notation) we get:

ov
ov F.n— 4
/Q ot - a0 . 4

after using the divergence Gauss’ theorem. The vector m is the unit exterior normal
to the boundary 0f). In this way, extensive flow quantities can be studied. When a
locally defined variable like v is integrated over the volume €2 under study, we obtain
an extensive quantity V:

V=1 v
Q

The evolution of the extensive quantities is modeled by equations like []l. If in [[4]], the
integration domain is changing with time, i.e. 2 = Q(t), the partial time derivative
can be taken out of the integral by means of the so called Reynolds’ formula:

ﬂ_i/v_ @+/ ve-n (5]
dt dt \ Jow ai) 0t Jaa -

By using [3]] in [4]l, we obtain

d
l-i— F~n—/ vs-n=0, (6]
dt 29(t) 29(t)

which is the basis of any ALE formulation, a well-suited idea for solving flow prob-
lems with moving boundaries. Equation [[] is the key to understand the conservation
principles under study in this paper: any ALE scheme should satisfy the energy con-
servation and the so-called geometric conservation law. Both are introduced in the
next two sections.

2.2. The continuous energy budget

We recall now in what sense total energy is conserved for an Euler flow set in a
moving domain. We start from [3]], which we restrict to the total energy equation, as
written in the set [[T]], and which we integrate over the whole domain. This will give
the amount of energy introduced to (or extracted from) the fluid system by the solid
via the mechanical action of the moving boundary. So let v in [5] be replaced by
v=FE=pe’+ p%, the total energy. Then, its extensive counterpart is

e- [ .
Q
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which in turn satisfies the Reynolds’ formula [5]

/ 9 (peo +puz> _ e / (pe" +puz> sn [7]
) Ot 2 dt 29(1) 2 '

Therefore, the energy transport equation can be written as

d€ / ( o u2> w-n / w-n
- = — pe pi . — p .
dt 0(t) 2 o0(t)

u2
+ / (peo + p> s-n. [8]
29(t) 2

Since the impermeability condition
u‘ ‘mn = s-n
Fyaw

u n = 0 [9]

Trw

is assumed both on the moving and fixed walls, the normal flow velocity u - n is there
equal to the normal solid wall velocity s-n. This additional condition is used to cancel
some terms in []] on the moving boundary, which now becomes

d& 2
— = —/ (peo+pu>u-n—/ pu~n—/ ps-n [10]
dt Tio 2 Tio Tvw

The energy variation in time consists of three boundary terms, shown in Equation
[T0)l. The first one is the total energy per time unit convected in or out of the domain
through the inflow and outflow. The second one is the work per time unit performed
by the fluid against this in/outcoming energy. The third one represents the mechanical
action of the solid on the fluid. It is the work per time unit performed on the fluid by
the moving wall. Note that all three integrand are co-linear with the normal velocity
and are present regardless either viscosity or compressibility.

Equation [[I0] has been calculated from the space integration of the total energy
transport equation for the fluid. In turn, it can be integrated in time to get the energy
variation AE

o [l24€
_ [dE 11
. /t o [11]

1

AE

between times ¢; and ¢, (being t1 < t5). It should satisfy

ta

to ta

+W

t1

[12]

t1

tl t1
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where AQ\ij holds for the thermical contribution to the gas from outside, and W|,§f
for work performed by the external forces on the fluid system between ¢; and t5. We
assume that AQ = 0. As highlighted in the introduction, Equality [T2] is the key of
the present work: trivial in the continuum, it should be analyzed when time and space
discretizations are envisaged to solve the problem. W|§’f can be split as follows:

tz t2
w = (WIO + WMW) . [13]

t1 ty
This includes the three contributions of Equation [I0]. Those coming from the in-
put/output domain boundary, grouped in W,,, also appear when all boundaries are
fixed and therefore W, presents no particular difficulties in an ALE context. The

differential fact is now the work performed by the moving wall on the fluid, noted as
Wirw-

Figure 2. Work performed by the moving wall

While the right end side of [[TT]] is calculated as a domain integral of the energy
transport equation, the right hand side of [I2]] can be evaluated from outside (with
respect to the fluid), considering the motion of I'(¢), the work spent in this motion
and the energy-work interchanges in inputs and outputs. From now on, we will focus
only on what happens with the moving part of the boundary, leaving aside W,,. Let
suppose a small time increment ¢ for which the moving wall goes from I'(¢) to T'(¢ +
0t). Let f; be the force per unit surface, dw its performed work and d; the distance
between 6I'(¢) and 6T'(¢ 4 §t) which are very small portions of I'(t) and T'(¢ 4 t)
respectively (Figure2). On these grounds, it can be defined

f = on

d = st
where o is the stress tensor defined above. Then,

ow=d-f=d-(0-n)=(ts) (o -n) [14]
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which yields
W =6I'fts-o-n. [15]

Integrated in time (between ¢1 and ¢5) and surface (over the whole 9€)(¢), which cor-
responds to I'(¢)), it gives

to t2
:/ / s-o-ndl dt. [16]
t1 t1 JoQ(t)

In few words: regardless the in/outlets contribution, the left hand side of [@]
(LHS[12]}, from now on) is Equation integrated in the given time interval, that
is to say [[IT]], and the right hand side (RHS[[I2])) is Equation [[I€]. The LHS[IZ] is
calculated in an Eulerian formulation for a moving domain, starting from total energy
general conservation principles for fluid dynamics. It describes what happens “on the
fluid side”. The RHS[IZ] is calculated as the work introduced in the system via the
moving boundaries, it is “on the solid side” (recall we have left aside W,).

w

3. Discrete standpoint

The DGCL for a finite volume formulation on tetrahedral, non-structured grids,
extended to an ALE formulation has been proposed in (Nkonga et al., 1994). We
recall in Sec. 3.1, 3.2, 3.3 the main ingredients of this work in order to show that
this DGCL formulation is sufficient for total energy conservation, except at boundary
level. Sec. 3.5 examines the energy conservation issue for boundary fluxes.

3.1. Spatial discretization of the Euler equations

Equations [[T]] can be written in a compact form. For each component,

ov
o TV F) =0, [17]

taking

v = (p7 pul , pu2, PpuUs3, pe)T7
Fyo(v) = (Up, upUs + pog1, urUs + poga, uxUs + pds, ug(pe + )" [18]
for a tridimensional problem, the subindex k running through the three space coordi-
nates.

The weak form of is discretized using a nodal centered finite volume method.

The computational domain is discretised into Q¥, a conformal finite-element mesh
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Figure 3. FV support or control cell C* corresponding to node i (2D case)

made of triangles (2D) or tetrahedra (3D). A dual finite-volume partition of Q¥ is
obtained by building around each vertex i a dual cell C* limited by medians (2D, see
Figure[3) and median plans in 3D. The finite-volume basis function space is then made
of characteristic functions of these cells:

1 ifxeC?,
0 otherwise.

¢ =x'(x) ={

In this way, the control cells cover completely QV:
a=Jc. [19]
i=1

Then, the weak form of [[17]] is integrated in the partitioned 20 and using x* fol-
lowing these ideas. For each node, we have

ov

— +/ n;F(v)=0. [20]

Many options are then possible for the integration at cell boundary. We refer for
example to (Cournede et al., 2006).

3.2. Discretization of moving domains: ALE method
Let us consider a smooth bijective mapping 7(¢) depending on time and equal to

identity at time ¢ = 0. Defining this mapping is equivalent to defining a velocity field
3 and moving each point of the space with this velocity. Let for any time €2, (¢) the
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triangulation (tetrahedrisation in 3D) obtained by applying the mapping 7 (¢) to any
vertex of QV. It is enough to known the trajectories of each vertex, starting from a
vertex of 0. This is also equivalent to know for any time ¢ the velocity 3(i,t) at
vertex ¢ of Q!. In order to ensure than any segment or plan of the initial mesh will stay
at ant time resp. a serment or a plan, we consider the linear interpolation of vertex
values 3(i, ) to any element of mesh Q. For this discrete deformation velocity, we
keep the notation 3(¢). In Q! we build the dual cells:

-Ucw

The flux balance writes now:

dv +/ F(v)m—/ vB-m;=0, [21]
dt aCi (#) aC (1)

where

vt d /
dt — dt Cl(t)v '

For each interior cell C(t), with its corresponding set V(i) of neighboring cells,

oCH (t U dC (¢ [22]
JEV (3)

where OC* (t) represents the interface shared by cells C*(¢) and C7(t). Then,
can be written as:

dvl+z/

JEV (i oCH(t

n — Z /am vB-ny;=0. [23]

JEV (i

In order to evaluate this integral, following (Farhat ef al., 2001), let us define

1
i (t ii(t) d 24
VJ() |aC’L]( )l 80”()”’]() 8 [ ]
and
1
Kkij(t) = B(t) - nj(t) ds . [25]

[0C3; (D] Joc,, )

v;;(t) is the mean normal corresponding to 9C;; (t) and k;; (t), the mean normal mesh
velocity projection for the same cell interface (the full meaning of this “mean” will be



Energy conservation in ALE schemes 349

grasped below, when it becomes also a temporal one). Then we get an integral ALE
semi-discretization of the conservation law:

A%
o T |0C;;(t)] @ (vi,vj,vi5(t), ki5(t)) = 0, [26]
JEV (i)

where @ is a numerical flux function, typically an approximate Riemann solver, with
mesh velocity normal component «;;(¢) and with mean value of unknown v over cell
1 denoted by v;. In particular it satisfies the following consistency condition:

O(v,v,v,k) = Fv) - v — ko.

3.3. Discrete Geometric Conservation Law

Consider now a time discretization of the above formula. Up to first order, v; can
be taken as constant within each cell. Then, if the volume of the partition’s cell C;(t)
is |C;(t)],

Vi(t) = |C;(t)] vi(t). [27]

The #-parameterized Euler time advancing yields

CP o™t = |CP o
— Atf Z \8C’U|<I> (U:L+1,U?+1,ﬁij,ﬁij)
JeV (i)
— At(l — 9) Z |86'U|‘I) (’UZL, ’l)?,ﬁij,ﬁij) [28]

JEV (i)

where the overlines mean that time averaged values are taken. According to the Ge-
ometric Conservation Law principle, a uniform solution is exactly preserved when
time-advanced by the numerical scheme. Assume the above system able to reproduce
a constant solution v™ = v™*t! = v*, it should satisfy:

G oy = [CP vy —
At@ Z \8C’U|CI) (’U:‘,’U;,U,;j,ﬁij) — At(l — 0) Z |6ézj|q) (’U:,U;,ﬁij,ﬁij) .
JEV(4) JEV(4)

Invoking the consistency condition for ® and the fact that the cells remain closed
during the motion, which writes:

> 10C;piy; = o,

JEV(4)
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we see that this gives the usual Discrete Geometric Conservation Law (DGCL):

P = |CP = At Y |0C; (R [29]

JEV (i)

As stated in papers like (Nkonga et al., 1994), (Farhat, 1995b) or (Dubuc et al.,
2000), the DGCL becomes a design condition to impose for the time averaged values
|0Ci;|, Vij, and %;;. Evaluated over 9C¥(t), they should be carefully computed.
In (Nkonga et al., 1994), both the cell’s normals and the grid’s velocity mean values
determine the geometrical parameters which enforce the GCL. In (Farhat, 1995b),
this is attained by means of a proper evaluation of the ALE fluxes using suited mesh
configurations and grids velocities, showing also an equivalence with the former paper
ideas. On the other hand, in (Dubuc et al., 2000), a scheme satisfying the GCL is
proposed by tuning how the cell volume is evaluated. We also refer to (Farhat et al.,
2001) for examples of averagings satisfying the DGCL for the above time advancing
scheme.

However, from an energy conservation point of view, this is not enough. While
certainly it is for interior cells, additional care should be taken for boundary ones in
order to keep the work performed on the fluid equal to the energy gain/loss of the fluid.
While the GCL condition provides a way to calculate the mean normal vector and the
mean normal mesh velocity 3 which does not introduce spurious effects due to the
mesh movement, it says nothing about the flow velocity w. In the interior nodes, both
can be completely independent. But at the moving boundaries, that move at speed B,
some questions arise about the relationship between them. This analysis is completed
in the next section.

3.4. An integration on a facet satisfying DGCL

As stated above in , the discretized space volume can be divided in control cells
C', each of them limited by a faceted frontier 9C*. For a 3D problem, the boundary of
an interior control cell is a polyhedron whose constitutive “facets” are triangles having
as vertices:

— the middle of an edge ij where j is a neighbor of ¢,

— the centroid D of T, one of the tetrahedra having ¢ and j as vertices,

— the centroid B of a face ijk of T.

Two examples Z;k , and E};j . are depicted in left part of Figure E} The facet
notation is the following: X%, . means “the facet corresponding to node ¢, relating it
with node j and with one of its sides lying on node k’s median”. By inspection it
can be seen that there are only two possibilities for indices (i, j, k) in this strict order.
Therefore, labels + or — distinguish between both facets.
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Figure 4. Tetrahedra and facets. Left, interior facets Z;F and Z; k- Right, boundary
facets Z;,% and E};jJr

Therefore, Equation [22]] can be pushed further:

aci=Joci=J | U Ehy+5i,0) ] (301

JEV(3) jev(E) \kev(d)

The DGCL can then be set for an arbitrary triangular facet. As said above, by enforc-
ing this law, the time averaged values of the cell faceted surface |0C;;|, its normals
U;;, and its speeds k;; can be properly evaluated. In (Nkonga et al., 1994), this anal-
ysis is carried out for an interior node. Here we conduct the analysis for a boundary
node still denoted by ¢. The boundary cell C; around ¢ is also limited by a polyhedron
0C; made of triangular facets. The novelty is that, beside the interior facets already
described, we have to consider the boundary facets.

A boundary facet is a triangle having as vertices:

— the mesh vertex 1,

— the middle of ij where j is a neighboring boundary vertex,

— the centroid of a boundary face ijk, k being a boundary vertex, which is a neigh-
bor of ¢ and of j.

Two examples of such boundary facets are depicted in the right part of Figure [
Let us consider any of these interior facets. It is a moving triangle changing its position
between time 7" and 7771, see Figure It is shown in (Nkonga et al., 1994) that, for

a given triangle ¥.,, the mean normal 7> and the mean normal velocity %>, defined

above in [24]] and [23] are

_ 1 )
7Y o= Sttt )

)

174
R = El\ﬁz’ [31]

I3
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Figure 5. Triangle (representing a facet) XY, with its normal

where g is the non-normalized exterior normal to the facet 32, and the auxiliar variable
p* and the facet velocity 3~ are defined as
1 1 1 1
. (@real) ARt —ept) (@t - alt) A(eh - af)

Boo= 1 * 1

By + By +Br
3 :

g =

For a given facet, the vertex velocities 3, x,p are linearly interpolated from those
at the corresponding tetrahedra nodes, because the related vertex M, IV, or P can be
a node of the mesh, a mid-point segment, a face center or a tetrahedron center, noted
respectively as A, C, B and D in Figure 4| For instance, for an interior facet like Zj- -
in Figure [ (left), the facet velocity is (see (Nkonga ez al., 1994))

1

3,INT _
s 2

13 )
(35048 + 55(B+80) 32

On the other hand, for a boundary facet like Eé x_» Figure {4 (right), we have:

1 /22

ﬁE,Bou _ 3 <36'6’ + %(ﬁ; +ﬁk)) . [33]

Since the integration is exact, these formulas allow for the DGCL.
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3.5. The energy budget for the discretized problem

Once the discretization method is set, the energy budget problem can be revisited,
starting by considering the application of [21]] to the flow energy equation. Let &; =

fCi(t) E. Taking v := pe® + p"; =pe=FEin , we obtain for an Euler problem

de; B
— + /Ba(t) n; - ((E +p)u— Eﬁ) —0. [34]

Let us consider the control cells C; which share part of their facet boundaries with the
moving wall boundary (a two-dimensional representation is given by Figure [6). For
such cells we have

AC;(t) N O () = Ci(t) # 0. [35]
It can be expected that in order to maintain the impermeability condition, the normal

boundary velocity at the intersection with the moving wall boundary should be equal
to the flow velocity.

Figure 6. Two-dimensional representation of a cell on the moving wall boundary

The previous boundary cells C; have both an “interior” part and a “moving wall”
part, 0C; = OC! + dC!,,, where

aC, =oc;t) n (| Suw
EMmw €S MW
BCé = 8Cz(t) \ 6011\-1\7\/'

where X, denote the set of the facets which belong to the moving part of 92, ().
It should be remarked that in this case, [22]] which expresses that the cell boundary is
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the union of interfaces with neighboring cells is not true because it is associated now
to a boundary node. Instead, [34]] can be written as

dE;
ﬁ + / ni~<E'w—|—pu)
dt oCi,

(E a)::o, [36]

w=u - B. [37]

This is the velocity difference between the mesh and the flow field at node 7. As said
before, in a general ALE formulation, mesh speed and flow velocities are not related,
except at the moving boundaries. By introducing a numerical flux function as [26]],
Equation becomes

d&;
s > 10CH )] Po(Wi, Wy, vi(t), ki)
JEV (i)
+ D [0Ci(6) N 8| B (W, @7, 57 (1), 75 (1)) [38]
PIRT=I))

where W is the flow solution vector and X is a triangular facet which belongs to the
moving wall boundary.

Equation [[38]] is the core of the problem. For the interior cells, the second summa-
tion vanishes and the first summation over the “internal” segments completes the cell
boundaries. But for the boundary cells, the second summation introduces a substancial
difference. How is evaluated w on a moving boundary facet? Once integrated in time
and summed up to consider the extensive energy £ of the whole domain, Equations
[B6]l and [38] will give the amount of energy gained or loss by the discretized system
(TT]l, that could be in turn compared with the work performed on it [T6]]. Let us take

[B6)l. Equation [TT]] states that

to to dg to ’I’LL Ne

o [l
to

£ / / E W+p u) [39]
t1 oC

%
MW

AE

where the summation runs over all cells ¢ of the mesh. The terms corresponding to the
energy interchange between interior cells cancel each other and the remaining terms
are those corresponding to the boundary contribution.
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On the other hand, the work performed on the fluid by the moving boundary is

to t2 o~
L e
1 t1 JoQ(t)

ty Me R
_ ,/ Z/. 58 .. [40]
t1 i oC?

MW

w

From Equations [@I] and [40]], as in the DGCL case, several questions on how are
approximated the boundary values and fluxes must be considered.

4. Global conservation
4.1. Theoretical statement

It has been shown that assuming that the DGCL is satisfied inside the mesh, the is-
sue of the total energy conservation is restricted to the discrete equations on boundary
cells, and particularly the contribution of boundary fluxes. In order to fix the ideas,
recall that:

— The solid moving boundary 9€2(¢) moves at speed s defined at any vertex.

— The flow moves at velocity u wherever, and particularly at velocity u defined at
any vertex of 9(t).

— The mesh moves at speed 3 wherever, and particularly at speed ,@ defined at any
vertex of 0€2(t).

— The difference between mesh speed and velocity flow is w, and particularly w
defined at any vertex of 9Q(t).

Having this in mind, together with both geometric and energy conservation as set
by GCL and Equations [39]] - [40],, it is observed that for any boundary cell, there
exists a great deal of approximations for computing the boundary flows. Nevertheless,
not all of them are properly conservative ones. On one hand, the DGCL has to be
accomplished. Equations [32]] and [33]] tell us how to compute the facet velocity once
we know the mesh velocities of each interior or boundary node i, noted 3; and B:
respectively. In the interior nodes, (3; can be arbitrarily assigned. We recall that
the in/output boundaries are not moving. However, for those lying at the moving
boundaries, B\Z cannot be arbitrarily set. The needs be used to compute the mean
values. Independently of the use of [33] in [BI]l, the second conservation principle
involved here must be satisfied. We summarize this as follows. Let us consider the
“moving wall” boundary dC?,,,, made of boundary facets (see Fi gure right). Then,
we can write the following lemma:
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Lemma: A GCL-compatible integration of the energy flux through the “moving
wall” boundary OC?,, i.e. an integration satisfying , is obtained when Equation
B9 is approximated as follows:

ta t2 ~
= - / / (Ez w; + Pi az) ‘M [41]
t1 t; JOCi

MW

&

where, for each boundary facet > which intersects with dC?,, the GCL based
time-space_integration of the mesh normal and normal velocities is computed using
and , and where facet mean values D; of the pressure and EZ of the total
energy are used.[]

Definition: A space-time integration scheme will be total energy conservative if the
energy loss (or gain) given by the discretized counterpart of Equation [39] is exactly
the work produced (or received), defined by the discretized counterpart of Equation

[#0), that is if:

ta

AE

to to Mc N
=Wt=—/ > pi Bi-my [42]
! ¢ =1

b 1 4= 8Cli/lw

where all the above quantities are time and space discretized ones.[]

In particular, for a GCL-compatible scheme, the previous integral over each facet
of OC%,,, is computed with a time-space integration based on and , and a
facet mean value p; of the pressure. From the above lemma and definition, we can
build a simple conservative scheme in the sense that it satisfies both the GCL and the
total energy conservation.

Proposition: Let consider a scheme defined by [28].129),[31).[B2).[33) which

satisfies the conditions of the above lemma, that is [@], where, for each moving facet
Yuw, the mean on that facet of the flow normal velocity u; - n; is replaced by the
mean on the facet of the mesh normal velocity B3, - n;. Then the scheme satisfies ,
i.e. is total energy conservative.
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Proof: The energy conservation stated by Lemma 2 is satisfied since:

to Ne ts R
= - g / / (Ez w; + i Uz) My
t1 i—1 Jt1 JOCE

MW

Ne to
=" § / / o biui -y
o Jt Jac

MW

Ne to -
=1 * t1 oC?
to

A€

MW

w

t1

The previous condition on the flow and mesh normal velocities can be achieved by
requiring that w; - n; = (u; — B;) - n; = 0 for each boundary node.(]

4.2. Impact on the numerical algorithm

Starting from an ALE conservative discretization of the Euler equations, a total
energy conservative method is obtained by:
— ensuring that the DGCL is satisfied on internal cells interfaces and on boundary

cell surfaces. In our case, this is defined by [28]I,[29]L.[31]|.[32]1.[33]I,
— using the particular boundary quadrature defined by || using 3, -n; for u; -n;.

We have assumed that time integration is explicit. Total energy conservation also
applies for a non-linear implicit advancing.

Remark: In the case where the fluid model is coupled with a structural one, a notable
consequence of the total energy conservation principle involved here is the following:
any transmission of the fluid pressure consistent with the above integration (use of the
hat integration values) will allow a perfect energy budget, that is, any Joule lost by
the fluid will be gained by the structure and vice versa. In practice, this situation is
not obtained with time advancing schemes weakly coupling the two materials. In that
latter case, energy conservation can be satisfied up to a higher order error (Piperno et
al., 2000). Exact energy conservation is attainable with the so-called strongly coupled
monolithic time advancing schemes.

5. Numerical experiments

The main output of the present work is a discrete model satisfying a strict total
energy conservation. In the volumic part of the discretisation this conservation is en-
sured by the Discrete Geometric Conservation Law, a property recommended in many
papers and satisfied by many softwares, in particular by the fluid-structure method-
ology developped by Farhat and co-workers (Farhat, 1995b). In (Farhat, 1995b), the
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aeroelastic coupled system is computed by a partitioned procedure for the solution of
fluid-structure interaction problems (Farhat et al., 2000). This partitioned procedure
is implicit and linearly unconditionally stable. For the boundary part of the discreti-
sation, the present paper proposes a new quadrature. We have introduced this new
quadrature in that software as a new option. The flow field can be solved using ei-
ther the “fluid energy conservative” quadrature (Scheme 1) described in the previous
section, or its “fluid energy non-conservative” counterpart (Scheme 2) in which the
boundary flux is computed with a second-order accurate quadrature. Note that both
options satisfy the DGCL property.

Impact on conservation: Let us consider a box [0,L]x[0,1]x[0,1] containing a mass
of gas, with slip condition on faces. Its length L is smoothly varied in time with a
sine oscillation. Then the integral E(t) of total energy should vary as the sum S(t)
of its initial value and of the work given to this system, i.e. the space-time integral of
pressure on the moving face, x = L(t). We have choosen a coarse cartesian mesh of
21 x 21 x 21 vertices. The finite volume approximation is upwind biased (third-order
accurate for linear systems and uniform meshes). The time advancing is a four-stage
explicit Runge-Kutta. With this time advancing, the novel scheme (Scheme 1) should
conserve exactly the energy. Scheme 2 should not. After computation, we check
that Scheme 1 is perfectly conservative (up to floating point round off errors). For
Scheme 2, we present in Figure [5] the two outputs which should be equal, together
with their difference. The maximum relative difference is about 2.5%. Scheme 2 is
rather close to be conservative, we think this is because it satisfies the volumic DGCL,
but produces still a non-negligible error.

Energy
Delta Energy

Figure 7. Cubic piston calculation for Scheme 2: left, comparison of total energy
evolution with the evolution of adding the initial total energy and the work yielded to
gas. Right, the difference of these two outputs as a function of time

Impact on stability: We propose now a computation showing that the exact fluid en-
ergy conservation property has also a small but certain influence on the actual stability
limit of a coupled fluid-structure simulation. This can be intuitively explained for an
isolated system by the fact that when total physical energy is conserved, it remains
bounded. We choose a flow studied many times in the litterature. In several publica-
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tions of the authors, this flow is used for measuring the progress (stability, accuracy, ef-
ficiency) of the numerical methods, see (Farhat, 1995a; Farhat et al., 2000; Piperno et
al.,2000; Cournede et al., 2006). We consider the flutter analysis of the AGARD Wing
445.6 which has been conducted experimentally for various flow conditions by Yates
(Yates, 1987). The test-case investigated in this section concerns the 2.5 weakened
model 3, and the freestream conditions are set to Mo, = 0.901, poo = 1.117 x 107
slugs/in® and poo = 10.0 slugs/(s?> x in). Yates indicates that the conditions of this
case are inside the flutter stability domain for the considered wing (i.e. no flutter). The
three-dimensional unstructured tetrahedral CFD mesh contains 22014 vertices. The
structure of the wing is discretized by a thin plate finite element model which contains
800 triangular composite shell elements (Farhat ez al., 2000). It yields natural mode
shapes and frequencies that are similar to those derived experimentally (Yates, 1987).
Both fluid and structure are advanced in time with an implicit scheme. A weak fluid-
structure coupling is used as in (Farhat et al., 2000). In contrast to a monolithic strong
coupling scheme, the weak coupling does not conserve exactly the kinetic energy be-
tween fluid and structure, but only at a higher order of accuracy. The purpose of the
experiment is to examine the impact of the proposed spatial total energy conservation
method in these conditions.

Figure 8. AGARD-wing test case: view of fluid mesh and structure mesh

The finite element structural model is perturbated along its first bending mode, and
a steady state solution is computed around the deformed configuration of the wing.
Next this perturbation is used as initial condition, and the aeroelastic response of the
wing is computed by advancing in time the coupled system. In this flutter analysis,
the dimensional fluid-structure coupling time-step is set either to At = 7.5 x 107 s
or At =5 x 10~% s, which correspond respectively to CFL numbers of about 600 and
900. These time-steps correspond to sampling the period of the damped oscillations
which characterize the lift representative of the wing aeroelastic response in 90 and
140 time intervals, respectively.

In Figures [T0] and [TT] we depict the lift histories for the “fluid energy conserva-
tive” scheme and its energy non-conservative counterpart respectively. These figures
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Figure 9. AGARD-wing test case: instantaneous Mach number field

Fluid energy conservative scheme
200 T T T

Delta t = 0.00075 —
Delta t = 0.0005 ~———
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=)
T

.50 | 4

-100 q

-150 - T

200 L L L L L L L

Time

Figure 10. Lift histories predicted by the “fluid energy conservative” scheme for the
flutter analysis of the AGARD Wing 445.6

indicate that for a time step At = 5 x 10~% s, both schemes predict correctly the flow
and in particular that the wing does not flutter for the given freestream conditions. For
a time step of At = 7.5 x 10~* s, the answer produced by the “fluid energy conserva-
tive” scheme is very close to the previous ones. This shows in particular, that the time
convergence is good and the higher time step is just a 50% more efficient option. On
the contrary, the “fluid energy non-conservative” scheme predicts, after some time, an
instable behavior. Since for smaller time steps the answer is good, the instability is
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Fluid energy non-conservative scheme
200 T T T

Delta t = 0.00075 ——
Deltat =0.0005 -------

Lift

Time

Figure 11. Lift histories predicted by the “fluid energy non-conservative” scheme for
the flutter analysis of the AGARD Wing 445.6

probably of numerical origin. The “fluid energy conservative” scheme is also near its
practical stability limit (about At = 8. x 10~* s) but enjoys a supplement of stability
thanks to a small modification of the boundary energy flux.

6. Conclusion

Three important classes of conservation relations need be satisfied by numerical
models when applied to nonlinear/unsteady interactions between a compressible fluid
and a structure: the usual conservations (mass, moment, energy) in each medium, the
Geometric Conservation Law, in the fluid, and the conservation of total energy.

We have shown that for the fluid part, conservation of total energy can be satisfied
by some particular spatial discretisations. To get this conservation, the Discrete Geo-
metric Conservation Law is a paramount ingredient, but it needs to be extended to the
domain boundary. Further, a particular class of quadrature for the velocity needs to be
applied.

The new scheme permits an exact transmission of the fluid energy, from the total
fluid energy variable to the total structure energy, as in the physical differential model.

We have highlighted the importance of the fluid total energy conservation property
on a simple piston problem. Even for a very smooth flow, on a short time interval,
energy error is of several percents with the previous scheme while it is zero with the
new formulation.
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We have also highlighted the impact of the fluid total energy conservation property
on the stability of a weakly coupling implicit time advancing. This is illustrated by
computing a flutter analysis of the AGARD Wing 445.6. Increase in stability is about
50%.

Schemes enjoying these conservation properties should produce more reliable re-
sults for violent transient problems where energy transfers of high local (in space or
time) strength occur. They should be very useful to evaluate more accurately energy
budgets when several small energy losses are in competition (radiation,...). In fu-
ture works, we plan to continue various numerical experiments for measuring these
improvements and introduce the proposed numerical technology into more complex
models, in particular involving dissipative effects.
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