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Abstract

We study the application of a multi-level preconditioner to a prac-

tical optimal shape design problem. The preconditioner is based on

the Bramble-Pasciak-Xu series. We extend it to the unstructured

parametrization of 3D shapes by using the volume-agglomeration heuris-

tics. The choice of the smoothing parameter is analysed from func-

tional arguments. Application to the shape design for optimising aero-

dynamic and sonic boom performances of a wing is demonstrated.

Key words: multilevel, optimal shape design, partial differential equations,

Computational Fluid Dynamics, finite element, unstructured mesh.
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1 Introduction

During the last two decades, researchers have looked for efficient solvers

for CFD problems. Now that efficient CFD solvers are available, researchers

are focusing on solving Optimum Shape design problems for CFD. Many

of them use gradient-based methods, which have gained efficiency thanks

to the use of adjoint states. Adjoint states are easier to develop thanks to

the progress of Automated Differentiation tools, see for example [1]. Two

families of problems must be distinguished. In the first family, optimization

is applied to find a small fixed number of design parameters such as CAD

(Computer Aided Design) parameters. We are in this paper interested by

the second family refered as “CAD-free” ([2]), in which the optimization is

applied for finding a function, for example the implicit representation of an

airfoil. When gradient-based methods are used for finding a function, they

generally require preconditioners. Indeed, let us consider the application of

gradient iteration in a space of functions. The functional analysis tells us

that the continuous iterate un+1 = un − ρgn can be less regular than

un when the gradient gn involves k-th derivatives of un . In other words

the iteration operator can be unbounded, with a regularity loss equal to k.

The continuous iteration then diverges. In the discrete case, this situation
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translates into an amplification of high frequency error components, except

when very small, mesh dependent, step lengths ρ are used.

Experience shows that this problem is very frequent in CAD-free Optimal

Shape Design. In this paper, we start from an analysis of this, related to the

lack of smoothness of the Hadamard derivative of a function with respect

to the domain shape. In practice, many authors have observed that discrete

gradients produce oscillatory shapes. To cure this, Reuther and Jameson pro-

pose in [3] a method of correction smoothing that solves a Laplace-Beltrami

system set on the shape manifold. This approach is also used in [2]. In

[4], Arian and Ta’asan analyse the Fourier symbol of the Hadamard-type

functional Hessian. According to the degree of this Hessian, these authors

propose to use either a Laplace-Beltrami operator when the regularity loss is

2 or a Neumann-Dirichlet pseudo-differential operator when regularity loss

is 1. This latter method can be more expensive, since 3D systems are then

solved.

In this paper, we propose to push further the idea of Arian and Ta’asan

by using a family of preconditioners for which the regularity gain is a pa-

rameter that can be specified according to the problem to solve. For this, we

consider the Bramble-Pasciak-Xu (BPX) additive multilevel preconditioner
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(see [5, 6, 7]). A version applicable to an arbitrary unstructured fine level

can be built by applying the agglomeration principle of [8].

The agglomeration technique was first used for building multi-grid solution

methods for CFD problems (see also [9]) and was extended later to other

applications. A multilevel cycle of multiplicative type was proposed in [10]

for optimisation problems. An agglomeration-based additive preconditioner

for solving elliptic systems was proposed in [11]. One of our contributions

here is to investigate how this preconditioner can be adapted to the solution

of shape optimisation problems.

In a first experiment, we examine the introduction of this kind of precondi-

tioner in a popular class of quasi Newton optimisation algorithms, namely

the BFGS technique.

We end by applying the proposed preconditioner to a pre-industrial shape

optimisation loop introduced in [12] and addressing the aerodynamical and

sonic boom optimization of supersonic aircraft geometries.
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2 Hadamard formula and functional precon-

ditioning

2.1 The Dirichlet case

Large scale problems coming from Partial Differential Equations gener-

ally result in a poor conditioning that further degrades as the number of

degrees of freedom is increased. To explain and solve this problem, we can

either analyse directly the behavior of discrete eigenvalues when the number

of unknowns is increased or analyse the continuous -functional- problem and

the continuous version of the algorithm. We concentrate on the second way.

We are interested in minimizing a functional j(γ) with respect to a “shape

parameter” γ. If γ were an n-uple of real numbers, with n fixed and small, the

problem of conditioning would not arise as in the case we address, for which

γ is assumed to be a function to be discretized with a potentially unlimited

number of nodes. More precisely, an initial geometry Ω0 is equipped with a

vector field ~n0 normal to its boundary. A family of domains Ωγ , all included

in a background domain O of Rd is parameterized by a displacement γ ∈
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Cl+α(∂Ω0) of the boundary in direction ~n0:

Ωγ ⊂ O , ∀ γ

∂Ωγ = {~x + γ(~x)~n0 , ~x ∈ ∂Ω0} . (1)

The state equation is the Poisson problem:

−∆ z(γ) = f on Ωγ ; z(γ) = 0 on ∂Ωγ .

Let D be a subdomain of Ωγ (inside Ωγ for any γ admissible). The

functional j to minimize is defined by:

j(γ) =
1

2
||z(γ) − ztarget||

2
D .

We are interested in computing the derivative of the functional with respect

to the shape parameter. We have to do it by a chain rule involving the state

equation. A classical difficulty comes from the variable domain in the state

equation. Early solution to this variation calculus dates back to Hadamard.

We shall instead invoke some techniques initated by the interior variation of

Garabedian, see [13], and extended later on in [14],[15], [16], [17],[18].

We introduce first a family of diffeomorphisms (Tγ)γ, smooth with respect

to γ, and such that:

Tγ maps O on O,
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Tγ maps Ω0 on Ωγ ,

The problem can be stated in terms of a new state variable:

j(γ) =
1

2
||z̃(γ) ◦ T−1

γ − ztarget||
2
D

z̃(γ) = z(γ) ◦ Tγ .

The new state z̃(γ) is a solution of a well-posed Dirichlet problem with co-

efficients and source depending on γ through Tγ and T−1
γ but formulated in

the domain D which does not vary with the control γ. Then z̃(γ) depends

implicitly on γ and under regularity assumptions on f and ∂Ω0, we can prove

by applying the implicit function theorem that the mapping:

z̃ : γ 7→ z̃(γ)

is continuously differentiable from C l+α(∂Ω0) in Cl−1+α(Ω0).

It then interesting to introduce a linear extension operator from Ω0 to O:

P : Ck(Ω0) → Ck(O)

f 7→ Pf

Pf |Ω0
= f .

Let:

z̄(γ) = (P z̃(γ)) ◦ T−1
γ ,
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then, by chain rule and with a possible reduction of regularity l, we deduce

that

γ → z̄(γ) (2)

is continuously differentiable from C l+α(∂Ω0) in Cl−1+α(Ω0). Now, by con-

struction, z̄(γ) is an extension of z(γ):

z̄(γ)|Ωγ
= z(γ) . (3)

We can exhibit the derivative of z̄(γ) with respect to γ on Ωγ , in which it is

the solution of the non-homogeneous Dirichlet problem:

−∆
∂z̄

∂γ
(γ).δγ = 0 in Ωγ

∂z̄

∂γ
(γ).δγ =

∂z̄(γ)

∂nγ
(nγ , n0)δγ (4)

where ~nγ is the normal to ∂Ωγ . One interesting way to state the above result

is to compute the total derivative of the following state variational residual,

which is possible due to the derivability of an extension of z(γ):

Ψ(γ, z; φ1, φ2) = −

∫

Ωγ

(∆ z − f) φ1 dv +

∫

∂Ωγ

z φ2 dσ ,

Ψ(γ, z̄(γ); φ1, φ2) = 0 ∀φ1, ∀φ2 .

Indeed the derivative with respect to z̄ produces the left-hand side of (4), and

after injection of the state equation, the derivative with respect to γ reduces
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to:
∫

∂Ωγ

∂z̄(γ)

∂nγ
(nγ , n0)δγ φ2 dσ .�

By chain rule, j is also differentiable and its gradient is expressed as follows:

j ′(γ).δγ =

∫

∂Ωγ

∂z(γ)

∂nγ

∂p(γ)

∂nγ

< ~nγ , ~n0 > δγ d∂Ωγ

where p(γ) the following adjoint state:

−∆ p(γ) = ztarget − z(γ) ; p(γ) = 0 on ∂Ωγ .

Taking the L2 space as pivot space for a continuous gradient method would

produce the following iteration (ρ is a positive step length):

γ∗ = γ − ρ gL2 where gL2 =
∂z(γ)

∂nγ

∂p(γ)

∂nγ
< ~nγ, ~n0 > .

The mapping transforming γ into to γ∗ and set on the d − 1-dimensional

manifold ∂Ω0 contains pseudo-differential ingredients, namely the solutions

of Partial Differential Equations set on domain Ω0. In order to evaluate

its degree, we observe that, starting from a previous iterate γ belonging to

Cl+α(∂Ω0), we get a corrected γ∗ that is only of regularity C l−1+α(∂Ω0). Since

one degree of regularity is lost at each iteration, iteration cannot continue

after a few steps. To cure this, we need to precondition the iteration by

writing:

γ∗ = γ − ρ B gL2 .
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where the self-adjoint invertible operator B has to be chosen in order to

recover the degree of regularity lost by the L2 gradient. The functional

interpretation of preconditioning was early pointed in the Least Square for-

mulation of [19]. The preconditioned continuous algorithm will converge at

a rate that evidently does not depend on a mesh size. Then we can try to

build some consistent discretization that will hopefully converge with a rate

not so different from the continuous rate. This means that essentially mesh-

independent rates might be obtained. Another way to understand that point

is to remember that in the linear periodic case, Fourier’s analysis shows that

operators involving p-th order spatial derivatives will have eigenvalues of the

order of
(

1
∆x

)p
. The smaller this degree, the better the condition number.

The strategy which we propose is to build the operator B in such a way that

the resulting order of spatial differentiation after preconditioning

be equal to zero.

Remark 1: One possible option is to consider the Sobolev space H1(∂Ω0)

as pivot space for the continuous gradient iteration. This means that the

descent direction to use can be computed on the boundary by solving the
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following system set:

G = BLBgL2 where − ∆LB G + G = gL2 on ∂Ω0

in which ∆LB is the Laplace-Beltrami operator. The resulting precondi-

tioned iteration is the one proposed in [3][2]. Since the Laplace-Beltrami

operator is of degree 2, the gain in regularity with this preconditioner is +2,

that might be not optimal since our analysis shows that the right gain is 1. �

2.2 The Euler case

It is probably a generic property of shape first derivatives (with respect to

shape location) that the shape gradient of the state variable has a derivative

loss of 1. The above analysis shows it rigorously for the Dirichlet prob-

lem. We consider now a more complex model: the flow around an obstacle

of boundary ∂Ωγ is considered. We denote by W1, W2, W3, W4, W5, p the

conserved variables (density, three moments, energy) and the pressure of

the flow of a perfect gas. The state equation is now the system of steady

Euler equation that we write under a variational form as follows: for all
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φ = (φ1, φ2, φ3, φ4, φ5) belonging to the appropriate space,

(Ψ(γ, W ), φ) = −

∫

Ωγ

(F (W ).
∂φ

x
+ G(W ).

∂φ

y
+ H(W ).

∂φ

z
) dΩγ

+

∫

∂ΩB

(FBnx + GBny + HBnz).φdσ

+

∫

∂Ωγ

p (nγ
x φ2 + nγ

y φ3 + nγ
z φ4) dσ = 0, (5)

where F (W ), G(W ) and H(W ) hold for the usual Euler fluxes, corresponding

respectively to each of the space directions, where ∂Ωγ is the variable shape

with slip boundary, and where ∂ΩB holds for a fixed part of domain boundary

with conditions represented by fluxes FB, GB, HB that we do not need to

specify further for our argument.

The cost functional is denoted in a generic manner as follows:

j(γ) = J(γ, W (γ)) . (6)

where W (γ) is the solution of state system for the parameter γ. On the

way of a rigorous Hadamard differentiation with respect to shape, we would

need the invertibility of Jacobian for the Euler system if we want justify

the application of implicit function theorem. We propose instead a formal

derivation following the lines of [20]. The adjoint state Π is solution of:

(

∂F

∂W

)∗
∂Π

∂x
+

(

∂G

∂W

)∗
∂Π

∂y
+

(

∂H

∂W

)∗
∂Π

∂z
= −

∂J

∂W
.
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in combination with boundary conditions, among which we mention only the

boundary condition on the shape boundary controlled by the parameter γ:

Π2n
γ
x + Π3n

γ
y + Π4n

γ
z = 0 on ∂Ωγ .

Similarly to the previous section, the gradient of cost functional is a product

of adjoint state by the -formal, this time- derivative of state residual in which

state equation has been re-injected. After simplifications, we get:

gL2(γ, W, Π) = − (F (W )
∂Π

∂x
+ G(W )

∂Π

∂y
+ H(W )

∂Π

∂z
) (~nγ · ~V )

+ (∇p Π + p ∇Π) (~nγ · ~V ) . (7)

The gradient correction then writes:

γ = γ − ρgL2(γ, W, Π) . (8)

We observe that, as in the case of Dirichlet model, this correction is probably

less regular than the boundary parameter γ. Indeed, inspired by elliptic

smoothness theory, we can estimate that the state variables are at most as

regular as the boundary, but the above correction involves first derivatives

of the adjoint state. Additionally, the normal vector ~nγ is a first derivative

of the boundary parametrization γ. Therefore the formal loss of regularity

is again 1.
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3 Additive multilevel preconditioners

Additive multilevel preconditioners have been initially derived in a dis-

crete context for solving elliptic Partial Differential systems which are typi-

cally of second order or of even order. A rich litterature exists on this topic.

The hierarchical basis method was first analysed by Yserentant in his pio-

neering paper [21]. The work of Yserentant was apparently motivated by

the famous unpublished technical report of Bank and Dupont [22]. A more

complete theory was proposed by Bramble, Pasciak and Xu [5], [23]. See also

the wavelet extensions, for example in [7]. An extended theory can be found

in [24, 6]. The purpose of this section is to recall some results of [6] [25] in a

format adapted to our purpose. For simplicity, we state them in the case of

Dirichlet boundary conditions.

Let Ω be a regular subdomain of Rn. Let H1(Ω) the usual Sobolev space

and V = H1
0 (Ω) its subspace of functions vanishing at boundary ∂Ω. It is

included in H = L2(Ω), a pivot space the scalar product and norm of which

are denoted by:

(u, v) =

∫

Ω

u v dx; ‖u‖ = (u, u)1/2
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Let (Vk)k=0,1,... be a sequence of discretisation subspaces of V :

V0 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ V

To fix the ideas, subspaces Vk’s can be considered as built from nested

quasi uniform meshes with mesh size:

hk u 2−k .

For any k we introduce the fine-to-coarse projection operator Qk : V −→ Vk

defined for all u ∈ V by

Q−1u = 0 ; and for k ≥ 0, (Qku, v) = (u, v) ∀v ∈ Vk .

Let a ∈ [0, 3/2] and Ba defined by:

Bau =
+∞
∑

k=0

(

1

2a

)k

(Qku − Qk−1u) . (9)

In the case a = 0, B1 is the identity. The difference Qku − Qk−1u is the

component u that is exactly of scale k. For a > 0, the higher is k, the more

the corresponding component is damped. The functional smoothing effect of

Ba has been evaluated by Dahmen and Kunoth in Sobolev spaces as follows:

Theorem [25] :

Let s be such that −3/2 ≤ s ≤ s + a ≤ 3/2. Then the operator B is
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bounded from Hs
0(Ω) into Hs+a

0 (Ω), in particular, there exists two positive

numbers c and C such that for all u ∈ Hs
0(Ω), we have

c ‖u‖Hs(Ω) ≤ ‖Bau‖Hs+a(Ω) ≤ C ‖u‖Hs(Ω) .

�

This statement shows that the operator B has smoothing properties that

can be quantified as a gain in regularity. This gain is exactly a. It can

be prescribed by the user in order to precondition an operator having a as

regularity loss. We introduce in the next sections the agglomeration-based

construction of the Vk spaces.

4 Preconditioning by node agglomeration

The usual BPX preconditioner essentially needs embedded meshes, an

option that is not compatible with engineering applications which rely on

unstructured meshes. An extension of this preconditioner to unstructured

meshes was proposed in [11] for equations. It can be in a rather straightfor-

ward manner further extended to optimization problems. The first section

describes the case of a 2D or 3D mesh. The second section addresses the
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particular features of an unknown defined on a non-plane surface discretised

by triangles in 3D.

4.1 Multidimensional Agglomeration

We start from a fine triangulation or tetrahedrization. Nodes are located

at vertices. The discrete fine level is the subspace of linear combinations of

P1 shape functions: Eh = span{ϕi, i = 1 · · ·nh}.

A dual finite-volume cell Ci is defined around each vertex i by splitting each

neighboring element with median plans and keeping subelements containing

vertex i. The volume of Ci is denoted Meas (i). Eh is equipped by the

following weighted scalar product:

∀ uh and vh ∈ Eh (uh, vh)h =

nh
∑

i

(uh)i (vh)i Meas (i) (10)

The agglomeration process relies on a partition of the set I f = {1, · · · , i, · · · , nh}

of fine indices i.

If = I1 ∪ · · · ∪ IJ ∪ · · · ∪ In2h
(n2h � nh) (11)

where any IJ involves the indices of a few neighbouring nodes. An algorithm

for building such a partition can be found in [8]. For any IJ , a coarser basis

18



Figure 1: Sketch of the agglomeration of four fine (2D) cells, Cj1, Cj2, Cj3, Cj4

into a coarser one C̄J = Cj1 ∪ Cj2 ∪ Cj3 ∪ Cj4

function is defined by: ΦJ =
∑

i∈IJ

ϕi and the coarser space is given by:

E2h = Span{ΦJ , J = 1 · · ·n2h}

The linear prolongation operator, P , from E2h to Eh is defined by

∀u2h ∈ E2h Pu2h = u2h ∈ Eh . (12)

Its adjoint P
∗

is the restriction operator from Eh to E2h, and it is defined

via P as its adjoint with respect to scalar product 10). by :

(P
∗
uh)J =

nh
∑

jm⊂J

(uh)jm
Meas(jm)

Meas(J)
(13)

where J is a coarse cell, jm are fine cells included in J . Meas(J) represents

the measure of coarse cell J . These operators where introduced in [10] for
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a different multi-level approach, of multiplicative type. In the BPX origi-

nal work, the Galerkin nested finite element sequence of discretised spaces

enjoy the necessary regularity for the theory to apply. In contract to this,

the proposed volume agglomeration method produces step functions on finer

meshes. More precisely, the sequence of spaces generated with the transfers

P̄ and P̄ ∗ defined in (12) and (13) does not enjoy enough regularity according

the theory of Section 3. This is related to the fact that the orders of accuracy

of transfers have a sum equal to 1+1 = 2, not strictly larger than 2, see [26].

We have to define smoother transfers. In case where the solution of a well

identified linear system is considered, its relaxation can be used for smooth-

ing the transfer operators, as in [27]. We choose here the more simple option

of [10]. It consists of an averaging between a node and its neighbors:

(Lu)i = (1 − θ)ui + θ

∑

j∈N (i)∪{i}

Meas(j) uj

∑

j∈N (i)∪{i}

Meas(j)
(14)

where N (i) represents the set of neighbors of cell i and θ is set equal to 1
2

according to the analysis of [10].

The adjoint L∗ of L for L2 scalar product is:

(L∗u)i = (1 − θ)ui + θ
∑

j∈N (i)∪{i}

uj Meas(j)
∑

k∈N (j)∪{j}

Meas(k)
. (15)
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The coarse level Vk is built from Vk+1 as follows:

Vk = Lk P̄k (Vk+1) (16)

Starting from the initial fine space that we denote VN , we define the analog

of the BPX projection operator (3) to the directly coarser level as follows:

QN = LN P̄N P̄ ∗
N L∗

N (17)

and for any coarser level:

Qk = Πi=N
i=k+1Li P̄i Πj=k+1

j=N P̄ ∗
j L∗

j k = 0, N − 1 , Q1 = 0. (18)

From this we get:

Ba =

N
∑

k=0

(

1

2a

)k

(Qk − Qk−1) . (19)

In practice, for any u, Bau is computed within a unique cycle from fine to

coarse and back.

4.2 Agglomeration for a surface in 3D

Let Σ0 be the initial 3D discrete surface, made of triangles. The generic

discrete surface Σγ, is defined by the translation of length γ, of the vertices

of Σ0 along an approximate unit normal vector ~n to Σ0 defined at vertices.

~xγ
i is a vertex of Σγ ⇔ ~xγ

i = ~xo
i + γ(i) ~n (20)
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where i is the index of the vertex, ~xo
i is the physical position of the vertex

of Σ0 with same index i. In order to precondition a correction on γ, we can

construct a sequence of spaces and operators following the same process as

in (11),(12), (13), but restricted to the surface and with the area of surfacic

cells Area(j) instead of cell measures. In order to adapt our operators to

irregular surfaces, the smoothing operator L, is now weighted by a scalar

product of normals to the surface:

(L ~x)i = (1 − θ)~xi + θ

∑

j∈N (i)∪{i}

wij~xj

∑

j∈N (i)∪{i}

wij

(21)

where wij are the weights defined by :

wij = max (Area(i)~ni · Area(j)~nj , 0) ‖~ni‖ = 1 ∀ i . (22)

With this weighting, the smoothing is avoided on shape’s dihedra (e.g. on

wing trailing edges) and then allows changes in the angle. The rest of pre-

conditioner definition is the same as in previous section.

5 Combination with the BFGS acceleration

Modern optimisation algorithms are equipped with quasi-Newton processes

which allow a rather good efficiency for many applications. One of the most
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efficient quasi-Newton acceleration relies on the BFGS method, see for exam-

ple [28]. The purpose of this section is to demonstrate on a simplified example

that even for a very favourable context, a good quasi-Newton optimizer needs

the complement of a preconditioner if the number of discretization unknowns

is large.

We consider the following minimisation problem in 1D:

uopt = ArgMin
1

2

∫ 1

0

( |
∂u

∂x
|2 − fu) dv ; u(0) = u(1) = 0 . (23)

We can precondition this problem with the 1D version of our agglomer-

ation preconditioner. The Hessian of this functional is a second-order dif-

ferential operator, i.e. derivative loss is 2. This problem can be solved by

a conjugate gradient and in that case we just need, for preconditioning into

that algorithm, to multiply the gradient by B2 defined as in as in (19) (with

a = 2). The use of BGFS is a little more complex. That method builds

progressively an approximate Hessian M for the functional to minimise, to-

gether with its inverse W. This is done by regula falsi heuristics relying on

the knowledge of successive values uk−1, uk of the control variable and the

corresponding values of the functional gradient gk−1, gk. In order to introduce
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our preconditioner, we define:

û = B1u and ĝ = B−1g (24)

These variables allows the BFGS construction of Ŵ and M̂. We can then

derive and inverse the matrix to apply to the gradient:

W = B−1ŴB−1 M = B1M̂B1 (25)

We stress that, in contrast to the conjugate gradient, in order to precondi-

tion BFGS, we need to handle B1 and B−1 for the assembly of the BFGS

matrix and of its inverse. This is easily done with the proposed multilevel

preconditioner: we just choose respectively a = 1, a = −1.

In Figure 2, four experiments are depicted. The number m of unknowns

in the discretisation of (23) is first set to 32. As rather classically, the non-

preconditioned BFGS algorithm solves exactly the optimum in about 5 +

m/2 = 21 iterations. The preconditioned version has a convergence which is

more progressive, but not faster. For a larger number of unknowns, m = 256,

the unpreconditioned BGFS shows a very slow convergence during at least

the 100 first iterations. In large scale shape design, this convergence is not

acceptable. In contrast, the preconditioned BFGS convergence is about the
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same as for the coarse-mesh one (21 iterations).

6 Application to an optimal shape design prob-

lem

We now study the adaptation of the proposed multi-level preconditioner

to an optimal shape design loop.

6.1 The aerodynamical shape design problem

We now make more precise the statement of the aerodynamical appli-

cation introduces in Sec.2.2. In [12], the authors propose a very simplified

model for measuring the “sonic boom downwards emission” (SBDE). It con-

sists in evaluating the volume integral of the squared pressure gradient in

an “observation box” ΩB (as shown in Figure 3) below the object. The cost

functional is therefore the following:

j(γ) = J(γ, W (γ)) . (26)

where W (γ) is the solution of state system (5) for the parameter γ, and

J(γ, W ) = α1(CD(W ) − Ct
D)2 + α2(CL(W ) − Ct

L)2 + α3

∫

ΩB

|∇p̃(W )|2dV.(27)
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Here α1, α2 and α3 are constants that prescribe the weights of three sub-

criteria, related to lift, drag and sonic boom emission. C t
L and Ct

D hold for

target lift and drag. Lift coefficient CL(W ), drag coefficient CD(W ), and

pressure field p(W ) are computed from the design variable γ by solving the

state equation (5) and obtaining the state variable W . The notation p̃(W )

indicates that the pressure p(W ) has been smoothed in order to integrate its

gradient, even when shocks arise.

Practically, the observation box ΩB is a part of the computational domain

placed below the airplane. Its upper boundary is a plane close below the

aircraft.

6.2 Discretized problem

The discrete CFD model uses an upwind Euler solver applying to unstruc-

tured tetrahedrizations. The shape is changed by moving the nodes on the

boundary of the mesh along normals to that boundary. Their displacement

is taken into account by a transpiration condition in order to avoid costly

remeshings. A gradient of the discrete functional is computed with the help of

an adjoint system, built using the Automatic Differentiation tool TAPENADE,

[1]. Since this gradient is defined as a scalar field defined on the nodes of the
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boundary, we can apply to it the surface multilevel preconditioner introduced

in Sec. 5.2.

6.3 Numerical results

We consider the shape optimisation starting from an ONERA M6 wing.

A coarse discretisation of this geometry, together with a pressure distribution

on it is presented in Fig.4. After the necessary number of gradient iterations,

the shape optimisation loop produces a new shape, that is quite different

from the initial one, as illustrated in Fig.5. The resulting sonic boom re-

duction can be appreciated from the comparisons of the pressure variations

under the wing for both geometries, which are depicted in Fig. 6. This can

be obtained by various optimisation algorithms. The question is to obtain

it in the most efficient way, and in particular to analyse the impact of our

preconditioner.

First we want to show that the optimal parameter a = 1 predicted by the

theory is numerically verified. We first study this with a coarse geometry,

involving 2203 nodes for the 3D mesh, but yet 780 shape parameters. Two

optimisation algorithms are applied, a gradient (Fig.7) and a conjugate gra-

dient (Fig.8). Divergence of the Euler algorithm for distorted shapes did not
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allow a pertinent study of the BFGS option.

Convergence of the gradient iteration can be evaluated with the evolution of

the gradient norm. The case without preconditioning is the case where a = 0.

Then convergence is the slowest of the different options tested. Values like

a = 0.5, a = 1.5, a = 1., a = 2. provide good speedups, in particular for the

10 first iterations. This point is important for the shape design loops which,

in practice, are too computer consuming to allow for more optimisation iter-

ations. But the theoretical value a = 1. appears as numerically optimal, for

both cases of a pure gradient optimiser as well as a conjugate gradient one.

Let us verify that the efficiency of the preconditioner is good for finer dis-

cretisations. We consider a second mesh with 15463 nodes. The number of

shape parameters is 3222. See Fig.9 and Fig.10.

The value a = 1. appears again as numerically optimal. In the case of the

conjugate gradient, a good shape is obtained in about 10 iterations.

The case of a = 2. deserves some comments. It is equivalent to a Laplace-

Beltrami smoothing and, according to Remark 1, to the choice of a H1 scalar

product for the gradient iteration. All the above results show that that op-

tion is not bad, but is clearly not as good as the optimal one a = 1..

We complete the above convergence curves by Tables. 1 and 2 which com-
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Table 1: Sonic boom optimisation: result of 10 iterations of CG

Case Opt. Iter. funct. |gradient|

GC, N=780, M=11,000 10 0.02 0.3

GC preconditioned, N=780, M=11,000 10 0.04 0.04

GC, N=3222, M=77,000 10 0.06 0.3

GC preconditioned, N=3222, M=77,000 10 0.03 0.1

pare the efficiency of the preconditioned algorithm to the standard one in

the practical case where convergence of optimisation is not continued more

than 10 iterations. If equivalent levels of convergence are asked from both

algorithms, then an acceleration of a factor 5 is put in evidence. In [29] the

proposed preconditioner is applied to more complex geometries and in [30]

the method is extended to multi-discipline optimization.

7 Conclusion

This paper presents a new preconditioning strategy for optimal shape

design. An additive multilevel preconditioner is built from (a) the classical

Bramble-Pasciak-Xu principle, and (b) the agglomeration principle. Func-

tional analysis considerations show the central role of the loss of regularity
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Table 2: Sonic boom optimisation: effort for dividing the cost by 8

Case Opt. Iter. |gradient| Speed up

GC, N=780, M=11,000 15 0.1

GC preconditioned, N=780, M=11,000 3 0.1 5

GC, N=3222, M=77,000 100 0.03

GC preconditioned, N=3222, M=77,000 20 0.04 5

in the gradient iteration. This loss can be compensated by a regularity gain

carried by the preconditioner. The user can prescribe this regularity gain at

any real value. This helps in particular to combine the preconditioner with

a BFGS acceleration. The interest in combining both is demonstrated.

In the case of shape design, we exhibit a simplified example for which the

loss of derivative can be rigorously evaluated and is equal to 1.

The final shape design application is a pre-industrial one already ad-

dressed by different methods [31]. The numerical results confirm the a

priori analysis of the regularity loss. They demonstrate that the proposed

method improves notably the convergence of the shape design iteration. The
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proposed preconditioner is expressed in a rather general formulation and

appeared to be quite efficient for preconditioning an operator of pseudo-

differential type. It could be interesting to try it on other operators of this

type (influence matrix, Shur operator for example).
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de la dérivée directionnelle de la fonction coùt. RAIRO Modél. Math.
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Figure 2: Resolution of a second order optimization problem with a precon-

ditioned BFGS, behavior of the different residuals as functions of iteration

number, for problem sizes m = 32 and m = 256.
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Figure 3: The sonic boom. Sketch of near and far field shock wave patterns

of a supersonic aircraft. SBDE’s control box B.
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Figure 4: ONERA M6 shape optimisation: pressure contours on initial shape

Figure 5: ONERA M6 shape optimisation: sketch of geometry, of initial and

final shape.
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Figure 6: ONERA M6 shape optimisation: pressure signal under the wing,

before, after optimisation
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Figure 7: ONERA M6 shape optimization with a gradient method with dif-

ferent values of the preconditioner parameter a. Top: gradient convergence.

Bottom: cost function. Coarse mesh with 2203 vertices
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Figure 8: ONERA M6 shape optimization with a conjugate gradient method

with different values of the preconditioner parameter a. Top: gradient con-

vergence. Bottom: cost function. Coarse mesh with 2203 vertices

42



 0.01

 0.1

 1

 10

 5  10  15  20  25  30  35  40  45  50

a = 0.0
a = 0.85

a = 1.0
a = 1.1
a = 1.5
a = 2.0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  5  10  15  20  25  30  35  40  45  50

a = 0.0
a = 0.85

a = 1.0
a = 1.1
a = 1.5
a = 2.0

Figure 9: ONERA M6 shape optimization with a gradient method with dif-

ferent values of the preconditioner parameter a. Top: gradient convergence.

Bottom: cost function. Medium mesh with 77315 vertices
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Figure 10: ONERA M6 shape optimization with a conjugate gradient method

with different values of the preconditioner parameter a. Top: gradient con-

vergence. Bottom: cost function. Medium mesh with 77315 vertices
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