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This paper addresses the problem of finding the mesh representing atbést iwice continuous differentiable

function defined on the plane. A continuous setting of this problem is used. It relies on an abstract mesh rgpdel,
the “continuous metrics” allowing a variational analysis and on the identification of an optimum. Anisotrgpic
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1. Introduction

CFD researchers have spent decades constructing “second-order accurate schemes” but When the
are applied to industrial problems, numerical convergence is rarely second order. When theorists are ad-
dressed about this problem, they answer that the Navier—Stokes flow fields are generally smooth bu‘t1 they
involve steep gradients, and therefore it might happen that second-order convergence, only an asymp
totical property, will indeed apply, but only for extremely fine meshes that are not usable in prac3|70e
Further, some of the flows of interest involve genuine singularities and second-order convergence cannot

be obtained.
39
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In fact, in order to answer to the expectation of these practitioners, a new theory of approximation,
taking into account mesh adaptation is being progressively built by the research community. Indeed,
uniform mesh refinement is identified as a penalizing option for higher-order mesh convergence. 3

With mesh adaptive approaches, the numerical order of the convergence to the continuous is routinely
evaluated from the variation of error with respect to the number of nodes and appears as much better thar
with uniform mesh refinement (see, for example, [21]). This is due to advances in adaptation criteria and
in mesh representation. 7

New theoretical developments are specifying progressively criteria for adapting meshes in order 8o get
an error lower than a prescribed threshold. The derivaticamdsteriorierrors is an important topic in 9

this direction, see, for example, [1,3,10]. 10
However the relations between the adaptation strategy and the convergence order remain a difficult
issue. 12

The adapted mesh needs not only to be fine enough in some regions, but also to be not too fine inthet
regions. It becomes a part of the unknowns in the system to solve. In the case where the mesh shauld be
found among a set of deformations of a reference one, many works in the literature proposed theimesh
deformation or equivalently mesh coordinates as the solution of a particular system coupled witks the
discrete partial differential equation (PDE) under study. See, for example, [6,17]. In that case the mesh
topology is prescribed by the user and may be not adequate for the adaptation. 18

Conversely, in the case where the user does not wish to fix the topology, but instead, wants thetalgo-
rithm to find it, then the definition of a system the solution of which is the adapted mesh is much remore
difficult. Firstly, two meshes can have very different topologies and give about the same local accuracy.
Secondly, it is difficult to find an optimal mesh if we have to investigate inside a set of meshes described
by integers and/or booleans. 23

These remarks have motivated researchers to represent meshes by continuous functions descriking th
mesh. See, for example, [2]. These functions can be for example the (scalar) local mesh densitgsover
the computational domain. From its knowledge, it is possible to derive an upper bound for the kscal
truncation error. But this upper bound does not give a perfect idea of the local error if local stretching
effects are not taken into account. 28

In many recent publications, see, for example, [4,5,12,13], the local stretching is modelled by meeans
of a non-scalar field, theetric An adapted metric is specified by an argument of equidistribution of am

interpolation error related to the partial differential equation solution. 31
The main purpose of the present work is to explore several outputs of an analysis in which we logk for
the optimal metric in @ontinuous setting 33

In the first step presented in this paper, we focus on the easier problem of adapting a me&leso trse
P1 interpolation of a given analytic functiomnterpolation errors have been the subject of many studies,
in particular for mesh quality purposes (see, for example, [20,15]). From error estimates, abstracterror
models can be built. The problem of the best adapted metric can be cast into the optimization of7this
error model and the optimal metric can be exhibited. The mathematical model also allows to repraduce
some convergence-to-the limit behaviors, giving some prediction of numerical convergence order fey the
discrete case. 40
We shall first consider the 1D case and recall how a continuous metric is defined, how the interpokation
error can be modelled, and how a calculus of variation produces an optimal metric. The interpolatiem of
a function having a discontinuity is analysed. The 1D case allows for an overview of several possible
extensions. 44
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Then we shall propose a model for the 2D case. The error model will be derived from an accurate
error estimate. Then again we propose a definition of the best metric. This time, mesh anisotropy c¢an be
taken into account. The convergence order for isotropic and anisotropic adapted meshes is compared ir
the case of a discontinuous function. 4

We complete these theoretical statements by a series of numerical experiments in order to show®exam-
ples for which behavior predicted by the theory are indeed observed. We finally illustrate how the *best

interpolation” problem that we address can also applied to an image compression problem. 7
8

9
2. Continuousmetricin an interval 10

11

This section is somewhat close to the end of Chapter 3 in [2] in which the authors look for the best fdesh

density. However we introduce in a different-purely continuous-setting the notion of metric optimafity
which will be the central tool of the sequel. After some definitions concerning the metric, we recaft*an
estimate of the interpolation error and then show how an optimal metric can be derived. 15

16

2.1. Definitions 17
18

A metric on a given set allows to define the distance between two arbitrary elements of it. We Shall
call the metric on the intervdl, b] a (strictly) positive continuous functian : x — M(x) defined on 20

[a, b]. It specifies, for any andd of this interval the length of segmeed as follows: Z

d 23
L(cd) = / Vv M(s) ds. (1) =
25

26
Let us consider a mesh of intervgl, 6] with N nodes. It is a subdivisiong =a < x1,...,x; < ”7

Xit1,---,Xy-1 < xy = b of this interval. A consequence of the above definition is that a metric cgn
prescribe a particular class of meshes. Indeed, we shall say that a mesh conforms toMhétric
and only if the following relation, unitary element length holéis: any elementx;, x;11], we have
JitVMdx =1. o

In that case, if we introduce the local continuous mesh mize= M~Y? we have:for any element 3,

[x;, 411, fxf"” ﬁ dx = 1, which shows that whem 5, is a constant function, it is nothing other thars

the element size. 34
Another way to view this is to introduce the local continuous node de@sjty= 1/m4: for any s
interval [x;, xi+1], we havef;:"+1 dy(x)dx = 1. 36
It can be verified that the number of nodes (or equivalently intervals) of the mesh is specified bysthe
metric. It is given by: 38
b b b 39
C(/\/l)=/\/de=/1/mM(x)dx=/dM(x)dx. @
a a a 42

If C(M) is a positive integer, exactly one mesh is described by ¢ (if1) is not an integer, no mesh is43
described by it. 44
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2.2. Interpolation error bound 1

2
The present work concentrates on the continuBusnterpolation. We first recall in short an errors

bound useful for the sequel. We consider: 4
5
e A functionu, regular enough, defined on a segment], 6
e h =meag[a, b]), not necessarily small, 7
e [T,u the Py interpolation ofu on [a, b]: IT,u is an affine function oria, b1, (IT,u)(a) = u(a), 8
(ITyu)(b) = u(b), 9
e the approximation error defined layx) = u(x) — (IT,u) (x). 10
11
For anyx in [a, b], there exists; andr, in [0, 1] such that: 12
13
’ (a y x)2 ”
e(a) = (u — Myu)(a) = (u — Myu)(x) + (a — x)(u — Myu) (x) + u”(x + r(a — x)), 14
15
/ b - x)z 7 16
e(b) = (u — Iyu)(b) = — IMu)(x)+ b—x)(u—ITu)x)+ Tu (x + to2(b — x)). -
Looking for an upper bound of = (u — IT,u) leads to look for a poink such thate’(x) = (u — 18
IT,u) (x) = 0. After some computation we get: 19
20
Y
0= 20 — M) + 4= u'(x + tr(a — x)) 21
22
(b-x)?% , 23
+ 5 u (x + (b — x)) 04
and 25
- maneo] < 5(| 52+ | 252 ) mae .
u— u)(x) <= ul.
" 2 2 2 [a.b] 28
Then 29
1 30
| = M (0] < 7 max((@ = §)° + (b= &)%) maxiu”]. »
The maximum is reached fgp = @ this implies,v¢ € I 33
b a)2 34
|e(€)| = |(u - Uhu)(§)| < 8 max|u”|. Q) *
la,b] 36
This estimate, after it has been modelled in terms of continuous functions, will contribute to the costtin-
uous problem statement. 38
39
2.3. Optimal metric 40
41
2.3.1. Optimality condition for norm.* 42

The interpolation error vanishes on each vertex. Its maximal value inside each element is estirtated
by (3). An asymptotic extension would also provide something like the right-hand side of (3) as 4#rst
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term. We propose to represent the interpolation error in the continuous setting by a simplified funetion
inspired from these analyses. This process is a modelling process. It is motivated by the need of @ more
analysable mathematical formulation. We assume that the funci®amooth, that its second derivatives

u” is everywhere strictly positive, and that meshes that we consider are enough fine to allow the setond-
order term of the interpolation error to represent well the whole error. Let us define the continuous $ocal

P1-interpolation error as: 6
7

leamt ()| = (dpe () [u" ()], @) s

whered \(x) is the node density of the mesh, or equivalently the inverse local mesh size, i.e., the inverse
of ma(x). We want now to find the minimum with respect to metfid in a setl/, of the L* norm *°

(0 < a < 00) of the errore 1
12

13
min &, (M), with £,(M) = (lem@)])]. :/(dM(x)2|u”(x)|)“dx, (5) w1
15
16

b

a

with respect tod, I is an open subset df? such that any metric ia/ is such thatd,, > 0 and 17
d 2« s of bounded integral. For a node density tending to infinity, the error tends to zero. Let us recall
that a sequence of 1D metrigsl,, havingn nodes gives &th order convergencéen L® norm if the

19
corresponding error satisfies:

20
(Jeat, *)]),« < constn™*. 6) 2
22

If we can state such a property for the metric model, this would be a good indication thahtbeder .

convergence is satisfied by meshes built from these metrics.
In order to avoid finding the trivial infinitely fine solution, the space of admissible metrics is restrlc;bed

prescribing the number of nodes: 26

b 27

YMeld, C(M)=C(@) :/d(x)dx =N. (7)) 2

29

“ 30

This gives a linear constraint for variahfe In order to get (at least formally) optimality condition, wes;
can differentiate the functional of (5) with respecttto 3
b b 33

—2a / d™(ju")"sddx >0, Véd: faddx =0. 4

35

a a 36

Thus 37

38
39
whereK is a constant which we can determine by taking into account the constraint (7), we get: 40

N V., 41
———— |u" ()| #7 (8) 42
J w75 d? 43

or, in terms of the local mesh size: 44

dopi(x) = Ky.|u" (x)|E

dopt(x )=
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"% dy’ o
f| |N |u//(x)|2a+l‘ (g)

The minimum of the functional writes:

1 b 20 , b .
ey = ([ (flrwia). @0)

Remark 1. The smoothness af is important in this analysis but can be replaced in practice by a9
smoother function. Since the Hessian of the functional is always positive, the salyionithe unique 10
global optimum. 11

12
Remark 2. The local mesh size, naturally inverse proportional to the number of nodes, is defined by3(9)
only if the second derivative” never vanishes. In practice, we replaeég by maxe, |«”|), with a small 14

mopt(x) =

0 N o g A W N P

positivee. 15
16

2.3.2. Examples 17
e For L' norm: this is a rather usual norm in image processing, we get 18
19

|M//|1/3 dx’ _1/3 20

gty = L N @ )

22
23

u 2/5dx/ _ 24
e (12 2

26
e For the case oL.* norm, due to insufficient smoothness, we cannot get an optimality condition by
differentiating the functional. Instead, we can get a formal one by making the power coefficienf in

e For L2 norm, which is the natural option for PDE’s, we get

2
mopt(x) =

(9) tend to infinity: 29
N |u//|1/2 dx’ , _ 30
mapi(x) = fT\“ )| 2 (13) =

32

Remark 3. In the last case, introducings: 33

34

00 N " 1/2 35
Gon ) = Tl de @) 14 5

37

in (4) gives a uniform local error, o
11/2 dx’ 2 39

|e_c;\.;l(x)| == (f|u|—2) Vx. (15) 40

N 41

It is not a scoop that th&> norm of error is formally minimum when the local error is uniform. This ig
an option referred in the literature as the error equidistribution, used in [7,13]. We rediscuss that option
in Remark 5 in the sequel. 44
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2.4. Convergence order of the continuous metric model

If we take thexth root of expression (10), we get:

1/«

b 2, b
1 o 1
Sgpt: ﬁ(/ |u”|2°‘+1dx’) </|u”(x)|2"%Fl dx) . (16)

Since the two integrals are bounded, this shows that the optimal error decreases as the inverse of sd‘uare C

the number of nodes. According to (6), this expresses the second-order convergeRe@ninpolation)

of the metric sequence obtained by the present adaption strategy. This is not surprising since the fulfction
u is assumed to have continuous second derivatives, and the same property also holds for a sequia\lnce C
12

uniform meshes.

Let us examine how to look for an optimal metric in the case of a funatibaving adiscontinuity
More preciselyu is bounded and smooth on two pdusc] and[c, b] of the interval, but is discontinuous 14
at pointc with a nonzero step. 1o

We choose to represent tig interpolation error as: 10
17

13

/ \eM<x>!‘”dx’=/ (m?[u; ()])* e >
20
with uj (x) = 872(14(96 +6) —2u(x) +ulx — 3)), (17) Z

wheres is assumed to be smaller than Using this error model is justified by the following remarks: 23
24

e on the elementyx;, x; 1] containing the discontinuity, the interpolation err)ﬁf“ [ITu —ul“dx is 25

smaller thanfxfi*l meas[x;, x;11])2[uj|* dx, 23
28
29
30
31

. 2 .
e uj is close tod% whereu is regular.

Moreover, we observe thaf is of the order oB~2for x in [c — 8, c + 8]. Then fory such that O< y <

1/2: 32
33

lujll.» is bounded independently &f (18) 34
35
36
lufll.» is unbounded fo — O. (19) 7

38
According to Remark 1, we can replace the temf| by a smooth approximation of it, that satisfies thg,

above properties. Let us restrict our calculus of variations td.thease ¢ = 2). The resulting optimal 0
error writes:

and fory > 1/2:

a1
1/2 42

b 2, b
1 15 K>
50pt= = / |I/t” 2/5 dx’ / u”(x) dx < == 43
2 N2 8 { s | N2 a4



© 00 N o g b~ W N P

A A B D DWW W W WWWWWWN N DNDNDNDNDDNDNDNDNRER R R P P P P P P P
A W N P O © 0N O 00 WN P O O 00 N O O b WNPFP O O 0 N O O b~ W DN P O

50168-9274(05)00062-0/FLA AID:1766 Vol.eee(eee) [DTD5] P.8 (1-29)
APNUM:m2 v 1.36 Prn:25/03/2005; 8:35 anm1766 by:ML p. 8

8 F. Courty et al. / Applied Numerical Mathematicée (eeee) soe—see

where K is a bounded constant, due to (18). We deduce that the proposed adaptive strategy is also of
second-order accuracy for this discontinuous case. 2

3
Remark 4. The same analysis can be done with a more accurate interpolation, that is typically with an

error model ofcth order: 5
6

lem@)] = (dp ()" [u], .
wherex® holds either for ther-derivative ofu or for a differential quotient close to it. In the second
case, the differential quotient is boundedZik*. In that case, in the optimal error appears a maximal
power of the differential quotient which is equal #¢. Since this is always smaller thaid, «-order 10
accuracy on a discontinuous function is again obtained. 1

On this basis, extensions ko— p adaptation can be designed. 12

13

Remark 5. In this discontinuous case, makiagtend to infinity in order to try to get information con- 14

cerning theL.*> case is definitively deceitful. It tends to say tli&¢ second-order convergence also hold%

as a limiting case. But the initial assumption that we can representtherror with an integral of 16
form (5) is wrong. TheL* error between a fixed discontinuous function and continuous approximatiéhs

simply cannot tend to zero. 18
19

20

3. The2D case 21
22

We propose a 2D extended model for tRe interpolation error and then apply again a variatiof®

calculus. 24
25

26
27
28
29
30

3.1. Definitions and notations

Let u be a twice continuously differentiable function from a sul@etf R? in R. The Hessian of is
denoted by

@ 0% 31

dx dx.0y
HM - ( 92u ;Czu) ) ’ (20) 32
axdy  9y? 33
‘H, is diagonalizable through a rotatidd, passing from the usuék, y) coordinate system to a systems4
&, m: 35
36

5 o1 A 0 51
Hy=R./H,R,"=Ru R, (21) 37
0 A 38
where 39
40
9%u 9%u

A= — = A1) > Al 22) 4
1= 582 2= 5 A1l = |A2] (22) "

The family of metricsM we shall consider involves a tensor field dependingxory) and defined as 43
follows a rotationS 4 and its inverseSJ(j: 44
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1 2
-1
Mx,y) =8y (’“g’ ) 2>SM, (23)
nl_/\/[_;-

whereSu, maq0, andm g depend onx andy. Similarly to the 1D case, the Iengﬂ]M(c?l) of a vector
cd in metric M is defined as follows:

1
Lpm(0) = f VIMB(x'E+ (1—x)d) dx'. (24)
0

© 00 N o g b W N

Ideally, in a mesh defined by the mettiet, any edges is exactly of lengthL »((¢) equal to 1 The 1o
coefficientsm v, andm 4. are the local mesh sizes 8ff in each of the two direction8y andias 11
defined by the rotatiors . We omit the indexM for simplifying notations. Quantitiesmlz and m—1§ 12
represent the number of mesh elements by unit length following respectively aet; . In a similar 13
way to the 1D case, we associate to a metrichelocal density of nodeg (again indexM is omitted): 14

1 1 15
dix,y) = —.— (25) 16
Ny mg 17
and the total number of nodes defined as the integral of mesh density, 18
1 l 19
C(M):/——dxdy. 26)

mo mg

21

The soundness of these definitions is easily checked for structured meshes. In the 2D case, a seuenc
of 2D metrics M,, having C(M,) = n nodes gives ath order convergencéor a given error norm 23

lea, (x) |« if we have: 24
25

lem, (x)],. < const.n™*/2, 7)

27

3.2. Rough upper bound o8

The justification of a 2D interpolation error model needs to come back to estimates a little more dgz%ply
than for the 1D case. We present now calculations that are slight modifications of analyses availaple in
the literature. To any triangulatidh, of §2 corresponds af; interpolation ofu that we denote byT,u.
For the local error analysis, we considg€r= [a, b, c], a triangle of7, of diameterima. Functionsu
and IT,u coincide ina, b andc. Let us estimate the errer=u — IT,u on K = [a, b, c]. Let us write
(u — IT,u) in the neighboring of:. Symbolz holds for a point oK :

(u — Myu)(a) = (u — MMyu)(2) + (Za, V(u — Myu)(2)) + %(a*z, H,(z + nza)az),

wheret; is between 0 and 1 and depends@nda and where we denote ky, H (-)v) the scalar product
related toH (-). Similarly, for b andc, we get:

(u — IMyue)(b) = (u — M) (2) + (zb, V(u — M) (2)) + %(Ez, H,(z + t2zb)bz), 4L

(u — Myu)(c) = (u — Muu)(2) + (z¢, V(u — Myu)(2)) + %(52, H,(z + t32¢)¢z). a4
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In order to have an upper bound®f (u — IT,u), we look for a point; where the extremum is attained.1

If zisin K then
V(u — Iyu)(z) =0,
or

(Véc V(u — Myu)(z)) =0,

for anyveéc in R? or in K. Using the three above extension and remaking éhat = e(b) = e(c) =0

we get:
1 - - -
0= (u— Myu)(2) + é(az, H,(z + hza)az),

1,- I
0= (u— Mu)(z) + E(bz, H,(z + tyzb)bz),

1. oo
0= (u = It (2) + 5(¢z, Hu(z + 1320)¢Z)
and by addition
1. .o 1- 5 o 1. N
0=3u — Myu)(z) + E(az’ H,(z + nza)az)+ E(bz, H,(z + 122b)bz) + E(cz, H,(z + 132¢)¢z).

Let M be a real number such that

M = max( max VG H, (:)veq Hj‘(Z)Véq).
ek \veock?  |ved|?

Then

| = M) (@)| < é(ncfznz + 1162117 + llczl®) M.
By definition,

z=XAsa + Apb + Ao,
with

Aa+ Ao +ro=1
Thus

dz = hyab + h.dc, bz = A.be + Agba, 7 = gl + Apch.
We deduce that

lazl|? + 11bzII> + N1z )12
< (W24 A2)llabl|? + (22 + 22) |ac|® + (A2 + 22) |be||?
+ 2(hahp)| (€, )| + 20uae) [ (ba, be) | + 2000 |(ab, de)|.
If we denote byL the length of the largest edge, then:

Izl + 152112 4+ 1162012 < 2(A2 + A2 + A2 + Aahp + Aghe + Aphe) L2
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One easily verifies that the extremum is reached at:
1
Aa=Ap=A.= 3

and thus the upper bound writes:

|(u — Mu)(2)| < SLZM. (28)

This result suggests the form of the upper bound to get in the case of an arbitrary dim&nsion
1 1 [dd+1) _dd-1d+1%\ , 1/ d \*,
— 17 <= 2 LML -|—— ) L°M.
|G = M @) 21+d((a’+1)2+ 2 d+1) 2\154

We return to the case where the extremum is not reach&d then it corresponds to an edge, let us saz
the edgea:b. The gradient vanishes arb and it follows that:

© 00 N o g b W N

=
o

11

14
15

1. IR S
0=2(u — Myu)(z) + E(az, H,(z + hZa)az)+ é(bz, H,(z + tpzb)bz). .

Let M such that 17
- - 18
vec H,(z)ve
M = max( max lvee - (Zg CH), (29) 10
zeab \Véceab lved]| 20
then 21
l o o - 5 22
|(u — Myu)(2)| < Z(Ilazll + 1bz]I°)M. 23

24
25
26
27

And then: 28
29

1
|(u — Mu)(2)| < gLZM, M defined by (29) (30) =0

Sincez = A,a + Apb, we recover the upper bound established in one dimension:

1, -
|(u — Mu)(2)| < é(||ab||2)M.

31
This result is better than (28) but does not provide any information concerning the possible anisotropy of

the function. It cannot be used in order to prescribe mesh stretching. a3

34

3.3. An anisotropic upper bound a5

Anisotropic upper bounds are the topic of many current studies, see, for example, [20]. We giveiEere
a result adapted to our needs. The notations of previous section are kept. Let us assume thatthe point
where the maximum is attained is closeratdhan tob or c. We assume also thatis in K (not on an
edge). We denote hy the intersection point betweem and the edge facingin K, i.e.,bc (Fig. 1). We
develope from a:

39
40
41
1 42

e(a) = (u — Myu)(a) = (u — MMyu)(2) + (Za, V(u — Myu)(2)) + /(1 —0)za, H,(z + tZayaz)dr. ~ *3
44
0
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a
X
b ) ¢

a

Fig. 1. Anisotropic error analysis.

Sincez is closer taz, the numben., such thatiz = Aa?z’, is smaller thar%:

1
le(z)] = /(1—:))\2(61&/, H,(a + tZa)aa’)dr|,
0
4 1
le(z)| < 9 /(l —0aa’, H,(a + tZa)aa’) dt |,
0
4 1
le(2)] < 5 /(1 —1)dr trerggﬁKaa’, H,(a + tza)ad')|.
0

Then

2 - S
le(z)] < 5 max|(aa’, H,(z)aa')|.

7Z/€aa’

[DTD5] P.12 (1-29)
by:ML p. 12

(31)
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27

The case wheregis located on an edge, let us say edgewill eventually lead to the same upper boundzs

le(2)] < }maﬁ(aﬁb, H,(z)ab)|.
8 zeab
The two cases (31) and (32) allow to write the final estimate:

2 - -
|e(z)‘ < 5 I;T/]gﬂ(aa/, H, (Z/)aa’>|.

3.4. Error modelling

(32)

(33)

29
30
31
32
33
34
35
36
37

For the sake of simplicity we assume that the Hessian eigenvaluaad A, in (22) have positive 38

and different absolute values. Extension to other cases are evident or will be discussed in the sequel. Let
us first study the case of isotropic, i.e., non-stretched, meshes. We consider finding an optimal isoteopic

metric, i.e., withmy =m, =m in (23):

2

0 1
M(x,y)zSXj( i )SMzﬁld.

1
0 .z
¢

(34)

a1
42
43
a4
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—
—

Fig. 2. Stretching of a regular mesh.
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17
It is natural to identify the local mesh size with the largest edge length in estimate (30). We deducs the

following error model: 19
20

em(x, y) =m?(x, y)s(x, ), s(x, y) =max(| A1/, [12]) (35
wheres(x, y) is taken equal to the largest absolute value of eigenmodes (22) of the Hesgiahpadint 22
(x, ). 23

If we investigate anisotropic meshes, the modelling is somewhat more delicate. When considefing,
for example, the deformation of an equilateral mesh, a mesh quality question arises. Indeed, the2same
stretching can produce in one case an acute mesh and, in the other one, a mesh involving angles clos
tox. See Fig. 2. 27

These two meshes have identical local densities, but the corresponding error is different. This kized of
situation is analysed in the literature studying mesh quality. See, for example, [20]. From these works
its turns out that the degradationl¥ interpolation error between the two extremal situations of Fig.®
can introduce a factor 2 in the error. But in our continuous model, there is no way to distinguish betaeen
the two stretchings. We cannot do anything but neglect this kind of event, or, equivalently, assumezthat
obtuse triangles are not considered. R 33

Our metricM specifies a#y the (smallest) segment length len@th) (among the segments insides4
the triangle) in the stretched direction, andrasthe (largest) segment length in the direction orthogonat
to the stretched direction. Let us assume that the functibas a uniform Hessia#f,, i.e., a Hessian 36
not depending on space variabkeandy. This restricts our investigation to uniform metrics. The mesh
is the image of a uniform (equilateral) mesh by an affinity of stretching in the direction specified bysthe
rotationS. Any triangle of the stretched mesh lies inside the ellipse, image of the circumcenter circledor
the initial equilateral mesh (Fig. 3). 40

An upper bound for the length of a segment inside the triangle in a particular direction is the chord
of same direction passing by the center of the ellipse. This upper bound can be attained in practiceby a
particular element verifying approximatively the metric specification. Taking this ellipas a model 43
for the local triangleX in the error estimate (33), we observe that the error estimate writes: 44
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1
2
3
4
5
6
7
8
9
10
11
Fig. 3. The ellipse modelling a stretched triangle. 12
13
em = max| aa, Haa)| (36) 4
a,a’eE 15
Let us identify the best rotatio(S) for our metric. The right-hand side of (36) will be minimum wher#é
the larger axis of the ellipse is aligned with the largest eigenvalue direction of the Hessian, i.e.: 17
18
Sm=Ry. (B7) 10

This option is adopted for the general case of non-uniform Hessians in the rest of the paper. The pmﬁi’Wlse

error estimates can be then written in a simplified form:
22

23

24

25
Remark 6. In practice, the difference between stretching with and without obtuse angles makes sense
only at the step when the metric is interpreted into a mesh. Given a metric, shall we build a stretghed
mesh without or with obtuse angles? The answer depends strongly on the algorithm applied for #hesh
generation. For example, a mesh adaptation by deformation can produce obtuse angles. But this zsan b
compensated in 2D by diagonal swapping. 30

31

3.5. Minimization of the interpolation error (1) 32
33

According to (35), the local mesh size is defined as a unique scalardiétdy) or equivalently the 34

9%u

ogz|™

9%u
emx,y) = Z o m? (38)

node density by area unit(x, y) = 1/m?(x, y). The total number of nodes is given by: 35
36
C(M) =/d(x,y)dxdy. (39 ¥
38
$2 39
For error modelling, we get inspiration from the above rough estimate: 40
41
epm(x, y) =m?(x, y)s(x, y) = d(x, p)s(x, ), (40)

wheres(x, y) is given in (35). Let us minimize th* norm of this error under the constraint of a numbes:
of nodes equal tov: 44
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m/viln/s”‘d"‘ dx dy (41)

2

under the constrair€ (M) = N.
The optimality conditions are:

—a / s%d~*18ddx dy <0 (42)
2

for anydd such thatf,, 34 dx dy = 0, or taking into account the constraint:

dopt(x, y) = s(x, y)ai, (43)

N
fgsaaﬁ dx dy
(fgsw%l ds)1/2

iz y) 7D, (44)

mopt(X, y) =

© 00 N o g b W N

N v e
A W N B O

15

Remark 7. Again the casex = +oo givesd = s, that is the error equidistribution option referred int®

Remark 3.

The corresponding optimal error writes:
1 . . e
Ssptzﬁ/smdxdy(/smdxdy> . (45)
2 2

For analysing the accuracy order on a discontinuity, we restrict to a fungtegual to the following
Heavyside function:

u(x,y)=1 ifx>1 0 else (46)

17
18
19
20
21
22
23
24

In the same way as in Section 2.4, the local error coefficientterms of derivatives is replaced by azs

local errors; in terms of differential quotients, which reduces in our particular case to:

s5(x, y) =82 ux +8,y) — 2u(x, y) +ulx = 8,)| (47)
which is bounded ir.¥/?, but not inL?”, for y > 1/2. Now, fora = 2, the power of; in the integral of

29
30
31
32

the optimal error is 23, then the integral (45) is not bounded and we do not get second-order accuragy.

3.6. Minimization of the interpolation error (I1)

34
35
36

Considering an anisotropic family of metrics, we return to the general notations of Sections 3.1-3.3.

3.6.1. Optimization problem
According to Section 3.4, we consider metrig$ that are written:

1 (mg)72 0
M(x,y)—Ru( 0 (mn)z)Ru (48)

and the functional to minimize is the following one:

38
39
40
a1
42
43
a4
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9%u ul ,\*

The optimal metric minimizes the function&} under the constraint (M) =

0%u ul ,\*
mmf( 852 8_172 .mn) dx dy (50)

under the constrainf ms ~'m, tdxdy = N.
The optimality system writes:

2

EL(M)SM =0,
The second equation can be used for writing a relation betwdeandC:
—Lomy  —Lome _g
mg my my mg
¢
—.0 —.8 =0.
/ my + o Mg
One can write
Smg _ —mg
<5mn>_w< my ) (53)

Eq. (51) will be verified for any coupl&m:, m,) such that (53) holds at least for one scalar functjon

of (x, ).
Let us develop Eq. (51):
9%u 9%u

92u ) 20‘71
f(a—sz’" Tl ’"n) (E

§
Due to statement (53) we can replaee: andém,,:
9%u ul| 32

ol 9%u
[ R I o om0y =0

Sincem,, ms and the second derivatives@do not vanish, this will be zero for any functiahif:
d%u 0%u
0g2| on?
From which we can derive the ratio betweep andm,

2
m§5m§ —+

al;m Sm >d.xdy:O.

mé m5 §+

m2. (54)

me = n

92u
G

|(3§2)|

(59)
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For the sequel, it will be simpler to express metki¢ in terms of the node density, number of nodes 1
by area unit, and of the local aspect ratio

o 1

2

M:%R;l(“ O)Ru. (56)

More precisely we setn; = \/g andm, = /M—ld . Constraint (53) becomes:

© 00 N o g b~ W N

/Sd =0. (57)
Condition (51) can now be written:
5,u uéd
4 da?

/ < 9%u 32
Let us develop in function ofu andsd. Forsu

Pulp  |0%u] 1\
d&2|d 2 ud) (
/( - 1( 9%u| 1

Véd such that /ad =0andvépu.
— —)3M =0 VYéu,
where(x) stands fol a§2|" + | |Md which, by assumption, never vanishes. We deduce:

e
=]

82
o2

[
N

82

0,
0&?

dép + udd
11242 =

e
® N o 0 b W

[uy
©o

w2d

NN NN
w N B O

d
From which we get:

2
|g_nt£| 1/2
BANE=T
9E2
which is (55). Foid:

Jeor (5

We get then:
82

all
() (852

or, in other words:

1 ( d%u
do+1 352
Let us replace: by its value:
32u 32
0g2|

N
QU
NONNN
N o g~

W W W NN
N P O ©

— %u| —1
— 8d =0.
dz + on? Mdz)

852

W W W w
(oINS ) B NN V]

W W W
© 0

(w) +|— —) =Cte
82
(n) + 3—

u|1\“
> ; = Cte.
)0{/2

IN
o

E I i
AW N P

da+l Cte (
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We thus get:
d%u | |82

d=C,(|=—||== ,
(3%‘2 8772)

where constant,, is given by:
3%u| | 8%u

o= ([ (|5 )™

Finally the square local mesh sizes are given by:

-1
dxdy) N.

1 —20—1
2(a+D azu 2(a+1)

an?

1
2(a+1)

2 -
, my = C,

1| 9%u 2D 0%u
a2 |an?

which means that metrig1,; is defined by:

1 9%u

2 =
me=C 22

o

2, |\ z+2 |/ LDHY2 0
Oul\ " gt e R (58)
0 2 u 0 |/| 92u |)l/2

| 352

02u
g2

Mopt= C(;l(

In the case of th&e2 norm, this becomes:

~5/6 42, 1/6
|24 0
-5/6 ,

|3s2|

2%
9g2

Mopr2=C, 'R ? Ru. (59)

0 |2y el

The case of th&€> norm can bdormally derlved by passing to the limit:

1y —1 |a‘§2| 0
0 | |

And we again get an equidistributlon of the integrand of (49).

3.6.2. Accuracy order irk.?

In the case of.2 norm, the above expressions simplify as follows:
32u| |0%u [\ Y3 -t
Cy= — .| dxd N 61
(f(asz 8772) y) ©D
and
2 1 82 | /8 92y | M8 2 1 324 |Y/8] 92y | /6
me=Clzzm| | 0 ™=C% 58| |ane (62)
A& an & an
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28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42

Let us consider the Heavyside functiorof (46). Thex-wise second derivative is singular and has to be

replaced by a differential quotient

44



© 00 N o g b~ W N P

A A B D DWW W W WWWWWWN N DNDNDNDNDDNDNDNDNRER R R P P P P P P P
A W N P O © 0N O 00 WN P O O 00 N O O b WNPFP O O 0 N O O b~ W DN P O

50168-9274(05)00062-0/FLA AID:1766 Vol.eee(eee) anm1766 [DTD5] P.19 (1-29)

APNUM:m2 v 1.36 Prn:25/03/2005; 8:35 by:ML p. 19
F. Courty et al. / Applied Numerical Mathemati€ée (eeee) ecoe—see 19
32 .
22~ 55 = Max(ss, ), 63) *
0x? 2
wheres; is defined fromu as in (47). Again this function is iL” for anyy < 1/2. They-wise second 3
derivative is uniformly zero, and has to be corrected by: 4
5
9%u
U e, (64) °
dy?2 7
wheree is a small positive cut-off. Then the above calculations become: 8
9
-1
Co= ( f 81/3§;/3dxdy) N (65)
11
and 12
13
m? = Cy M550 m2 =yt 0 (66) 14
The local error model foL.? writes as follows: iz
1/2
&= / (m? +em?)’dedy) ©7)
We can replace: 19
20
1/2
&=N"( / £33/ e dy ) / (3/°(e70 +£¥)) dedly) 21
22
23
-1.1/2 2173 32
& =2N 8/(/s5 dxdy) . (68) 24
25

In contrast to the isotropic adaptation, the integral in the optimal error for anisotropic adaptatica is
bounded. It is then remarkable that the proposed model suggests that isotropic optimal mesh adaption
will not produce a second-order accurate metho4nvhile the anisotropic optimal mesh adaption wills

produce such an accuracy. These predictions are in accordance with the results in [8,9]. 29
30

31

4. A few numerical experiments 32
33

Several issues of our theory can be enlightened by a few numerical illustrations. 34

Firstly, the conclusions of our analysis extend to a discrete context only if that discrete context angsour
models are close enough to each other. It is crucial to check that this happens not only for extremebg fine
meshes, but for meshes that can be used in practice. 37

Secondly, we have shown that the metrics and meshes proposed in the literature for solutions of efiptic
problems are related ih™ error norm. We have proposed for thé case, a different family of optimal 39
meshes. Then it is interesting to validate our assertion that the second family is somewhat optimadp and
to study what qualitative differences appear when we shift fiéfto L2. 41

In order to do this, we have to pass to a discrete context. We recall that optimization is applied teethe
continuous context. The discrete system is nothing more than a discretization of the continuous optimsality
system. The steps for building the discrete system consist of: 44
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e building the Hessian, either from analytic differentiation, or, preferably for the sequel, by using a
background initial mesh, that is fine enough, 2
e deriving the optimal metric (continuous or on the background mesh). 3
4
From this, we get an approximate solution (a metric on the background mesh) of the continuous prob-
lem (*find the optimal metric”). This discrete solution is subject to a discretization error related to&he
coarseness of the background mesh. 7
Once the discrete metric is obtained, building the adapted mesh is just post-processing. First vie de-
scribe the post-processing, then we focus on the verification of how the optimality properties of the

continuous solution are approximatively satisfied by the discrete solution. 10
11

12

4.1. Mesh adaptation tool s

All the presented experiments are performed by using the BAMG software [7]. Given a “backgroqgld"
mesh and an analytic function, BAMG first evaluates on the mesh the Hessian of the function by a diggrete
differentiation formula before generating the mesh according to the metric.

We have modified BAMG in order that the metric be computed from the Hessian according tolghe
above formula. Once the metric is obtained (on nodes of the background mesh), it is used in a jnesh
regenerator for rebuilding a new mesh following the metrics. The mesh regenerator relies on a Delgynay
reconnection in a space mapped by the metric and on vertex addition, again according to the metric.
The number of nodes is adjusted when necessary by trial and errors through the modification ¢f the
multiplicative coefficient of the metric. Many experiments with BAMG are described in [14]. 23

24

4.2. Optimality assessment 25
26

Since the proposed method defines a kind of optimal mesh on the basis of simplified continuous#hesh
and error models, it is interesting to show on an example how this optimality can appear in a pra&ﬁcal
case.

We consider the interpolation on the unit disk of the plane of the following function: 30

31

32
=103+ y* +atar{ ———— ). 69
S y) +y +aar(sin(5y)—2x) (69) 33
34
Let B be a positive parameter, we consider a series of meshes, indexgdlgt all have about 2100 35
nodes and are adapted according to the following formula: 36
37
82 82 352 |/ )1/2 0 38
s 0 (L 39

40
This family of metrics involves the usual equidistrlbutlonlm" metric, for 8 = 1 and the theoretically 41
optimal metric for thel.? norm, for 8 = 5/6 for ¢ = 0.0001. We then compute the? error. Outputs are 42
depicted in Fig. 4. The error norm relateddce= 5/6 is the lowest one, and is about three times smalles
than those resulting frori = 0.7 or from g = 1. 44
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Fig. 4. Optimality of the proposed metric: abscissas are values gf th@rameter in the adaptation criterion, ordinates artle5

values of the resulting.2 interpolation error.
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100

Fig. 5. Convergence of interpolations to exact arctangent functions with uniform mesh refinement, and for diffdvsnissas
are the numbers of nodes in the meshes used, ordinates are values of the rediititlegpolation error.

4.3. Second-order accuracy

I
1000

L
10000 100000

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

In [18] it is claimed that for smooth function witkteep gradientsuniform mesh refinement show3s

numerical second-order convergence only for very fine meshes able to capture all details. It is claimed
that, in contrast, best mesh adaptation methods show a property of “early capturing of details”, accarding
to which second-order numerical convergence is observed with meshes with a much smaller numtser of

nodes. The purpose of this section is to show examples for which the early capturing of details occes.
In order to evaluate this phenomenon, we have considered the interpolation of three fungtighs, 41

f3, fa, Of arctangent type as in (69), with four different “steepness” coefficients1.0, 0.1, 0.01, 0.001.
The mesh convergence is first measured with uniform refinements, Fig. 5. When the function is not gteep,

42

second-order convergence is easily obtained. Conversely, we do not observe it for the steepgst ofie,
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Convergence witr: uniform mesh

Convergence with adapted mesh -------
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14
Fig. 6. Convergence to exact arctangent functiorefer0.001 with optimal adapted meshes, abscissas are numbers of nodelssin
the meshes used, ordinates are values of the resulfiigterpolation error. Comparison with uniform mesh refinement. Upper

and lower curves are ideal®h order and 2nd order curves. 16
17

18
even with meshes with almost 100000 nodes. We now concentrate on the stydyand adapt the
meshes by applying the proposed metric. The effect is a much faster convergence, essentially sgconc

order, observable for meshes as coarse as of a few hundred nodes (Fig. 6). 1

22
4.4, Accuracy order for a discontinuity 23
24
In Sections 3.4 and 3.6, we show that for Heavyside functions, the isotropic error model doessnot
have second-order convergence while the anisotropic one has. Nowatlpemei abstract predictions 26
are subject to conditions concerning the representativity of the error model with respect to the pragtical
discretization errors. The purpose of this section is to show one case where theoretical predictions are
confirmed by the discrete analog. 29
We consider the mesh adaptive approximation to a set of two discontinuities, a horizontake0¢ ( 30
and a vertical onex(= 0). The optimal metric method is applied. As in the previous section, the BAMG
adapted mesh generator is used for building the meshes specified by the different metrics. Sequeszces c
meshes with various numbers of nodes are compared from the standpathtrdérpolation errors for 33
the discontinuities. 34
First, the isotropic optimal metric is used. An example of mesh is depicted in Fig. 7. 35
The errors for eleven adapted meshes, with node number ranging from 500 to 200 000 provide asather
clear confirmation of the theoretical prediction given in [8], i.e., that a first-order convergence, not a

better one, is obtained by this method (Fig. 8). 38
Second, the anisotropic optimal metric is used. An example of mesh is depicted in Fig. 9. 39
The errors for eight adapted meshes, with node number ranging from 150 to 20 000 show a se®ond-

order convergence, again as predicted by theory (Fig. 10). 41

If we gather in Table 1 (a) the best mesh convergence, established with counterexamples in [8} (b)
the convergence predicted by the continuous metric model in Sections 3.4 and 3.5, and the resultst®f the
experiments of this section, we get perfectly coherent figures. 44
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Fig. 7. An example of isotropic adapted mesh for two Heavyside functions.

Convergence in L2 norm of the linear interpolation error
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Fig. 8. Convergence in2 norm of thePy interpolation of two Heavyside functions with an isotropic adaptation strategy.

We end this paragraph by mentioning that second-order convergence is also observed for flow &alcu-

lations with shocks, see [19].

1000 10000 100000
Number of vertices in meshes

4.5. Influence of the choice of the norm
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42

As mentioned earlier, the proposed variational analysis takes into account the functional $pace 43
which we minimize the interpolation error.

44
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Fig. 9. An example of isotropic adapted mesh for two Heavyside functions.
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Fig. 10. Convergence ihi2 norm of theP; interpolation of two Heavyside functions with an anisotropic adaptation strategy,

38

The influence of the functional norm will now be studied in relation with the application of a method

for image compression.

Indeed, given a function defined on a fine (uniform or not) mesh, a compression could consist of
storing it in a smaller mesh, accepting some loss in the accuracy of its definition, as far as the new file
is sufficiently small. Mesh adaptive interpolation is an answer to this problem, already used in image

processing [16].

40

44
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Table 1

Convergence ir.2 for a discontinuous function

Convergence order

Isotropic Anisotropic

Counterexamples [8]
Optimal metric
theory

Optimal metric
these experiments

<2

2

L infiny

L1

Fig. 11. Representation of a function with the two optiab%’ (left) andL?: contours.

L infiny

RSN
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WAav N N/
NRRRRRS
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25

Fig. 13. Mesh-based compression of Mach contours: view of the mesh&&%@nd L2 compressions.
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L infinicy metric Initial picture

[DTD5] P.26 (1-29)
by:ML p. 26

Fig. 14. Mesh-based image compression, global views: initial picture at boftbradaptation (top, left)L.1 adaptation (top,

right), L° adaptation (bottom, left).

The first example will illustrate the better ability of tli& option, with smallkr, to adapt the mesh to the
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33
34

small amplitude details of a function. Let us start with the sum of an arctangent function of amplltucf’e 1,

combined this time with a sine function of a ten times lower amplitude

fG,y)= 0.1 % sin(50x) + atar( 0.001 )

sin(5y) — 2x

We compare two adapted meshes with about 2000 nodes each. The first one is adapted followimg the

(71)

37
38
39
40

error equidistribution principle, in other words, by minimizing th& error functional. The second one42
is adapted according to the minimization of th&error norm. We observe thaf option restitutes the 43

low amplitude sine oscillation while the*> does not show it at all.

44
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L infinicy Initial

Fig. 15. Mesh-based image compression, zoom: initial picture at (bottom, rlg%e)damation (top, Ieft)L1 adaptation (top,
right), L°° adaptation (bottom, left).

29

30
Mesh-based image compression is particularly useful for storing images produced by numerical finite

element computations. As an illustration we consider the compression of the Mach contours of asflow
analysis. It is enough to mention it is related to a supersonic flow with different shocks. In Fig. 13yve
compare the.® and L? adapted meshes. The ramp-like shocks starting from the middle of the airfpil
correspond to a much smaller amplitude of variation than the vertical bow shock at left part. We observe
that they are nearly ignored by tii&° option while it is well followed by the.* option. 36

A last example is the mesh compression of a black and white portrait of Mona Lisa. The initial image
we used is depicted as right-bottom of Fig. 14. It was described by a fine adapted mesh of 60 006sver-
tices resulting from the image processing presented in [11]. The purpose is to compress it to onlyss000
vertices with the presented algorithm. We have checked that the compression ratio on postscript fites is
indeed 12. In that case, the identification of the best approach is not clear. Contrasts are importamnt for
the vision and some part of the image (the eyes) are more important than other ones. We note hawever
that some regions with low contrast, such as sleeve and hand, Fig. 15, are better reproducediith ¢he
option. 44
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5. Conclusions 1

2

This work explores some capabilities of a continuous setting for mesh adaptation purposes. In this first
study, we restrict to the problem of best adaptive mesh for pure interpolation. 4

A mesh is modelled by a metric. The total number of nodes is a continuous integral of the métric.
The continuous interpolation error is modelled with the first term of a Taylor series for the interpolation
error. The norm inL*, 0 < o < oo of the error model is then minimized. We get a completely explicit
expression of the optimal metric in terms of the function to which it is adapted. 8

When a discontinuous function is considered, the order of accuracy of the adaptation model i9 pre-
dicted. It can help in specifying conditions for practical second-order accuracy. 10

The usual equirepartition strategy bf° analysis appears as a limiting case which does not enjby
these higher-order convergence properties. 12

Transposition to the discrete context is demonstrated by a few numerical experiments giving some (yet
partial of course) confirmation that the approach is sound, efficient and shows the behaviors predictéd by
the theory. 15

This type of analysis has a potential usefulness for several applications: 16

17

e inimage compressiomhe continuous metric method defines an optimal compression method ogan

isotropic mesh. 19

e in scientific computingln a future work we follow the strategy proposed here for extending tAe
present method to the research of an optimal mesh for the solution of a PDE. 21
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