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Abstract

This paper addresses the problem of finding the mesh representing at best inLp a twice continuous differentiabl
function defined on the plane. A continuous setting of this problem is used. It relies on an abstract mesh
the “continuous metrics” allowing a variational analysis and on the identification of an optimum. Aniso
optimal meshes can then be specified. An extension to discontinuities is proposed. It involves the predictio
convergence order of the underlying mesh adaptation method. We present a few numerical illustrations r
numerical solution representation and to image compression.
 2005 Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

CFD researchers have spent decades constructing “second-order accurate schemes” but w
are applied to industrial problems, numerical convergence is rarely second order. When theorists
dressed about this problem, they answer that the Navier–Stokes flow fields are generally smooth
involve steep gradients, and therefore it might happen that second-order convergence, only an
totical property, will indeed apply, but only for extremely fine meshes that are not usable in pr
Further, some of the flows of interest involve genuine singularities and second-order convergence
be obtained.
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In fact, in order to answer to the expectation of these practitioners, a new theory of approxim
taking into account mesh adaptation is being progressively built by the research community.
uniform mesh refinement is identified as a penalizing option for higher-order mesh convergence.

With mesh adaptive approaches, the numerical order of the convergence to the continuous is r
evaluated from the variation of error with respect to the number of nodes and appears as much be
with uniform mesh refinement (see, for example, [21]). This is due to advances in adaptation crite
in mesh representation.

New theoretical developments are specifying progressively criteria for adapting meshes in orde
an error lower than a prescribed threshold. The derivation ofa posteriorierrors is an important topic i
this direction, see, for example, [1,3,10].

However the relations between the adaptation strategy and the convergence order remain a
issue.

The adapted mesh needs not only to be fine enough in some regions, but also to be not too fine
regions. It becomes a part of the unknowns in the system to solve. In the case where the mesh s
found among a set of deformations of a reference one, many works in the literature proposed th
deformation or equivalently mesh coordinates as the solution of a particular system coupled w
discrete partial differential equation (PDE) under study. See, for example, [6,17]. In that case th
topology is prescribed by the user and may be not adequate for the adaptation.

Conversely, in the case where the user does not wish to fix the topology, but instead, wants th
rithm to find it, then the definition of a system the solution of which is the adapted mesh is much
difficult. Firstly, two meshes can have very different topologies and give about the same local ac
Secondly, it is difficult to find an optimal mesh if we have to investigate inside a set of meshes de
by integers and/or booleans.

These remarks have motivated researchers to represent meshes by continuous functions desc
mesh. See, for example, [2]. These functions can be for example the (scalar) local mesh dens
the computational domain. From its knowledge, it is possible to derive an upper bound for th
truncation error. But this upper bound does not give a perfect idea of the local error if local stre
effects are not taken into account.

In many recent publications, see, for example, [4,5,12,13], the local stretching is modelled by
of a non-scalar field, themetric. An adapted metric is specified by an argument of equidistribution o
interpolation error related to the partial differential equation solution.

The main purpose of the present work is to explore several outputs of an analysis in which we l
the optimal metric in acontinuous setting.

In the first step presented in this paper, we focus on the easier problem of adapting a mesh tobest
P1 interpolation of a given analytic function. Interpolation errors have been the subject of many stu
in particular for mesh quality purposes (see, for example, [20,15]). From error estimates, abstra
models can be built. The problem of the best adapted metric can be cast into the optimization
error model and the optimal metric can be exhibited. The mathematical model also allows to rep
some convergence-to-the limit behaviors, giving some prediction of numerical convergence orde
discrete case.

We shall first consider the 1D case and recall how a continuous metric is defined, how the interp
error can be modelled, and how a calculus of variation produces an optimal metric. The interpola
a function having a discontinuity is analysed. The 1D case allows for an overview of several p
extensions.
U
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Then we shall propose a model for the 2D case. The error model will be derived from an ac
error estimate. Then again we propose a definition of the best metric. This time, mesh anisotropy
taken into account. The convergence order for isotropic and anisotropic adapted meshes is com
the case of a discontinuous function.

We complete these theoretical statements by a series of numerical experiments in order to sho
ples for which behavior predicted by the theory are indeed observed. We finally illustrate how th
interpolation” problem that we address can also applied to an image compression problem.

2. Continuous metric in an interval

This section is somewhat close to the end of Chapter 3 in [2] in which the authors look for the bes
density. However we introduce in a different-purely continuous-setting the notion of metric optim
which will be the central tool of the sequel. After some definitions concerning the metric, we rec
estimate of the interpolation error and then show how an optimal metric can be derived.

2.1. Definitions

A metric on a given set allows to define the distance between two arbitrary elements of it. W
call the metric on the interval[a, b] a (strictly) positive continuous functionM :x → M(x) defined on
[a, b]. It specifies, for anyc andd of this interval the length of segmentcd as follows:

LM(cd) =
d∫

c

√
M(s)ds. (1)

Let us consider a mesh of interval[a, b] with N nodes. It is a subdivisionx0 = a < x1, . . . , xi <

xi+1, . . . , xN−1 < xN = b of this interval. A consequence of the above definition is that a metric
prescribe a particular class of meshes. Indeed, we shall say that a mesh conforms to metrM if
and only if the following relation, unitary element length holds:for any element[xi, xi+1], we have∫ xi+1
xi

√
Mdx = 1.

In that case, if we introduce the local continuous mesh sizemM = M−1/2 we have:for any elemen
[xi, xi+1],

∫ xi+1
xi

1
mM

dx = 1, which shows that whenmM is a constant function, it is nothing other th
the element size.

Another way to view this is to introduce the local continuous node densitydM = 1/mM: for any
interval [xi, xi+1], we have

∫ xi+1
xi

dM(x)dx = 1.
It can be verified that the number of nodes (or equivalently intervals) of the mesh is specified

metric. It is given by:

C(M) =
b∫

a

√
Mdx =

b∫
a

1/mM(x)dx =
b∫

a

dM(x)dx. (2)

If C(M) is a positive integer, exactly one mesh is described by it, ifC(M) is not an integer, no mesh
described by it.
U
N
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2.2. Interpolation error bound

The present work concentrates on the continuousP1 interpolation. We first recall in short an err
bound useful for the sequel. We consider:

• A functionu, regular enough, defined on a segment[a, b],
• h = meas([a, b]), not necessarily small,
• Πhu the P1 interpolation ofu on [a, b]: Πhu is an affine function on[a, b], (Πhu)(a) = u(a),

(Πhu)(b) = u(b),
• the approximation error defined bye(x) = u(x) − (Πhu)(x).

For anyx in [a, b], there existst1 andt2 in [0,1] such that:

e(a) = (u − Πhu)(a) = (u − Πhu)(x) + (a − x)(u − Πhu)′(x) + (a − x)2

2
u′′(x + t1(a − x)

)
,

e(b) = (u − Πhu)(b) = (u − Πhu)(x) + (b − x)(u − Πhu)′(x) + (b − x)2

2
u′′(x + t2(b − x)

)
.

Looking for an upper bound ofe = (u − Πhu) leads to look for a pointx such thate′(x) = (u −
Πhu)′(x) = 0. After some computation we get:

0 = 2(u − Πhu)(x) + (a − x)2

2
u′′(x + t1(a − x)

)
+ (b − x)2

2
u′′(x + t2(b − x)

)
and ∣∣(u − Πhu)(x)

∣∣ � 1

2

(∣∣∣∣(a − x)2

2

∣∣∣∣ +
∣∣∣∣(b − x)2

2

∣∣∣∣)max
[a,b]

|u′′|.
Then∣∣(u − Πhu)(x)

∣∣ � 1

4
max
ξ∈I

(
(a − ξ)2 + (b − ξ)2

)
max
[a,b]

|u′′|.

The maximum is reached forξ0 = (a+b)

2 , this implies,∀ξ ∈ I :∣∣e(ξ)
∣∣ = ∣∣(u − Πhu)(ξ)

∣∣ � (b − a)2

8
max
[a,b]

|u′′|. (3)

This estimate, after it has been modelled in terms of continuous functions, will contribute to the c
uous problem statement.

2.3. Optimal metric

2.3.1. Optimality condition for normLα

The interpolation error vanishes on each vertex. Its maximal value inside each element is es
by (3). An asymptotic extension would also provide something like the right-hand side of (3) a
U
N
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term. We propose to represent the interpolation error in the continuous setting by a simplified fu
inspired from these analyses. This process is a modelling process. It is motivated by the need o
analysable mathematical formulation. We assume that the functionu is smooth, that its second derivati
u′′ is everywhere strictly positive, and that meshes that we consider are enough fine to allow the
order term of the interpolation error to represent well the whole error. Let us define the continuou
P1-interpolation error as:∣∣eM(x)

∣∣ = (
dM(x)

)−2∣∣u′′(x)
∣∣, (4)

wheredM(x) is the node density of the mesh, or equivalently the inverse local mesh size, i.e., the
of mM(x). We want now to find the minimum with respect to metricM in a setU , of the Lα norm
(0< α < ∞) of the erroreM:

min
M∈U

Eα(M), with Eα(M) = (∣∣eM(x)
∣∣)α

Lα =
b∫

a

(
dM(x)−2

∣∣u′′(x)
∣∣)α

dx, (5)

with respect todM, U is an open subset ofL2 such that any metric inU is such thatdM > 0 and
d−2α
M is of bounded integral. For a node density tending to infinity, the error tends to zero. Let us

that a sequence of 1D metricsMn havingn nodes gives aκ th order convergencein Lα norm if the
corresponding error satisfies:(∣∣eMn

(x)
∣∣)

Lα � const· n−κ . (6)

If we can state such a property for the metric model, this would be a good indication that theκ th order
convergence is satisfied by meshes built from these metrics.

In order to avoid finding the trivial infinitely fine solution, the space of admissible metrics is rest
prescribing the number of nodes:

∀M ∈ U, C(M) = �C(d) =
b∫

a

d(x)dx = N. (7)

This gives a linear constraint for variabled . In order to get (at least formally) optimality condition, w
can differentiate the functional of (5) with respect tod :

−2α

b∫
a

d−2α−1
(|u′′|)α

δd dx � 0, ∀δd:

b∫
a

δd dx = 0.

Thus

dopt(x) = K1.
∣∣u′′(x)

∣∣ α
2α+1

whereK1 is a constant which we can determine by taking into account the constraint (7), we get:

dopt(x) = N∫ |u′′| α
2α+1 dx ′

∣∣u′′(x)
∣∣ α

2α+1 (8)

or, in terms of the local mesh size:
U
N
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mopt(x) =
∫ |u′′| α

2α+1 dx ′

N

∣∣u′′(x)
∣∣ −α

2α+1 . (9)

The minimum of the functional writes:

(
Eopt

α

)α = 1

N2α

( b∫
a

|u′′| α
2α+1 dx ′

)2α( b∫
a

∣∣u′′(x)
∣∣ 1

2α+1 dx

)
. (10)

Remark 1. The smoothness ofu is important in this analysis butu can be replaced in practice by
smoother function. Since the Hessian of the functional is always positive, the solutiondopt is the unique
global optimum.

Remark 2. The local mesh size, naturally inverse proportional to the number of nodes, is defined
only if the second derivativeu′′ never vanishes. In practice, we replace|u′′| by max(ε, |u′′|), with a small
positiveε.

2.3.2. Examples
• ForL1 norm: this is a rather usual norm in image processing, we get

m1
opt(x) =

∫ |u′′|1/3 dx ′

N

∣∣u′′(x)
∣∣−1/3

. (11)

• ForL2 norm, which is the natural option for PDE’s, we get

m2
opt(x) =

∫ |u′′|2/5 dx ′

N

∣∣u′′(x)
∣∣−2/5

. (12)

• For the case ofL∞ norm, due to insufficient smoothness, we cannot get an optimality conditio
differentiating the functional. Instead, we can get a formal one by making the power coeffic
(9) tend to infinity:

m∞
opt(x) =

∫ |u′′|1/2 dx ′

N

∣∣u′′(x)
∣∣−1/2

. (13)

Remark 3. In the last case, introducingd∞
opt:

d∞
opt(x) = N∫ |u′′|1/2 dx ′

∣∣u′′(x)
∣∣1/2

(14)

in (4) gives a uniform local error,

∣∣e∞
M(x)

∣∣ = (
∫ |u′′|1/2 dx ′)2

N2
∀x. (15)

It is not a scoop that theL∞ norm of error is formally minimum when the local error is uniform. This
an option referred in the literature as the error equidistribution, used in [7,13]. We rediscuss that
in Remark 5 in the sequel.
U
N
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2.4. Convergence order of the continuous metric model

If we take theαth root of expression (10), we get:

Eopt
α = 1

N2

( b∫
a

|u′′| α
2α+1 dx ′

)2( b∫
a

∣∣u′′(x)
∣∣ 1

2α+1 dx

)1/α

. (16)

Since the two integrals are bounded, this shows that the optimal error decreases as the inverse of
the number of nodes. According to (6), this expresses the second-order convergence (forP1 interpolation)
of the metric sequence obtained by the present adaption strategy. This is not surprising since the
u is assumed to have continuous second derivatives, and the same property also holds for a seq
uniform meshes.

Let us examine how to look for an optimal metric in the case of a functionu having adiscontinuity.
More precisely,u is bounded and smooth on two parts[a, c] and[c, b] of the interval, but is discontinuou
at pointc with a nonzero step.

We choose to represent theP1 interpolation error as:

b∫
a

∣∣eM(x)
∣∣α dx ′ =

b∫
a

(
m2

∣∣u′′
δ (x)

∣∣)α
dx

with u′′
δ (x) = δ−2

(
u(x + δ) − 2u(x) + u(x − δ)

)
, (17)

whereδ is assumed to be smaller thanm. Using this error model is justified by the following remarks

• on the element[xi, xi+1] containing the discontinuity, the interpolation error
∫ xi+1
xi

|Πhu − u|α dx is

smaller than
∫ xi+1
xi

meas([xi, xi+1])2|u′′
δ |α dx,

• u′′
δ is close to∂2u

∂x2 whereu is regular.

Moreover, we observe thatu′′
δ is of the order ofδ−2 for x in [c − δ, c + δ]. Then forγ such that 0< γ �

1/2:

‖u′′
δ‖Lγ is bounded independently ofδ, (18)

and forγ > 1/2:

‖u′′
δ‖Lγ is unbounded forδ → 0. (19)

According to Remark 1, we can replace the term|u′′
δ | by a smooth approximation of it, that satisfies

above properties. Let us restrict our calculus of variations to theL2 case (α = 2). The resulting optima
error writes:

Eopt
2 = 1

N2

( b∫
|u′′

δ |2/5 dx ′
)2( b∫ ∣∣u′′

δ (x)
∣∣1/5

dx

)1/2

� K2

N2
U
N
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whereK2 is a bounded constant, due to (18). We deduce that the proposed adaptive strategy is
second-order accuracy for this discontinuous case.

Remark 4. The same analysis can be done with a more accurate interpolation, that is typically w
error model ofκ th order:∣∣eM(x)

∣∣ = (
dM(x)

)κ ∣∣u(κ)
∣∣,

whereu(κ) holds either for theκ-derivative ofu or for a differential quotient close to it. In the seco
case, the differential quotient is bounded inL1/κ . In that case, in the optimal error appears a maxi
power of the differential quotient which is equal toα

κα+1. Since this is always smaller than 1/κ , κ-order
accuracy on a discontinuous function is again obtained.

On this basis, extensions toh − p adaptation can be designed.

Remark 5. In this discontinuous case, makingα tend to infinity in order to try to get information con
cerning theL∞ case is definitively deceitful. It tends to say thatL∞ second-order convergence also ho
as a limiting case. But the initial assumption that we can represent theL∞ error with an integral of
form (5) is wrong. TheL∞ error between a fixed discontinuous function and continuous approxima
simply cannot tend to zero.

3. The 2D case

We propose a 2D extended model for theP1 interpolation error and then apply again a variat
calculus.

3.1. Definitions and notations

Let u be a twice continuously differentiable function from a subsetΩ of R2 in R. The Hessian ofu is
denoted by

Hu =
(

∂2u

∂x2
∂2u

∂x.∂y

∂2u
∂x.∂y

∂2u

∂y2

)
, (20)

Hu is diagonalizable through a rotationRu passing from the usual(x, y) coordinate system to a syste
(ξ, η):

Hu = RuĤuR−1
u = Ru

(
λ1 0
0 λ2

)
R−1

u , (21)

where

λ1 = ∂2u

∂ξ2
, λ2 = ∂2u

∂η2
, |λ1| � |λ2|. (22)

The family of metricsM we shall consider involves a tensor field depending on(x, y) and defined as
follows a rotationS and its inverseS−1:
U
NM M
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M(x, y) = S−1
M

(
1

mM,θ

2
0

0 1
mM,ζ

2

)
SM, (23)

whereSM, mM,θ , andmM,ζ depend onx andy. Similarly to the 1D case, the lengthLM( 
cd) of a vector

cd in metricM is defined as follows:

LM(
v) =
1∫

0

√
v.M.
v(
x ′ 
c + (1− x ′) 
d)

dx ′. (24)

Ideally, in a mesh defined by the metricM, any edge
e is exactly of lengthLM(
e) equal to 1. The
coefficientsmM,θ , andmM,ζ are the local mesh sizes ofM in each of the two directionsθM andζM
defined by the rotationSM. We omit the indexM for simplifying notations. Quantities1

mθ
and 1

mζ

represent the number of mesh elements by unit length following respectively axesθ andζ . In a similar
way to the 1D case, we associate to a metricM the local density of nodesd (again indexM is omitted):

d(x, y) = 1

mθ

.
1

mζ

(25)

and the total number of nodes defined as the integral of mesh density,

C(M) =
∫
Ω

1

mθ

1

mζ

dx dy. (26)

The soundness of these definitions is easily checked for structured meshes. In the 2D case, a
of 2D metricsMn having C(Mn) = n nodes gives aκ th order convergencefor a given error norm
|eMn

(x)|Lα if we have:∣∣eMn
(x)

∣∣
Lα � const· n−κ/2. (27)

3.2. Rough upper bound

The justification of a 2D interpolation error model needs to come back to estimates a little more
than for the 1D case. We present now calculations that are slight modifications of analyses ava
the literature. To any triangulationTh of Ω corresponds anP1 interpolation ofu that we denote byΠhu.
For the local error analysis, we considerK = [a, b, c], a triangle ofTh of diameterhmax. Functionsu
andΠhu coincide ina, b andc. Let us estimate the errore = u − Πhu on K = [a, b, c]. Let us write
(u − Πhu) in the neighboring ofa. Symbolz holds for a point odK :

(u − Πhu)(a) = (u − Πhu)(z) + 〈 
za,∇(u − Πhu)(z)
〉 + 1

2

〈 
az,Hu(z + t1 
za) 
az
〉
,

wheret1 is between 0 and 1 and depends onz anda and where we denote by〈
v,H(·)
v〉 the scalar produc
related toH(·). Similarly, forb andc, we get:

(u − Πhu)(b) = (u − Πhu)(z) + 〈 
zb,∇(u − Πhu)(z)
〉 + 1

2

〈 
bz,Hu(z + t2 
zb) 
bz
〉
,

(u − Π u)(c) = (u − Π u)(z) + 〈 
zc,∇(u − Π u)(z)
〉 + 1〈 
cz,H (z + t 
zc) 
cz〉.
U
Nh h h

2
u 3
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In order to have an upper bound ofe = (u − Πhu), we look for a pointz where the extremum is attaine
If z is in K then

∇(u − Πhu)(z) = 0,

or 〈 
vec,∇(u − Πhu)(z)
〉 = 0,

for any 
vec inR2 or in K . Using the three above extension and remaking thate(a) = e(b) = e(c) = 0,
we get:

0 = (u − Πhu)(z) + 1

2

〈 
az,Hu(z + t1 
za) 
az
〉
,

0 = (u − Πhu)(z) + 1

2

〈 
bz,Hu(z + t2 
zb) 
bz
〉
,

0 = (u − Πhu)(z) + 1

2

〈 
cz,Hu(z + t3 
zc) 
cz〉
and by addition

0 = 3(u − Πhu)(z) + 1

2

〈 
az,Hu(z + t1 
za) 
az
〉 + 1

2

〈 
bz,Hu(z + t2 
zb) 
bz
〉 + 1

2

〈 
cz,Hu(z + t3 
zc) 
cz〉.
Let M be a real number such that

M = max
z∈K

(
max

vec∈R2

| 
vec,Hu(z) 
vec|
‖ 
vec‖2

)
.

Then∣∣(u − Πhu)(z)
∣∣ � 1

6

(‖ 
az‖2 + ‖ 
bz‖2 + ‖ 
cz‖2
)
M.

By definition,

z = λaa + λbb + λcc,

with

λa + λb + λc = 1.

Thus


az = λb

ab + λc 
ac, 
bz = λc


bc + λa

ba, 
cz = λa 
ca + λb


cb.

We deduce that

‖ 
az‖2 + ‖ 
bz‖2 + ‖ 
cz‖2

�
(
λ2

a + λ2
b

)‖ 
ab‖2 + (
λ2

a + λ2
c

)‖ 
ac‖2 + (
λ2

b + λ2
c

)‖ 
bc‖2

+ 2(λaλb)
∣∣〈 
ca, 
cb〉∣∣ + 2(λaλc)

∣∣〈 
ba, 
bc〉∣∣ + 2(λbλc)
∣∣〈 
ab, 
ac〉∣∣.

If we denote byL the length of the largest edge, then:

‖ 
az‖2 + ‖ 
bz‖2 + ‖ 
cz‖2 � 2
(
λ2 + λ2 + λ2 + λ λ + λ λ + λ λ

)
L2.
U
Na b c a b a c b c
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One easily verifies that the extremum is reached at:

λa = λb = λc = 1

3
and thus the upper bound writes:∣∣(u − Πhu)(z)

∣∣ � 2

9
L2M. (28)

This result suggests the form of the upper bound to get in the case of an arbitrary dimensiond :∣∣(u − Πhu)(z)
∣∣ � 1

2

1

1+ d

(
d(d + 1)

(d + 1)2
+ 2

d(d − 1)

2

d + 1

d + 1

2)
L2M � 1

2

(
d

1+ d

)2

L2M.

We return to the case where the extremum is not reached inK . Then it corresponds to an edge, let us
the edgeab. The gradient vanishes onab and it follows that:

0 = 2(u − Πhu)(z) + 1

2

〈 
az,Hu(z + t1 
za) 
az
〉 + 1

2

〈 
bz,Hu(z + t2 
zb) 
bz
〉
.

Let M such that

M = max
z∈ 
ab

(
max

vec∈ab

|〈 
vec,Hu(z) 
vec〉|
‖ 
vec‖2

)
, (29)

then ∣∣(u − Πhu)(z)
∣∣ � 1

4

(‖ 
az‖2 + ‖ 
bz‖2
)
M.

Sincez = λaa + λbb, we recover the upper bound established in one dimension:∣∣(u − Πhu)(z)
∣∣ � 1

8

(‖ 
ab‖2
)
M.

And then:∣∣(u − Πhu)(z)
∣∣ � 1

8
L2M, M defined by (29). (30)

This result is better than (28) but does not provide any information concerning the possible aniso
the function. It cannot be used in order to prescribe mesh stretching.

3.3. An anisotropic upper bound

Anisotropic upper bounds are the topic of many current studies, see, for example, [20]. We gi
a result adapted to our needs. The notations of previous section are kept. Let us assume that thz

where the maximum is attained is closer toa than tob or c. We assume also thatz is in K (not on an
edge). We denote bya′ the intersection point betweenaz and the edge facinga in K , i.e.,bc (Fig. 1). We
develope from a:

e(a) = (u − Πhu)(a) = (u − Πhu)(z) + 〈 
za,∇(u − Πhu)(z)
〉 + 1∫

(1− t)
〈 
za,Hu(z + t 
za) 
az

〉
dt.
U
N

0
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FFig. 1. Anisotropic error analysis.

Sincez is closer toa, the numberλ, such that
az = λ 
aa′, is smaller than2
3:

∣∣e(z)∣∣ =
∣∣∣∣∣

1∫
0

(1− t)λ2
〈 
aa′,Hu(a + t 
za) 
aa′〉dt

∣∣∣∣∣,
∣∣e(z)∣∣ � 4

9

∣∣∣∣∣
1∫

0

(1− t)
〈 
aa′,Hu(a + t 
za) 
aa′〉dt

∣∣∣∣∣,
∣∣e(z)∣∣ � 4

9

∣∣∣∣∣
1∫

0

(1− t)dt

∣∣∣∣∣ max
t∈[0,1]

∣∣〈 
aa′,Hu(a + t 
za) 
aa′〉∣∣.
Then∣∣e(z)∣∣ � 2

9
max
z′∈ 
aa′

∣∣〈 
aa′,Hu(z
′) 
aa′〉∣∣. (31)

The case wherez is located on an edge, let us say edgeab, will eventually lead to the same upper boun∣∣e(z)∣∣ � 1

8
max
z′∈ab

∣∣〈 
ab,Hu(z
′) 
ab

〉∣∣. (32)

The two cases (31) and (32) allow to write the final estimate:∣∣e(z)∣∣ � 2

9
max
z′∈K

∣∣〈 
aa′,Hu(z
′) 
aa′〉∣∣. (33)

3.4. Error modelling

For the sake of simplicity we assume that the Hessian eigenvaluesλ1 andλ2 in (22) have positive
and different absolute values. Extension to other cases are evident or will be discussed in the se
us first study the case of isotropic, i.e., non-stretched, meshes. We consider finding an optimal i
metric, i.e., withmθ = mζ = m in (23):

M(x, y) = S−1
M

( 1
m2

θ

0

1

)
SM = 1

m2
Id. (34)
U
N0

m2
ζ
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Fig. 2. Stretching of a regular mesh.

It is natural to identify the local mesh size with the largest edge length in estimate (30). We ded
following error model:

eM(x, y) = m2(x, y)s(x, y), s(x, y) = max
(|λ1|, |λ2|

)
(35)

wheres(x, y) is taken equal to the largest absolute value of eigenmodes (22) of the Hessian ofu at point
(x, y).

If we investigate anisotropic meshes, the modelling is somewhat more delicate. When cons
for example, the deformation of an equilateral mesh, a mesh quality question arises. Indeed, t
stretching can produce in one case an acute mesh and, in the other one, a mesh involving ang
to π . See Fig. 2.

These two meshes have identical local densities, but the corresponding error is different. This
situation is analysed in the literature studying mesh quality. See, for example, [20]. From these
its turns out that the degradation inLα interpolation error between the two extremal situations of Fi
can introduce a factor 2 in the error. But in our continuous model, there is no way to distinguish b
the two stretchings. We cannot do anything but neglect this kind of event, or, equivalently, assu
obtuse triangles are not considered.

Our metricM specifies asmθ the (smallest) segment length length( 
ab) (among the segments insid
the triangle) in the stretched direction, and asmζ the (largest) segment length in the direction orthogo
to the stretched direction. Let us assume that the functionu has a uniform HessianHu, i.e., a Hessian
not depending on space variablesx andy. This restricts our investigation to uniform metrics. The m
is the image of a uniform (equilateral) mesh by an affinity of stretching in the direction specified
rotationS . Any triangle of the stretched mesh lies inside the ellipse, image of the circumcenter cir
the initial equilateral mesh (Fig. 3).

An upper bound for the length of a segment inside the triangle in a particular direction is the
of same direction passing by the center of the ellipse. This upper bound can be attained in pract
particular element verifying approximatively the metric specification. Taking this ellipseE as a mode
for the local triangleK in the error estimate (33), we observe that the error estimate writes:
U
N
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Fig. 3. The ellipse modelling a stretched triangle.

eM = max
a,a′∈E

∣∣〈 
aa′,Hu

aa′〉∣∣. (36)

Let us identify the best rotation(S) for our metric. The right-hand side of (36) will be minimum wh
the larger axis of the ellipse is aligned with the largest eigenvalue direction of the Hessian, i.e.:

SM = Ru. (37)

This option is adopted for the general case of non-uniform Hessians in the rest of the paper. The p
error estimates can be then written in a simplified form:

eM(x, y) =
∣∣∣∣∂2u

∂ξ2

∣∣∣∣.m2
ξ +

∣∣∣∣∂2u

∂η2

∣∣∣∣.m2
η. (38)

Remark 6. In practice, the difference between stretching with and without obtuse angles makes
only at the step when the metric is interpreted into a mesh. Given a metric, shall we build a st
mesh without or with obtuse angles? The answer depends strongly on the algorithm applied fo
generation. For example, a mesh adaptation by deformation can produce obtuse angles. But th
compensated in 2D by diagonal swapping.

3.5. Minimization of the interpolation error (I)

According to (35), the local mesh size is defined as a unique scalar field,m(x,y) or equivalently the
node density by area unitd(x, y) = 1/m2(x, y). The total number of nodes is given by:

C(M) =
∫
Ω

d(x, y)dx dy. (39)

For error modelling, we get inspiration from the above rough estimate:

eM(x, y) = m2(x, y)s(x, y) = d−1(x, y)s(x, y), (40)

wheres(x, y) is given in (35). Let us minimize theLα norm of this error under the constraint of a numb
of nodes equal toN :
U
N
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min
M

∫
Ω

sαd−α dx dy (41)

under the constraintC(M) = N .
The optimality conditions are:

−α

∫
Ω

sαd−α−1δd dx dy � 0 (42)

for anyδd such that
∫
Ω

δd dx dy = 0, or taking into account the constraint:

dopt(x, y) = N∫
Ω

s
α

α+1 dx dy
s(x, y)

α
α+1 , (43)

mopt(x, y) = (
∫
Ω

s
α

α+1 ds)1/2

N1/2
s(x, y)

−α
2(α+1) . (44)

Remark 7. Again the caseα = +∞ givesd = s, that is the error equidistribution option referred
Remark 3.

The corresponding optimal error writes:

Eopt
α = 1

N

∫
Ω

s
α

α+1 dx dy

(∫
Ω

s
α

α+1 dx dy

)1/α

. (45)

For analysing the accuracy order on a discontinuity, we restrict to a functionu equal to the following
Heavyside function:

u(x, y) = 1 if x > 1, 0 else. (46)

In the same way as in Section 2.4, the local error coefficients in terms of derivatives is replaced by
local errorsδ in terms of differential quotients, which reduces in our particular case to:

sδ(x, y) = δ−2
∣∣u(x + δ, y) − 2u(x, y) + u(x − δ, y)

∣∣ (47)

which is bounded inL1/2, but not inLγ , for γ > 1/2. Now, forα = 2, the power ofsδ in the integral of
the optimal error is 2/3, then the integral (45) is not bounded and we do not get second-order accu

3.6. Minimization of the interpolation error (II)

Considering an anisotropic family of metrics, we return to the general notations of Sections 3.1

3.6.1. Optimization problem
According to Section 3.4, we consider metricsM that are written:

M(x, y) = R−1
u

(
(mξ )

−2 0
0 (mη)

−2

)
Ru (48)

and the functional to minimize is the following one:
U
N
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Eα =
∫ (∣∣∣∣∂2u

∂ξ2

∣∣∣∣.m2
ξ +

∣∣∣∣∂2u

∂η2

∣∣∣∣.m2
η

)α

dx dy. (49)

The optimal metric minimizes the functionalEα under the constraintC(M) = N :

min
M

∫ (∣∣∣∣∂2u

∂ξ2

∣∣∣∣.m2
ξ +

∣∣∣∣∂2u

∂η2

∣∣∣∣.m2
η

)α

dx dy (50)

under the constraint
∫

mξ
−1mη

−1 dx dy = N .
The optimality system writes:

E ′
α(M)δM= 0,

∀δM, C ′(Mopt).δM= 0. (51)

The second equation can be used for writing a relation betweenM andC:

C ′(Mopt).δM= 0, (52)

�∫ −1

mξ

.
δmη

m2
η

+ −1

mη

.
δmξ

m2
ξ

= 0,

�∫
1

mξ

.δmη + 1

mη

.δmξ = 0.

One can write(
δmξ

δmη

)
= ψ

(−mξ

mη

)
. (53)

Eq. (51) will be verified for any couple(δmξ , δmη) such that (53) holds at least for one scalar functioψ

of (x, y).
Let us develop Eq. (51):∫ (∣∣∣∣∂2u

∂ξ2

∣∣∣∣m2
ξ +

∣∣∣∣∂2u

∂η2

∣∣∣∣.m2
η

)α−1(∣∣∣∣∂2u

∂ξ2

∣∣∣∣mξδmξ +
∣∣∣∣∂2u

∂η2

∣∣∣∣mηδmη

)
dx dy = 0.

Due to statement (53) we can replaceδmξ andδmη:∫ (∣∣∣∣∣∣∣∣∂2u

∂ξ2

∣∣∣∣m2
ξ +

∣∣∣∣∂2u

∂η2

∣∣∣∣.m2
η

∣∣∣∣α−1)
ζ

(
−

∣∣∣∣∂2u

∂ξ2

∣∣∣∣mξmξ +
∣∣∣∣∂2u

∂η2

∣∣∣∣mηmη

)
dx dy = 0.

Sincemη, mξ and the second derivatives ofu do not vanish, this will be zero for any functionψ if:∣∣∣∣∂2u

∂ξ2

∣∣∣∣.m2
ξ =

∣∣∣∣∂2u

∂η2

∣∣∣∣.m2
η. (54)

From which we can derive the ratio betweenmξ andmη

mξ

mη

=
√√√√ |( ∂2u

∂η2 )|
∂2u

. (55)
U
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For the sequel, it will be simpler to express metricM in terms of the node densityd , number of nodes
by area unit, and of the local aspect ratioµ:

M = 1

d
R−1

u

(
µ 0
0 1

µ

)
Ru. (56)

More precisely we set:mξ =
√

µ

d
andmη =

√
1

µd
. Constraint (53) becomes:∫

δd = 0. (57)

Condition (51) can now be written:∫ (∣∣∣∣∂2u

∂ξ2

∣∣∣∣µd +
∣∣∣∣∂2u

∂η2

∣∣∣∣ 1

µd

)α−1(∣∣∣∣∂2u

∂ξ2

∣∣∣∣(δµ

d
− µδd

d2

)
−

∣∣∣∣∂2u

∂η2

∣∣∣∣dδµ + µδd

µ2d2

)
= 0,

∀δd such that
∫

δd = 0 and∀δµ.

Let us develop in function ofδµ andδd . Forδµ∫
(∗)α−1.

(∣∣∣∣∂2u

∂ξ2

∣∣∣∣1

d
−

∣∣∣∣∂2u

∂η2

∣∣∣∣ 1

µ2d

)
δµ = 0 ∀δµ,

where(∗) stands for| ∂2u

∂ξ2 |µ

d
+ | ∂2u

∂η2 | 1
µd

which, by assumption, never vanishes. We deduce:∣∣∣∣∂2u

∂ξ2

∣∣∣∣1

d
−

∣∣∣∣∂2u

∂η2

∣∣∣∣ 1

µ2d
= 0.

From which we get:

µ =
( | ∂2u

∂η2 |
| ∂2u

∂ξ2 |
)1/2

which is (55). Forδd :∫
(∗)α−1

(∣∣∣∣∂2u

∂ξ2

∣∣∣∣−µ

d2
+

∣∣∣∣∂2u

∂η2

∣∣∣∣ −1

µd2

)
δd = 0.

We get then:

(∗)α−1 1

d2

(∣∣∣∣∂2u

∂ξ2

∣∣∣∣(µ) +
∣∣∣∣∂2u

∂η2

∣∣∣∣ 1

µ

)
= Cte

or, in other words:

1

dα+1

(∣∣∣∣∂2u

∂ξ2

∣∣∣∣(µ) +
∣∣∣∣∂2u

∂η2

∣∣∣∣ 1

µ

)α

= Cte.

Let us replaceµ by its value:

dα+1 = Cte

(∣∣∣∣∂2u
∣∣∣∣.∣∣∣∣∂2u

∣∣∣∣)α/2

.

U
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We thus get:

d = Cα

(∣∣∣∣∂2u

∂ξ2

∣∣∣∣.∣∣∣∣∂2u

∂η2

∣∣∣∣) α
2α+2

,

where constantCα is given by:

Cα =
(∫ (∣∣∣∣∂2u

∂ξ2

∣∣∣∣.∣∣∣∣∂2u

∂η2

∣∣∣∣) α
2α+2

dx dy

)−1

N.

Finally the square local mesh sizes are given by:

m2
ξ = C−1

α

∣∣∣∣∂2u

∂ξ2

∣∣∣∣−2α−1
2(α+1)

∣∣∣∣∂2u

∂η2

∣∣∣∣ 1
2(α+1)

, m2
η = C−1

α

∣∣∣∣∂2u

∂ξ2

∣∣∣∣ 1
2(α+1)

∣∣∣∣∂2u

∂η2

∣∣∣∣−2α−1
2(α+1)

which means that metricMopt is defined by:

Mopt = C−1
α

(∣∣∣∣∂2u

∂ξ2

∣∣∣∣.∣∣∣∣∂2u

∂η2

∣∣∣∣) −α
2α+2

R−1
u

(
(| ∂2u

∂η2 |/| ∂2u

∂ξ2 |)1/2 0

0 (| ∂2u

∂ξ2 |/| ∂2u

∂η2 |)1/2

)
Ru. (58)

In the case of theL2 norm, this becomes:

Mopt,2 = C−1
2 R−1

u

 | ∂2u

∂ξ2 |
−5/6| ∂2u

∂η2 |
1/6

0

0 | ∂2u

∂η2 |
−5/6| ∂2u

∂ξ2 |
1/6

Ru. (59)

The case of theL∞ norm can beformally derived by passing to the limit:

Mopt,∞ = C−1
∞ R−1

u

 | ∂2u

∂ξ2 |
−1

0

0 | ∂2u

∂η2 |
−1

Ru. (60)

And we again get an equidistribution of the integrand of (49).

3.6.2. Accuracy order inL2

In the case ofL2 norm, the above expressions simplify as follows:

Cα =
(∫ (∣∣∣∣∂2u

∂ξ2

∣∣∣∣.∣∣∣∣∂2u

∂η2

∣∣∣∣)1/3

dx dy

)−1

N (61)

and

m2
ξ = C−1

α

∣∣∣∣∂2u

∂ξ2

∣∣∣∣−5/6∣∣∣∣∂2u

∂η2

∣∣∣∣1/6

, m2
η = C−1

α

∣∣∣∣∂2u

∂ξ2

∣∣∣∣1/6∣∣∣∣∂2u

∂η2

∣∣∣∣−5/6

. (62)

Let us consider the Heavyside functionu of (46). Thex-wise second derivative is singular and has to
replaced by a differential quotient
U
N
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∣∣∣∣∂2u

∂x2

∣∣∣∣ ≈ ŝδ = Max(sδ, δ), (63)

wheresδ is defined fromu as in (47). Again this function is inLγ for anyγ � 1/2. They-wise second
derivative is uniformly zero, and has to be corrected by:∣∣∣∣∂2u

∂y2

∣∣∣∣ ≈ ε, (64)

whereε is a small positive cut-off. Then the above calculations become:

C2 =
(∫

ε1/3ŝ
1/3
δ dx dy

)−1
N (65)

and

m2
x = C−1

2 ε1/6ŝ
−5/6
δ , m2

y = C−1
2 ε−5/6ŝ

1/6
δ . (66)

The local error model forL2 writes as follows:

E2 =
(∫ (

ŝδm
2
x + εm2

y

)2
dx dy

)1/2
. (67)

We can replace:

E2 = N−1
(∫

ε1/3ŝ
1/3
δ dx dy

)(∫ (
ŝ

1/6
δ

(
ε1/6 + ε1/6

))2
dx dy

)1/2
,

E2 = 2N−1ε1/2
(∫

ŝ
1/3
δ dx dy

)3/2
. (68)

In contrast to the isotropic adaptation, the integral in the optimal error for anisotropic adapta
bounded. It is then remarkable that the proposed model suggests that isotropic optimal mesh
will not produce a second-order accurate method inL2 while the anisotropic optimal mesh adaption w
produce such an accuracy. These predictions are in accordance with the results in [8,9].

4. A few numerical experiments

Several issues of our theory can be enlightened by a few numerical illustrations.
Firstly, the conclusions of our analysis extend to a discrete context only if that discrete context a

models are close enough to each other. It is crucial to check that this happens not only for extrem
meshes, but for meshes that can be used in practice.

Secondly, we have shown that the metrics and meshes proposed in the literature for solutions o
problems are related inL∞ error norm. We have proposed for theL2 case, a different family of optima
meshes. Then it is interesting to validate our assertion that the second family is somewhat optim
to study what qualitative differences appear when we shift fromL∞ to L2.

In order to do this, we have to pass to a discrete context. We recall that optimization is applied
continuous context. The discrete system is nothing more than a discretization of the continuous op
system. The steps for building the discrete system consist of:
U
N
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• building the Hessian, either from analytic differentiation, or, preferably for the sequel, by us
background initial mesh, that is fine enough,

• deriving the optimal metric (continuous or on the background mesh).

From this, we get an approximate solution (a metric on the background mesh) of the continuou
lem (“find the optimal metric”). This discrete solution is subject to a discretization error related
coarseness of the background mesh.

Once the discrete metric is obtained, building the adapted mesh is just post-processing. Firs
scribe the post-processing, then we focus on the verification of how the optimality properties
continuous solution are approximatively satisfied by the discrete solution.

4.1. Mesh adaptation tool

All the presented experiments are performed by using the BAMG software [7]. Given a “backgr
mesh and an analytic function, BAMG first evaluates on the mesh the Hessian of the function by a
differentiation formula before generating the mesh according to the metric.

We have modified BAMG in order that the metric be computed from the Hessian according
above formula. Once the metric is obtained (on nodes of the background mesh), it is used in
regenerator for rebuilding a new mesh following the metrics. The mesh regenerator relies on a D
reconnection in a space mapped by the metric and on vertex addition, again according to the
The number of nodes is adjusted when necessary by trial and errors through the modification
multiplicative coefficient of the metric. Many experiments with BAMG are described in [14].

4.2. Optimality assessment

Since the proposed method defines a kind of optimal mesh on the basis of simplified continuou
and error models, it is interesting to show on an example how this optimality can appear in a p
case.

We consider the interpolation on the unit disk of the plane of the following function:

f (x, y) = 10x3 + y3 + atan

(
ε

sin(5y) − 2x

)
. (69)

Let β be a positive parameter, we consider a series of meshes, indexed byβ, that all have about 210
nodes and are adapted according to the following formula:

Mopt =
(∣∣∣∣∂2u

∂ξ2

∣∣∣∣.∣∣∣∣∂2u

∂η2

∣∣∣∣)β

R−1

(
(| ∂2u

∂ξ2 |/| ∂2u

∂η2 |)1/2 0

0 (| ∂2u

∂η2 |/| ∂2u

∂ξ2 |)1/2

)
R. (70)

This family of metrics involves the usual equidistribution orL∞ metric, forβ = 1 and the theoretically
optimal metric for theL2 norm, forβ = 5/6 for ε = 0.0001. We then compute theL2 error. Outputs are
depicted in Fig. 4. The error norm related toβ = 5/6 is the lowest one, and is about three times sma
than those resulting fromβ = 0.7 or fromβ = 1.
U
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Fig. 4. Optimality of the proposed metric: abscissas are values of theβ parameter in the adaptation criterion, ordinates
values of the resultingL2 interpolation error.

Fig. 5. Convergence of interpolations to exact arctangent functions with uniform mesh refinement, and for differentε. Abscissas
are the numbers of nodes in the meshes used, ordinates are values of the resultingL2 interpolation error.

4.3. Second-order accuracy

In [18] it is claimed that for smooth function withsteep gradients, uniform mesh refinement sho
numerical second-order convergence only for very fine meshes able to capture all details. It is
that, in contrast, best mesh adaptation methods show a property of “early capturing of details”, ac
to which second-order numerical convergence is observed with meshes with a much smaller nu
nodes. The purpose of this section is to show examples for which the early capturing of details o

In order to evaluate this phenomenon, we have considered the interpolation of three functionsf1, f2,
f3, f4, of arctangent type as in (69), with four different “steepness” coefficients:ε = 1.0,0.1,0.01,0.001.
The mesh convergence is first measured with uniform refinements, Fig. 5. When the function is no
second-order convergence is easily obtained. Conversely, we do not observe it for the steepestf ,
U
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Fig. 6. Convergence to exact arctangent function forε = 0.001 with optimal adapted meshes, abscissas are numbers of no
the meshes used, ordinates are values of the resultingL2 interpolation error. Comparison with uniform mesh refinement. Up
and lower curves are ideal 0.5th order and 2nd order curves.

even with meshes with almost 100 000 nodes. We now concentrate on the study onf4 and adapt the
meshes by applying the proposed metric. The effect is a much faster convergence, essentially
order, observable for meshes as coarse as of a few hundred nodes (Fig. 6).

4.4. Accuracy order for a discontinuity

In Sections 3.4 and 3.6, we show that for Heavyside functions, the isotropic error model do
have second-order convergence while the anisotropic one has. Now thesea priori abstract prediction
are subject to conditions concerning the representativity of the error model with respect to the p
discretization errors. The purpose of this section is to show one case where theoretical predict
confirmed by the discrete analog.

We consider the mesh adaptive approximation to a set of two discontinuities, a horizontal oney = 0)
and a vertical one (x = 0). The optimal metric method is applied. As in the previous section, the BA
adapted mesh generator is used for building the meshes specified by the different metrics. Sequ
meshes with various numbers of nodes are compared from the standpoint ofL2 interpolation errors for
the discontinuities.

First, the isotropic optimal metric is used. An example of mesh is depicted in Fig. 7.
The errors for eleven adapted meshes, with node number ranging from 500 to 200 000 provide

clear confirmation of the theoretical prediction given in [8], i.e., that a first-order convergence,
better one, is obtained by this method (Fig. 8).

Second, the anisotropic optimal metric is used. An example of mesh is depicted in Fig. 9.
The errors for eight adapted meshes, with node number ranging from 150 to 20 000 show a

order convergence, again as predicted by theory (Fig. 10).
If we gather in Table 1 (a) the best mesh convergence, established with counterexamples in

the convergence predicted by the continuous metric model in Sections 3.4 and 3.5, and the resu
experiments of this section, we get perfectly coherent figures.
U
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Fig. 7. An example of isotropic adapted mesh for two Heavyside functions.

Fig. 8. Convergence inL2 norm of theP1 interpolation of two Heavyside functions with an isotropic adaptation strateg

We end this paragraph by mentioning that second-order convergence is also observed for flow
lations with shocks, see [19].

4.5. Influence of the choice of the norm

As mentioned earlier, the proposed variational analysis takes into account the functional spacLα in
which we minimize the interpolation error.
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Fig. 9. An example of isotropic adapted mesh for two Heavyside functions.

Fig. 10. Convergence inL2 norm of theP1 interpolation of two Heavyside functions with an anisotropic adaptation strat

The influence of the functional norm will now be studied in relation with the application of a me
for image compression.

Indeed, given a function defined on a fine (uniform or not) mesh, a compression could con
storing it in a smaller mesh, accepting some loss in the accuracy of its definition, as far as the n
is sufficiently small. Mesh adaptive interpolation is an answer to this problem, already used in
processing [16].
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Table 1
Convergence inL2 for a discontinuous function

Convergence order Isotropic Anisotropic

Counterexamples [8] �1 �2
Optimal metric
theory <2 2
Optimal metric
these experiments 1 2

Fig. 11. Representation of a function with the two options,L∞ (left) andL2: contours.

Fig. 12. Representation of a function with the two options,L∞ (left) andL2: corresponding meshes.

Fig. 13. Mesh-based compression of Mach contours: view of the meshes forL∞ andL2 compressions.
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Fig. 14. Mesh-based image compression, global views: initial picture at bottom,L2 adaptation (top, left),L1 adaptation (top
right), L∞ adaptation (bottom, left).

The first example will illustrate the better ability of theLα option, with smallα, to adapt the mesh to th
small amplitude details of a function. Let us start with the sum of an arctangent function of amplit
combined this time with a sine function of a ten times lower amplitude

f (x, y) = 0.1∗ sin(50x) + atan

(
0.001

sin(5y) − 2x

)
. (71)

We compare two adapted meshes with about 2000 nodes each. The first one is adapted follo
error equidistribution principle, in other words, by minimizing theL∞ error functional. The second on
is adapted according to the minimization of theL2 error norm. We observe thatL2 option restitutes the
low amplitude sine oscillation while theL∞ does not show it at all.
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Fig. 15. Mesh-based image compression, zoom: initial picture at (bottom, right),L2 adaptation (top, left),L1 adaptation (top
right), L∞ adaptation (bottom, left).

Mesh-based image compression is particularly useful for storing images produced by numeric
element computations. As an illustration we consider the compression of the Mach contours of
analysis. It is enough to mention it is related to a supersonic flow with different shocks. In Fig.
compare theL∞ andL2 adapted meshes. The ramp-like shocks starting from the middle of the a
correspond to a much smaller amplitude of variation than the vertical bow shock at left part. We o
that they are nearly ignored by theL∞ option while it is well followed by theL1 option.

A last example is the mesh compression of a black and white portrait of Mona Lisa. The initial
we used is depicted as right-bottom of Fig. 14. It was described by a fine adapted mesh of 60 0
tices resulting from the image processing presented in [11]. The purpose is to compress it to on
vertices with the presented algorithm. We have checked that the compression ratio on postscrip
indeed 12. In that case, the identification of the best approach is not clear. Contrasts are impo
the vision and some part of the image (the eyes) are more important than other ones. We note
that some regions with low contrast, such as sleeve and hand, Fig. 15, are better reproduced wiL2

option.
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5. Conclusions

This work explores some capabilities of a continuous setting for mesh adaptation purposes. In
study, we restrict to the problem of best adaptive mesh for pure interpolation.

A mesh is modelled by a metric. The total number of nodes is a continuous integral of the m
The continuous interpolation error is modelled with the first term of a Taylor series for the interpo
error. The norm inLα,0 < α < ∞ of the error model is then minimized. We get a completely exp
expression of the optimal metric in terms of the function to which it is adapted.

When a discontinuous function is considered, the order of accuracy of the adaptation mode
dicted. It can help in specifying conditions for practical second-order accuracy.

The usual equirepartition strategy orL∞ analysis appears as a limiting case which does not e
these higher-order convergence properties.

Transposition to the discrete context is demonstrated by a few numerical experiments giving so
partial of course) confirmation that the approach is sound, efficient and shows the behaviors pred
the theory.

This type of analysis has a potential usefulness for several applications:

• in image compression: The continuous metric method defines an optimal compression method
isotropic mesh.

• in scientific computing: In a future work we follow the strategy proposed here for extending
present method to the research of an optimal mesh for the solution of a PDE.
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