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SUMMARY

We propose a mesh adaptation strategy relying on a continuous error model and its minimisation
in a L2 norm. The error model is of a priori type and supposes the solution of a linearised
system. The error minimisation takes the form of an optimal control problem with an adjoint
state. This is applied to a Dirichlet problem discretised with the usual linear continuous finite-
element approximation. A numerical example is given.
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1 Introduction

Mesh adaption methods are progressing rapidly, but some limitations exist and can be summa-
rized as follows: many heuristics based on a priori error estimates lead to specify an ideal mesh,
typically from a “metric” field (see [3],[9], [10]), but without sufficient control of the criterion for
which this mesh is the best one. Complementarily, with a posteriori errors based methods ([1])
and adjoint formulations (see [2],[8],[11]), we can improve the current mesh according to a precise
criterion, typically the error in the evaluation of a specified functional depending on the approx-
imate solution. The motivation of our investigation is to find the best mesh for a minimal error
on a prescribed output. In contrast to usual a priori error+metric strategies which address a local
error, we choose which output should be computed with lowest error, and with which norm this
error should be the lowest. This is expressed in the cost functional which is the chosen norm of
the specified output. In contrast to a posteriori error+adjoint methods who evaluate a posteriori

errors from an existing mesh to be improved, we want to find an ideal “optimal” mesh on the basis
of an a priori-based evaluation of it. To this end, the global problem is formulated as a complete
optimal control problem in which the cost functional is minimized with a gradient iteration.

2 Error analysis

The main strategy adopted consists in defining the different ingredients in a continuous context.
The mesh is replaced by a continuous metric, the error analysis is replaced by an expansion of
the error with respect to mesh size, in which the first term is a continuous function. This can be
applied to interpolation errors. The popular Hessian model is based of the extension:

Πhu − u = H(u).∆x.∆x + R(h)

where H(u) is the Hessian matrix of function u. According to a local error estimate of P1-
interpolation, the rest R(h) will be neglected. This model is at the origin of many successful
anisotropic mesh adaptations. An interesting property in this estimate is that the Hessian term is
a purely continuous (i.e. non-discretized) one as soon as we define ∆x as a continuous field ([5]). A



continuous optimization problem can be built and analytically solved, yielding the optimal metric,
defining optimal meshes, see [1].

In this paper we consider PDE systems, a prototype of them is the Dirichlet problem in a
domain Ω,

(∇u,∇φ) = (f, φ) , u ∈ H1
0 (Ω), ∀ φ ∈ H1

0 (Ω)

and we restrict ourselves to isotropic metrics. These metrics prescribe meshes without stretching.
They are described by a scalar field, the mesh density. The link with mesh convergence is easily
kept by considering the case of an ideal series of meshes with homothetic density: Let m a positive
scalar field defined over the computational domain Ω. We consider a set H of real positive numbers
h having zero as accumulation point, such that we can define for any h in H a mesh density

mh(x, y) = h2 m(x, y) ∀(x, y) ∈ Ω,

and a triangulation Th having mh as density.
We denote by Vh the usual P1-continuous approximation space for H1

0 (Ω) on this triangulation.
The discretized system writes:

(∇uh,∇φh) = (f, φh) , uh ∈ Vh, ∀ φh ∈ Vh .

The error expansion can be simplified by expressing the approximation error u − uh in terms of
the interpolation error expansion Πhu − u and a second term,

uh − u = uh − Πhu + Πhu − u ,

where uh − Πhu is called in the sequel the “implicit error”. It is the solution of a discrete system
which can be written:

Find uh − Πhu ∈ Vh, such that (∇(uh − Πhu),∇φh) = (∇(u − Πhu),∇φh) ∀ φh ∈ Vh.

Proposition: We assume that the continuous solution u is in C3(Ω̄) and that the continuous

mesh size m is in C2(Ω̄) . Then, for any function φ of C3(Ω̄) with compact support, we have

∫
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∂Πhφ

∂x
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where h−3Oφ(h3) is bounded for a fixed φ, and where g′(m) = g′1(m) + g′2(m) :
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Let us define the unique solution of:

E(m) ∈ H1
0 (Ω), and (∇E(m),∇φ) =

∫

Ω

g′(m)φdM ∀φ ∈ H1
0 (Ω) . (2)



then
∫

Ω

∇(uh − Πhu)∇ΠhφdM = + h2

∫

Ω

∇Em∇φdM + Oφ(h3) .� (3)

Detailed proofs of this proposition are given in [7].

With this analysis, it will be possible to investigate which mesh gives the smallest first term of
the error.

3 Error model and Optimal Control problem

According to the above analysis, for any smooth enough metric m(x, y), we can define a continuous
error model E(m) as follows:

E = E(m) ⇔ E ∈ H1
0 (Ω) , and ∀ φ ∈ H1

0 (Ω) ,

∫

Ω

∇E.∇φ dM =

∫

Ω

g′(m)φ dM . (4)

This Dirichlet problem can be interpreted as follows:

−∆E(m) = g′(m)

E(m) = 0 on ∂Ω .

Now we are able to look for the best mesh through an for minimizing a given error through the
formulation of an Optimal Control problem. The control variable is the metric, the state dependant
variable is the solution E(m) of the above system and represents the approximation error. Let
J be a functional depending on state E(m) and possibly on control m. It represents the precise
norm of output error that we want to reduce. Typically, when state error E(m) is zero, so is this
functional.

J : (m, E) → J(m, E) ; J(m, E) = 0 if E = 0

Let us define:
j(m) = J (m, E(m)) ,

the optimisation problem to solve writes:

Find mopt = ArgMin j(m) . (5)

If it is allowed to take a sequence of metrics m tending towards zero in the convenient norm, then
the minimum of j will be also zero. This expresses the fact that with a progressively very fine
mesh, the error can be very close to zero. But a very fine mesh is very expensive. Our standpoint
is to find among meshes with a given number of nodes the one which will give the smaller error.
To attain this end, and since the control variable m si equal to the mesh node density, the above
minimum is taken over a set of metrics m with a fixed integral.

Resolving this minimisation with respect to a distributed control is generally not so easy since
the number of unknowns is high. Sequential Quadratic Programming algorithms can be applied to
solve Optimal Control problems with PDE’s. In [6],[4] we try to identify some efficient versions.

4 An illustration: Dirichlet problem in a square

The PDE under investigation is set in a two-dimensional unit square Ω. We consider the particular
function u:

u(x, y) = (x2 − x)(y2 − y) .
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Figure 1: Minimization of L2 error over the whole domain: central cut of initial (line) and final
(dashes) mesh-densities

We consider the minimisation of mesh density in order to have for a given number of nodes an L2

error as small as possible.

Find mopt = ArgMin

∫

Ω

|E(m)|2 dΩ .

The local error terms g′ are simplified to the maximum of the absolute values of fourth derivatives
(η, ζ, κ, λ = x or y):

ḡ′(m)(x, y) = max(|u
(4)
ηζκλ(x, y)| .

We have to emphasize that, for a Dirichlet problem, choosing an error norm involving boundary
values as the previous one is a rather difficult task. Indeed the error is zero at boundary indepen-
dantly of the mesh density in this region. We refer to [7], [6] for an analysis of this problem. We
adopt the solution proposed in these references. We introduce penalty terms in order to master
the tendency of the algorithm to give a zero density at boundaries.

A few experiments have been done with a cartesian mesh of 11 × 11 vertices. The gradient
of the discrete functional is obtained by an adjoint method and developed with the help of the
TAPENADE Automatic Differentiator([12]). A nonlinear conjugate gradient method allows to
obtain a (possibly local) minimum in a hundred iterations. In these preliminary experiments, we
are only interested in finding the optimal mesh density. We did not regenerate a new mesh from
the optimal density, as should be done when an adapted mesh is really needed.

We start from a uniform node density. It appears that this initial condition is already somewhat
quasi optimal. However, the optimisation made the functional further decrease of about 50%. The
effect of this mesh optimisation is seen through several vertical cuts at y = 0.5:
- the mesh density increases in the center, decreases at boundary, see Fig.1.
- the truncation error displayed in Fig.2, is reduced of 40% at the center of computational domain,
and takes larger values at boundary,
- the approximation error model is reduced in any place of the computational domain, see Fig.3.

A particular interest of the implicit or adjoint based error formulation with respect to local
truncation error is that we can minimise the approximation error measured on a specified subset
of the computational domain. Let us for example restrict the cost function to an integral over the
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Figure 2: Minimization of L2 error over the whole domain: central cut of initial (line) and final
(dashes) truncation errors
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Figure 3: Minimization of L2 error over the whole domain: central cut of initial (line) and final
(dashes) approximation errors
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Figure 4: Minimization of L2 error over right half-domain: central cut of initial (line) and final
(dashes) mesh-densities

half right part Ωright of the domain.

Ωright = Ω ∩ {x >
1

2
} . Find mopt = ArgMin

∫

Ωright

|E(m)|2 dΩ .

If we worked only with a local truncation model, then we would obtain an optimal mesh without
nodes on the left part of the domain. This is good for the interpolation error over Ωright, but
not so good for the approximation error in Ωright. Indeed, for that latter error, values over the
mesh are strongly correlated. The optimal mesh-density given by our algorithm shows only a slight
concentration of nodes in the right part of computational domain, see Figs.4, 5,6.

5 Conclusions

We have explored a continuous method for mesh optimisation. The method relies on a complete
optimal control theory, with a state system, a functional to minimize, an adjoint state for comput-
ing a functional gradient.

Some important potential advantages of the proposed methodology are:
- The accuracy can be specified by user under the form of an error norm to minimize.
- Second, by applying a linearisation, the proposed method can apply to minimizing the error on
a prescribed functional. This opens the door to a combination of adaptation loop with an optimal
design loop.
- As in [5], the continuous model can be extended to the case where the solution presents some
singularities. In that case error order is modelled and can be predicted as second-order for optimal
meshes.

Before this, several difficulties have to be solved:
- A sufficiently accurate approximation for the third or fourth derivatives of the unknown have to
be introduced in order to treat a generic mesh adaptation problem.
- further analysis is needed in order to have a more complete analysis of the relation between the
model and discrete solutions.
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Figure 5: Minimization of L2 error over right half-domain: central cut of initial (line) and final
(dashes) truncation errors
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Figure 6: Minimization of L2 error over right half-domain: central cut of initial (line) and final
(dashes) approximation errors
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