
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
43

63
--

F
R

+
E

N
G

appor t
de r echerche

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

REVERSE AUTOMATIC DIFFERENTIATION
FOR OPTIMUM DESIGN: FROM ADJOINT

STATE ASSEMBLY TO GRADIENT
COMPUTATION

F. Courty — A. Dervieux — B. Koobus — L. Hascoet

N° 4363

Janvier 2002

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — T´elécopie : +33 4 92 38 77 65

REVERSE AUTOMATIC DIFFERENTIATION FOR

OPTIMUM DESIGN: FROM ADJOINT STATE

ASSEMBLY TO GRADIENT COMPUTATION

F. Courty , A. Dervieux , B. Koobus , L. Hascoet

Th�eme 1 | R�eseaux et syst�emes
Projet Tropics

Rapport de recherche n° 4363 | Janvier 2002 | 33 pages

Abstract: The utilization of reverse mode Automatic Di�erentiation to the adjoint method
for solving an Optimal Design problem is described. Using the reverse mode, we obtain
the adjoint system residual in a rather eÆcient way. But memory requirements may be
very large. The family of programs to di�erentiate involves many independant calculations,
typically in parallel loops. Then we propose to apply a reverse di�erentiation \by iteration".
This demands much less memory storage. This methods is used for the computing of the
adjoint state and gradient related to the Optimal Design problem.

Key-words: automatic di�erentiation, optimal shape design, computational
uid dynam-
ics, Navier-Stokes, compressible
ow, adjoint, gradient

APPLICATION DE LA DIFFERENTIATION

AUTOMATIQUE EN MODE INVERSE A UN

PROBLEME D'OPTIMISATION DE FORMES:

DE L'ASSEMBLAGE DE L'ETAT ADJOINT AU

CALCUL DU GRADIENT

R�esum�e : Nous d�ecrivons l'utilisation de la Di��erentiation Automatique en mode inverse,
pour r�esoudre le syst�eme adjoint d'un probl�eme d'Optimum Design. Le mode inverse permet
d'obtenir le r�esidu du syst�eme adjoint de mani�ere assez eÆcace. Il demeure cependant tr�es
coûteux en espace m�emoire. Nous exploitons le fait que notre programme initial pr�esente
de nombreux calculs ind�ependants et en particulier des boucles parall�elisables. Dans ce cas,
nous proposons une di��erentiation inverse \par it�eration" qui consomme beaucoup moins
de m�emoire. Cette m�ethode est utilis�ee pour calculer eÆcacement un �etat adjoint et un
gradient pour le probl�eme d'Optimal Design.

Mots-cl�es : di��erentiation automatique, optimisation de formes, m�ecanique des
uides
num�erique, Navier-Stokes, �ecoulement compressibles, adjoint, gradient

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 3

1 Introduction

Adjoint systems are getting more and more popular among engineers and researchers working
in optimal design of systems modelized by Partial Di�erential Equations (PDE).

The adjoint equation comes from the Optimal Control theory and expresses the fact that
only one direction of the sensitivity of the state variable is needed to �nd a descent direction
of the scalar cost functional, viz. the product of the state derivative by the derivative of
the cost functional. Computing the complete sensitivity of the state variable with respect
to the control, by the implicit function theorem, leads to solve as many linearised systems
as the dimension of the control vector. With the adjoint approach, we need only to solve
one linearised transposed system.

Since in practice the PDE is discretised and solved on a computer, there are two natural
ways to build the adjoint:
(1) to derive the adjoint PDE and then to discretise it, or,
(2) to �nd the adjoint of the discretised state system.

It is likely that (2) be a little more complex than (1) when it is undertaken solely \by
hand". But option (2) is more easy to validate (by comparison with divided di�erences for
example) and provides an exact evaluation of the gradient, and therefore a �able descent
direction to the optimisation kernel.
Further, for both options, the development in engineer time may be enormous. Then the
hope of an automatic di�erentiation in option (2) is of paramount importance.

Today's question is still to evaluate and improve the conditions in which an Automated
Di�erentiation software answers to the issue of sensitivity software generation.

Mainly two modes of Automatic Di�erentiation are available today, namely the forward
and the reverse mode.

The forward mode computes the product of the Jacobian of a program times a given
direction vector, _y = f 0(x) _x. Applying the forward mode leads to compute the sensitivity
of the state variable. If the control has a dimension n, this sensitivity must be evaluated n
times to get the whole Jacobian. This standpoint is much more accurate and robust than
using divided di�erences, but not very eÆcient, and, in fact, for a rather large number n,
not applicable to large scale models as those arising in aerodynamics when Navier-Stokes
models are chosen.

The reverse mode computes the product of the transposed Jacobian of a program times
a given vector, f 0t(x):y. This returns a linear combination of the lines of the Jacobian, and
therefore it is the natural technique to compute the adjoint.

Mohammadi ([15]) made a �rst application of the reverse mode to this problem. His
strategy relies on the reverse di�erentiation of the complete simulation software suite, in-
cluding
ow assembly and solver, and objective functional evaluation. As a result of this
di�erentiation, the adjoint system is introduced in a transparent way. But at the same time,

RR n° 4363

4 Courty & Dervieux & Koobus & Hascoet

many extra problems arise such as the increased complexity of the solution algorithm and
the massive use of storage. Both problems must be solved by tedious and delicate hand
manipulations.

Another strategy is to apply reverse di�erentiation to the two smaller parts of the soft-
ware that assemble (1) the state equations and (2) the cost functional. It assembles only
the adjoint system residual, and then the user must use this residual in a piece of program
that solves the adjoint system.

This is the standpoint of the present work. We propose a description of how the di�erent
terms of the adjoint equation and of the functional derivative can be obtained by applying
the reverse mode using the Odyssee Automatic Di�erentiation tool.

We emphasize that the di�erentiation tool Odyssee will help to develop the routines
assembling the residual of the adjoint state system but not to build the routine solving the
adjoint system. Then it remains to apply a \matrix free" solver in order to iterate to a �xed
point, making the residual vanish.
We thus propose a class of solution algorithms using a simpli�ed Jacobian. This simpli�ed
Jacobian often exists in industrial software. The accuracy and eÆciency of this approach is
brie
y analysed.

In Sec.2 we introduce the shape optimisation model problem. In Sec.3 we present our
optimized method for applying the reverse mode to the di�erentiation of parallel loops.
Sec.4 concentrates on the application of this optimized method to the adjoint assembly of
the optimal problem of Sec.2. This is done without any matrix storage. Sec.5 proposes the
solution algorithm for solving the adjoint system and completing the process to the objective
functional gradient evaluation. Sec.6 presents a few numerical illustrations.

2 A shape optimization problem

This section is devoted to the description of the di�erent steps involved for solving a shape
optimisation problem. First we introduce the continuous shape optimisation problem. Then
we introduce the discrete standpoint and �nally we describe a gradient method with adjoint.

2.1 A model problem

We start with a model problem. It consists in solving an shape inverse/optimization prob-
lem for a family of 2D nozzles in which the
ow is modelled by the Euler equations. By
inverse/optimization we mean that the formulation is that of an optimization problem, but
the precise description will be, for assessment purpose, that of an inverse problem. The

ow model is moderately complex and the mesh is variable. The geometry is depicted in
Fig.1, inlet and outlet are of constant section, and the median part can vary through the

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 5

y= γ (x)

0.5

-2
0

-1 0 1 2 3 4

Figure 1: The nozzle model problem

ordinates of the upper boundary. Variations around this formulation have been studied in
an European BRITE-ECARP project ([1][14]).

According to the formalism of optimal control theory, the control variable is a function

 of the abscissa which de�nes the domain shape (Fig.1), and to which corresponds a value
of the objective or cost function j to be minimised with respect to
. More precisely, the
set of admissible controls is a subset �ad of C1([0; 1]; IR2). To each
 in �ad corresponds a
smooth geometrical domain

 of the plan IR2, limited by the y =
(x) curve (see Fig. 1)
and the boundary of which is also denoted by
.

Let us introduce:

J : �ad �H1(IR2; IR4) �! IR

(
;W) 7�! J(
;W) =

Z

(P (W)� P target)2d�
(1)

where P (W) is the pressure ofW , (that is 0:4(W4�0:5(W
2
2 +W

2
3)=W1)),W being a function

of the independent variables x and y, and P target a prescribed pressure generally computed
from a prescribed shape.

The optimization problem to be solved is written:

Find
0 in �ad such that j(
0) = min

2�ad

j(
) (2)

with

j(
) = J(
;W (
)) (3)

and where W (
) is the solution of the state equation related to the control
 as follows:

	(
;W (
)) = 0 (4)

where

	(
;W) =
@F (W)

@x
+
@G(W)

@y
+Boundary conditions (5)

RR n° 4363

6 Courty & Dervieux & Koobus & Hascoet

in which:

W =

0
BB@

�
�u
�v
e

1
CCA ; F (W) =

0
BB@

�u
�u2 + p
�uv
�u e+p

�

1
CCA ; G(W) =

0
BB@

�v
�uv

�v2 + p
�v e+p

�

1
CCA (6)

where � is the density, u et v the velocity components following x and y, e the total
energy, p the pressure given by:

p = P (W) = (�� 1)[e�
1

2
�(u2 + v2)] (7)

where � is 1:4.

2.2 Discrete standpoint

Figure 2: Nozzle mesh with 423 vertices

The mesh is made of triangles. It starts from an orthogonal triangulation with coordi-
nates (x1ij ; y

1
ij) of the constant-section nozzle geometry i.e. de�ned by
 = 1.

For any given control (
i; i = 1;m), we derive a mesh on a accordion-like mode (Fig.2), that
is by sliding vertices along vertical lines:

8i 2 f1; : : : ;mg; y
im0 =
i ; 8j 2 f1; : : : ;m0g; y
ij = �j y

im0 + (1� �j) y

i1 (8)

here m is the number of points in x direction in the interval [0; 2], m0 is the number of
points in the y direction, and �j is a non-variable parameter specifying the vertical node
distribution.
In the sequel, we represent by the vector X of dimension M (M = mm0) the coordinates
of the mesh. The mesh coordinates X are thus de�ned by (8) as an explicit function of the
control parameter
.

To discretize the
ux balance 	, we apply a vertex centered upwind �nite-volume for-
mulation (relying on median dual cells).

We denote by V (j) the set of nodes (=vertices) that are neighbors of j, by @Cj the cell
boundary associated with node j, by @Cjk = @Cj

T
@Ck,by �!n the outward pointing normal

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 7

vector to @Cj and by �!� jk =

Z
@Cjk

�!n d�.

We obtain the �nite-volume formulation:

	(X;Wn)j =
X

k2V (j)

�(Wn
jk ;W

n
kj ;

�!� jk(X)) + boundary conditions (9)

The function 	 depends on state variable W through the two �rst variables Wn
jk and

Wn
kj of the elementary inter-cell
ux � and depends on the mesh coordinate X through the

integrated normals �!� jk(X). The Wn
jk and Wn

kj are linear extrapolations from cells j and k
according to van Leer \MUSCL" ideas, extended to triangulations as in [4]. TVD limiters
of van Albada type can be applied or not.

The upwinding in elementary
ux � is the van Leer
ux splitting (which is di�erentiable).
We can then obtain the state solution iteratively from a linearised implicit time advancing:

�
M

�tn
+	0(Wn)

�
ÆWn+1 = �	(Wn) (10)

M is the diagonal mass matrix, and when the time step �tn grows in�nitely, Algorithm (10)
would become a Newton iteration for solving 	(W) = 0.

The genuine Jacobian 	0(Wn) is a high storage matrix and is not used in the computer
code. Instead, we use the simpli�ed \spatially �rst-order" Jacobian matrix A1 of the state
equation which results from the exact di�erentiation of the �rst-order accurate
ux balance
which uses constant cell values instead of linear interpolated ones:

	1(X;W
n)j =

X
k2V (j)

�(Wn
j ;W

n
k ;
�!� jk(X)) + boundary conditions: (11)

The linearised implicit time advancing then writes:

A1 = (1)
0(Wn) (12)

�Wn+1 = Wn �

�
M

�tn
+A1

��1
	2(
;W

n): (13)

We refer to [4] for a recent detailed description of the �rst-order Jacobian A1. Operator A1

acts as a preconditioner. Thanks to its quasi-diagonal dominance properties, the precondi-
tioning system: �

M

�tn
+A1

�
Æw = RHS (14)

is easily solved with complete or partial convergence with a Jacobi iteration (in [4], we apply
a multi-grid iteration). The preconditioner relies on a direct neighbor approximation and
the storage of its non-vanishing entries is a�ordable. This results in a solution strategy using

RR n° 4363

8 Courty & Dervieux & Koobus & Hascoet

a reasonable memory storage and much more eÆcient that an explicit one.
This completes the description of the
ow solver.

We consider now a discrete optimization problem with m real parameters:

j : IRm �! IR

 7�! j(
)

J : IRm � IRN �! IR
(
; w) 7�! J(
; w)

where the dimension N of the state variable is four times the number of nodes (=vertices)
N = 4�mm0.

The discrete variant of (2) is written:

Find
0 in a subset �ad of IR
m such that j(
0) = min

2�ad
j(
): (15)

with again:

j(
) = J(
;W (
)) (16)

where W (
) is the solution of the state equation:

	(
;W (
)) = 0 (17)

We observe that we can apply a chain rule for the di�erentiation of j, which leads to
introduce an adjoint state, and allows to write the optimality system as follows:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

	(
;W) = 0
(state)

(
@	

@W
(
;W))t � =

@J

@W
(
;W)

(adjoint state)

j0(
) =
@J

@

(
;W)� < �;

@	

@

(
;W) > = 0

(optimality)

(18)

In this system, we highlighted four expressions because they will be evaluated through
Automatic Di�erentiation, as explained in Sec. 4

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 9

Initialization:
0; �; �;W 0

?
Solution of state equation:

W�+1 = State(
�)

?

Computation of J(
�;W�+1) =

Z

�
(P�+1 � P target)2d

?

Computation of the gradient of j: j0(
�)
(for this, solve the adjoint system)

?

�+1 =
� � �j0(
�)

?

Test: j
�+1 �
c j< "

?
True

End

� False

6

New mesh

6
-

Figure 3: Description of the \adjoint algorithm"

2.3 Optimization with gradient

In Fig.3 is depicted the constant step gradient method with adjoint, as a reference algorithm
for solving the optimization problem (15). The rest of the paper examines the way in
developing the software computing the gradient j0.

RR n° 4363

10 Courty & Dervieux & Koobus & Hascoet

3 An improved Reverse Mode of Automatic Di�erenti-

ation

Automatic or Algorithmic Di�erentiation (A.D.) is getting more and more widely used in
optimization problems. We refer the interested reader to the latest collection of articles [?]
and to the recent monography [5].

A.D. permits di�erentiation of programs. By that, we mean that an A.D. tool takes as
input a source program (typically in fortran) that, given an argument x 2 IRm, computes
some function y = f(x) 2 IRn. The A.D. tool generates a new source (fortran) program
that, given the argument x, computes some derivatives of f . There are several modes of
A.D., according to which derivatives are computed. In the following, we will �rst present
the forward mode of A.D., on which we will show the fundamentals of A.D. Then we will
present the more complex reverse mode, which is what we need to compute adjoints. Finally,
we will show how this reverse mode can be vastly improved in a speci�c case, and how this
improvement can be automated.

3.1 The Forward mode of Automatic Di�erentiation

The forward mode of A.D. produces a directional derivative, i.e. a program that, given an
argument x 2 IRm and a direction vector _x 2 IRm, computes the directional derivative
_y = f 0(x) _x. This mode is sometimes referred to as the direct mode.

Fundamentally, A.D. identi�es computer programs with a composition of mathematical
functions. Precisely, any program P composed of a sequence of instructions Ik; i 2 [1::p] and
that implements a function f , is such that

f = fp Æ fp�1 Æ : : : Æ f1

where each fk is the elementary function implemented by instruction Ik.
From the chain rule, and writing f 0 for the derivative (Jacobian matrix) of f , we get:

f 0(x) = (f 0p Æ fp�1 Æ fp�2 Æ : : : Æ f1(x))
: (f 0p�1 Æ fp�2 Æ : : : Æ f1(x))
: : : :
: (f 01(x)) :

(19)

To compute _y = f 0(x) _x, the forward mode needs to compute the matrix�vector product
_x1 = (f 01(x)): _x, then compute _x2 = (f 02 Æ f1(x)): _x1, and so on until

_y = _xp = (f 0p Æ fp�1 Æ fp�2 Æ : : : Æ f1(x)): _xp�1 :

If we observe that x is the original argument, then f1(x) is the intermediate value after
the �rst instruction of P , and more generally that fk Æ : : : Æ f1(x) is the intermediate value
after execution of Ik , we see that the above process requires the intermediate values of the

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 11

execution of P in the same order in which they are computed by P . Therefore this process
is straightforward to implement, by interleaving it with the original execution of P . Thus,
the forward di�erentiation of P is a program _P , obtained from P by inserting before each
instruction Ik a derivative instruction _Ik that implements f 0p.

The forward mode computes a linear combination of the columns of the Jacobian matrix
f 0(x). On the other hand, the adjoint that we need here is a linear combination of the lines
of f 0(x). To compute this adjoint with the forward mode, we thus need to compute the m
columns of f 0(x), which requires grosslym executions of the forward di�erentiated program.
This can be quite expensive for large values of m. The reverse mode is a way to solve that.

3.2 The Reverse mode of Automatic Di�erentiation

The reverse mode of A.D. produces a gradient, i.e. a program that, given an argument
x 2 IRm and a line-vector yt 2 IRn, computes the product yt:f 0(x), which is also equal to
the transposed of f 0t(x):y. One can think of y as a weighting vector on y, the results of
f , that de�nes a scalar composite result, of which we compute the gradient. This mode is
sometimes referred to as the adjoint mode.

From Equation (19) and after transposition we obtain:

f 0t(x):y = (f 0t1 (x))
: (f 0t2 Æ f1(x))
: : : :
: (f 0tp Æ fp�1 Æ fp�2 Æ : : : Æ f1(x))
: y :

(20)

To compute f 0t(x):y, and because matrix�vector products are so much cheaper than
matrix�matrix products, the reverse mode starts to compute

yp = (f 0tp Æ fp�1 Æ fp�2 Æ : : : Æ f1(x)):y

then it computes
yp�1 = (f 0tp�1 Æ fp�2 Æ : : : Æ f1(x)):yp

and so on until f 0t(x):y = y1 = (f 0t1 (x)):y2.
This time, we observe that this process requires the intermediate values of the execution

of P in the inverse order of their computation by P . One way to handle this is to recompute
each intermediate value when required. This implies repeated computations of each fk
function, which is expensive in computation. Conversely, another way is to store all the
intermediate results as they are computed, so as to retrieve them when required by the
reverse instructions. This is expensive in memory space. There is an optimal tradeo� to be
found between these two ways.

The reverse mode of the A.D. tool Odyss�ee implements one such tradeo�. The reverse
di�erentiated program runs recursively on its call tree. Each subroutine is available both in

RR n° 4363

12 Courty & Dervieux & Koobus & Hascoet

its di�erentiated form and its original form. The di�erentiated execution is achieved by call-
ing the main routine in its di�erentiated form. In its di�erentiated form, each di�erentiated
routine starts by executing the original instructions, with additional storage instructions
that save intermediate variables. During this so-called forward sweep, each call to a subrou-
tine calls its non-di�erentiated version. This forward sweep is followed by the reverse sweep,
that computes the products with each instruction's Jacobian matrix, in the reverse order.
During the reverse sweep, the intermediate values stored beforehand are used. When the
reverse sweep reaches a call to a subroutine, it restores the state of variables just before this
subroutine was called, and it calls it again, this time in its di�erentiated form. Fig.4 shows

A

B

C

D

A A

B

C

D D D B B

C C C

x : execution of x in its original form

x : forward sweep of differentiated x

x : reverse sweep of differentiated x

x x : differentiated x

Figure 4: Reverse mode A.D on a program Call Tree, showing storage/recomputation tradeo�

the e�ect of this tactique on a small call tree. One can easily check that the amount of stor-
age is grossly proportional to the depth of the call tree, and the amount of recomputation
is grossly proportional to the square of this depth.

Despite of these problems of storage/recomputation tradeo�s, the reverse mode of A.D.
has the advantage of returning in one call a linear combination of the lines of the Jacobian
f 0(x). Therefore when m > n, the reverse mode is probably worth considering. Let us take
a look again at our particular problem, summarized by Equations (18). Since the functional
J is scalar-valued, the highlighted partial derivatives of J in the equations appear to be
excellent candidates for the reverse mode (m is large, and n = 1). The highlighted products
of transposes of Jacobians of 	 times vectors are also good candidates, by de�nition of the
reverse mode above.

To summarize, our approach is to apply A.D. in the reverse mode to compute the four
highlighted expressions is Equations (18). We are now going to describe an improvement to
the reverse mode, that reduces drastically the amount of memory necessary for storage of
intermediate values.

3.3 Adjoining Independant Computations

The main subroutine that we must di�erentiate in the reverse mode is the routine that com-
putes 	. Using scienti�c programming vocabulary, this routine consists of several successive
assembly loops on mesh entities. Application of the reverse mode to those long routines

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 13

leads to an extremely large consumption of memory space to store intermediate values. On
large meshes, this may become more than what the underlying system can hold.

We remark that these assembly loops have independent iterations. In other words, they
could be run in parallel. For these two reasons, let us call them II-loops. There are several
specialized techniques to improve the memory consumption of the reverse mode for loops.
Some are described by Griewank [5], another one was proposed by Hovland, Mohammadi,
and Bischof [9]. We are going to use a new technique, speci�cally devised for II-loops, and
introduced in [6], [8].

This technique relies on the fact that, for any II-loop, the standard reverse di�erentiation
of the loop is equivalent to a more compact form, as shown on the following �gure:

do i= 1,N

body(i)
end

do i= N,1

body(i)
end

() do i= 1,N

body(i)

body(i)
end

The notation body represents the reverse sweep corresponding to body. One can see on
the �gure that the forward sweep of each iteration body(i) is immediately followed by its
reverse sweep body(i), and therefore the intermediate values stored are used immediately
after. As a consequence, this manipulation reduces drastically the amount of memory used
(by a factor N , size of the loop).

This transformation can be applied by hand on each II-loop in the reverse di�erentiated
program, and this reduces memory consumption as foreseen. However, we would prefer
to mechanize this tedious transformation. In its present form, Odyss�ee does not provide
us with this transformation. This development is planned in the next release, but is not
available now. In the meantime, we propose a partial mechanization of the process, based
on the handling of subroutine calls in Odyss�ee (cf Fig.4). This combines application of the
existing Odyss�ee tool with hand manipulations. Our goal is to minimize the work done by
hand, and leave as much as possible to the automatic tool. This also minimizes the risk of
manipulation errors.

3.4 Step-by-step checklist for Adjoining Independant Computa-

tions

The following checklist relies on the use of the Odyss�ee A.D. tool. However, it transposes
easily to other A.D. tools.

RR n° 4363

14 Courty & Dervieux & Koobus & Hascoet

Step 1: split parallel loops into subroutines.
Let us call WFLO the routine to di�erentiate, sketched on the next �gure. It contains a
number of II-loops. one of which (the third one...) is shown.

(Initial)
=)

Routine WFLO(...)

� � �
Do i = 1,N

body(i)
EndDo

� � �
End

The �rst step is a manual preparation of the original program, to extract II-loops and the
bodies of II-loops into separate subroutines. Precisely, each II-loop must be replaced by a
call to a new subroutine (e.g. CALL WFLOLOOPn(...)) with appropriate call arguments. The
new subroutine must be de�ned, and its only contents is a loop, whose body is reduced to a
call to another new subroutine (e.g. CALL WFLOBODYn(...)). Finally, this second subroutine
must be de�ned, with the appropriate arguments, and its body is exactly the body of the
original II-loop. This �rst step leads to the program illustrated by the following �gure.

(by hand)
=)

Routine WFLO(...)

� � �
call WFLOLOOP3(...)

� � �
End

Routine WFLOLOOP3(...)

Do i = 1,N

call WFLOBODY3(i,...)

EndDo

End

Routine WFLOBODY3(...)

body(i)
End

Step 2: Run Odyss�ee, reverse mode, on the resulting program.
The second step is automatic. In the A.D. tool Odyss�ee, one must load the modi�ed
top routine to di�erentiate WFLO, along with all subroutines recursively called by it. In

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 15

particular, all the WFLOLOOPn and WFLOBODYnmust be loaded, but also all subroutines called
under them.

Recall that an A.D. tool performs a dependence analysis that determines, for each vari-
ables, whether it actually depends on the input di�erentiation variables. If a dependency
occurs, then a variable must be de�ned to hold the derivative. When some called subroutine
is not loaded into the A.D. tool, the tool makes the conservative assumption that each of
its outputs may depend on each of its inputs. This leads to unwanted dependencies, and
�nally to unnecessary derivative variables and high memory consumption.

Then just call A.D. in the reverse mode, giving the name of the top routine to di�erentiate
(here WFLO), and the name of the input di�erentiation variables (here XFLO).

Inside Odyss�ee, this is simply achieved by the two following lines of commands:

load wflo.f wfloloop1.f wflobody1.f

diff -cl -head wflo -vars XFLO -output wflocl.f

which create a new �le wflocl.f that contains the di�erentiated subroutines.
The di�erentiated subroutines, called WFLOCL, WFLOLOOPnCL and WFLOBODYnCL, are sketched

in the next �gure. They obey Odyss�ee's tactique for storage/recomputation tradeo� in the
reverse mode, as shown on Fig.4. Each *CL subroutine consists of a forward sweep followed
by a reverse sweep. Notice that this tactique implies calls to the original versions of the
subroutines WFLOLOOPn and WFLOBODYn, which must therefore be linked to the di�erentiated
code.

RR n° 4363

16 Courty & Dervieux & Koobus & Hascoet

(Odyss)
=)

Routine WFLOCL(...)

� � �
call WFLOLOOP3(...)

� � �
call WFLOLOOP3CL(...)

� � �
End

Routine WFLOLOOP3CL(...)

Do i = 1,N

Store(i)
call WFLOBODY3(i,: : :)

EndDo

Do i = N,1,-1

Restore(i)
call WFLOBODY3CL(i,: : :)

EndDo

End

Routine WFLOBODY3CL(...)

body(i)

body(i)
End

Step 3: enforce the eÆcient di�erentiation of II-loops
The third step is again a manual transformation, that leads to the improved, more eÆcient,
di�erentiation of II-loops. It is advisable to perform these transformations on a copy of the
generated �le wflocl.f, say wflocl opt.f.

The essence of the transformation is that each iteration of the II-loop must be followed
immediately by its reverse sweep. This amounts to �rst fuse the two loops in WFLOLOOP3CL,
into a single one. Then the call to the original routine WFLOBODY3 is removed, along with the
associated Store and Restore calls, and the arrays that were allocated for this store/restore
mechanism. This leads to the program sketched below, which is what we wanted to obtain:

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 17

(by hand)
=)

Routine WFLOCL(...)

� � �
call WFLOLOOP3(...)

� � �
call WFLOLOOP3CL(...)

� � �
End

Routine WFLOLOOP3CL(...)

Do i = 1,N

call WFLOBODY3CL(i,: : :)
EndDo

End

Routine WFLOBODY3CL(...)

body(i)

body(i)
End

On some systems, it might be pro�table to perform an extra transformation, namely
to inline subroutine WFLOBODY3CL back into WFLOLOOP3CL. This may save the overhead of
several subroutine calls. This did not prove pro�table on our system, and therefore we do
not show it here.

Step 4: clean the resulting di�erentiated program
There are some well-known problems and limitations with the current version of Odyss�ee,
that require a �nal cleaning step. Notice that these problems may not show up with other
A.D. tools, and will be removed from the next version of Odyss�ee. Let us just list them
here:

� It often happens that Odyss�ee creates new arrays, for the Store and Restore oper-
ations, dimensioned after arrays of the original routine. Sometimes it is impossible
to guess the size of these arrays statically. These sizes are then denoted by variables
named ody***, and the user is requested for the de�nition of these, through a spe-
cial include �le named named odyparam.inc. If this is not done, the compiler will
complain.

RR n° 4363

18 Courty & Dervieux & Koobus & Hascoet

� Due to a bug in the current version of Odyss�ee, some uses of PARAMETER values may
occur before their de�nition. This results in a message from the compiler.

� As we said earlier, there may be some unnecessary storage. Some values may be
stored and retrieved, while they are not used in the di�erentiated instructions. The
next version of Odyss�ee tries to reduce the number of unecessary storage, but some
will remain that can only be detected and removes by the end-user.

� Values of variables before initialization should not be saved/restored.

4 Low-storage gradient assembly with AD

By low-storage we mean that Jacobians are never computed explicitly, but instead their
product with a vector, yielding results that are vectors of yet tractable storage. We show
now that it is possible for two terms arising in the optimality conditions (18).

4.1 Assembly of the gradients of functional J

We consider the building of the highlighted derivatives in (18):

8>>><
>>>:

DJW =
@J

@W
(
;W)

DJ
 =
@J

@

(
;W)

(21)

We assume that the dependency with respect to design parameters is accounted through
the mesh coordinates X and we consider the di�erentiation with respect to X and to W .

For this, we shall di�erentiate the cost subroutine (JCOST) whose input are the mesh
coordinates XM (XMESH(1:M)) and the
ow variables WN (WFLO(1:N)), and whose output
is the scalar cost (CVALUE).

Therefore the variable for di�erentiation is XMESH(1:M), the result to di�erentiate is
CVALUE.

We shall di�erentiate the cost subroutine (JCOST) with respect to the mesh coordinates
(XMESH(1:M)). The application of Odyssee in reverse or cotangent linear mode, option -cl,
to this context by:

diff -cl -h JCOST -vars XMESH

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 19

will generate a di�erentiated subroutine named (JCOSTCL) with the following extra inputs
and outputs:

- an extra scalar input (CVALUECL),

- an extra array output, XMESHCL(1:M), which will contain the gradient of J with respect
to X .

We shall then di�erentiate the cost subroutine (JCOST) with respect to the
ow variables
(WFLO(1:N)). The application of Odyssee in reverse or cotangent linear mode, option -cl,
to the same context by:

diff -cl -h JCOST -vars WFLO

will generate another subroutine, also named (JCOSTCL).

The new routine has the same inputs and outputs as (SUBROUTINE JCOST) except:

- an extra scalar input, CVALUECL,

- an extra array output, WFLOCL(1:N), which will, contain the gradient of J with respect
to W .

4.2 Assembly of the Adjoint equation residual

We assume that this residual evaluation will be enough for solving the adjoint system (i.e.
solving it by a matrix-free algorithm, such as GMRES, for instance).

The state equation is written as the vanishing of its residual (Euler equation discretisa-
tion, including boundary conditions); we precise the matrices dimension for clarity:

((XM ;WN))N = 0: (22)

In the above function, the in
uence of the design parameter
m is applied through the
mesh coordinates XM .
The adjoint equation residual is then written as:

SN = ((
@	

@W
(X;W))tN�N : �N)N � (

@J

@W
(
;W))N : (23)

We suggest to apply the reverse di�erentiation mode of Odyssee to the following pro-
gram transformation context:

RR n° 4363

20 Courty & Dervieux & Koobus & Hascoet

- routine to di�erentiate : let us call it \SUBROUTINE FLUX"; the input data are the mesh
coordinates XM (XMESH(1:M)), and
ow variables WN (WFLO(1:N)), and the output result
is the state equation residual 	(X;W)N (PSIFLU(1:N)),

- active variable for di�erentiation : WFLO(1:N),

- result to di�erentiate : PSIFLU(1:N).

The application of Odyssee to this context

diff -cl -h flux -vars wflo

will generate a new subroutine named (SUBROUTINE FLUXCL) with same inputs and outputs
except:
- an extra array input, PSIFLUCL(1:N), which should be set at running time equal to �N ,
that will be the successive iterates of the adjoint state solution,

- an extra array output, WFLOCL(1:N), which will, at running time contain the following
computational result:

(
@	

@W
(X;W))tN�N : �N : (24)

Therefore, the adequate call of subroutine fluxcl will return the desired result.

4.3 Assembly of the sensitivity of state residual

Keeping the notation of the previous section, we consider now the computation of:

Tm = (
@	

@

(
;W))tm�N : �N (25)

where � is assumed to be given. In practice, we shall �rst di�erentiate with respect to
the mesh coordinates X :

Tm = ((
@	

@X
(X;W))N�M : (

@X

@

(
))M�m)

t : �N : (26)

It is then possible to introduce the following transposition:

Tm = (
@X

@

(
))tm�M : ((

@	

@X
(X;W))tM�N : �N)M : (27)

Let us then get convinced that this expression can be directly obtained by reverse dif-
ferentiation with Odyssee. Indeed, a way to understand this is that this tool, applied to
subroutine flux, will formally produce the gradient of the functional:

F : X 7�! 	(X;W)tN :�N : (28)

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 21

More practically, Odyssee will be applied to the following program transformation context:

- routine to di�erentiate : again the subroutine named (FLUX); with as input the mesh
coordinates XM , XMESH(1:M), and the
ow variables WN , in WFLO(1:N), and as output the
state equation residual 	(X;W)N , PSIFLU(1:N),

- active variable for di�erentiation :XMESH(1:M),

- result to di�erentiate : PSIFLU(1:N).

The application of Odyssee to this context will generate a new subroutine named
(FLUXCL), di�erent from the one built in the previous section (also saved beforehand with
another name). It has same the same inputs and outputs as the subroutine (FLUX) except:

- an extra array input, PSIFLUCL(1:N), which should be set at running time equal to
�N ; this time , �N is the (converged) result of solving the adjoint state equation,

- an extra array output, XMESHCL(1:M), which will, at running time contain the following
computational result (of dimension M):

(
@	

@X
(X;W))tM�N : �N : (29)

It remains to multiply by (
@X

@

(
)))tm�M .

4.4 Large arrays

In this section, we give precisions about the arrays that will contain the main intermediate
results between the di�erent phases of the assembly of the gradient.

It should be emphasized that intermediate large arrays such as:
- transformation of
ow variables (from conservative to primitive,...),
- storage of metrics (normal vector to interfaces,...),
may lead the di�erentiator to build large matrices (such as the derivative of primitive
ow
variables with respect to conservative ones,...) inside the di�erentiated routine.

We concentrate now on the arrays that must be used as arguments of the subroutines.
We shall state that:

All arrays are vectors, except the possible preconditioner of state and adjoint solution
algorithms (that is a sparse matrix).

RR n° 4363

22 Courty & Dervieux & Koobus & Hascoet

We state this with some details for the two most complex phases of the gradient compu-
tation.

4.4.1 Adjoint computation

As mentioned earlier, in the standpoint we propose in this work, the adjoint equation should
be solved by a matrix-free iteration. Indeed, the di�erentiation of Sec.4.2 does not produce
the adjoint matrix, but its product by a vector.
The matrix-free iteration can be an explicit pseudo-time advancing, subject to essentially
the same \linear" stability conditions as the analogous explicit state system iteration

D�t� + (
@	

@W
(X;W))t� � (

@J

@W
(
;W)) = 0 : (30)

Another option is to apply a preconditioned �xed point algorithm in which the preconditioner
can be the adjoint of the preconditioner used for solving the state equation:

At
1(�

iter+1 ��iter) = � (
@	

@W
(X;W))t�iter + (

@J

@W
(
;W)) : (31)

The only matrix stored is the preconditioner At
1.

4.4.2 Final derivatives

Once the adjoint state equation is solved, the adjoint � is stored in a vector of dimension
N . We examine now how to complete the computation of:

j0(
) = (
@J

@

(
;W))� (

@X

@

(
))t(

@	

@X
(X;W))t� : (32)

By using � as an input in the routine obtained by reverse di�erentiation in Sec.3.4, we

obtain (
@	

@X
(X;W))t�, a new array of dimension N .

The derivative of the mesh coordinates X with respect to the shape parameters is ob-
tained either by hand di�erentiation or by Di�erentiation with the reverse mode. In that last

case, the previous array (
@	

@X
(X;W))t� is used as an input in the cotangent code, allowing

to obtain a new array, (
@X

@

(
))t(

@	

@X
(X;W))t�, of dimension n.

We have demonstrated that the Automatic Di�erentiation with reverse mode allows the
assembly of the adjoint system residual by using only one-entry arrays. Further, all the
derivatives having a role in the optimality system are obtained in this way.

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 23

The rest of the software necessary to complete the sensitivity routine set is in the pro-
posed strategy developed by hand and deals with
(1) the solution algorithm for the adjoint system,
(2) the �nal sum of the di�erent terms.

The next part of the paper deals with the adjoint system solution algorithm.

5 Solution of the adjoint system

The above di�erentiation of state residual produces an adjoint state residual and not the
adjoint Jacobian matrix. In order to �nd the adjoint state itself, making (by de�nition) this
residual vanish, we need to apply a matrix-free algorithm, that is a solution method which
does not need the exact matrix of the linear system to solve.

The discrete adjoint system comes from a linear partial di�erential system, involving
�rst-order (spatial) derivatives. Let us assume this system is close to the steady Euler sys-
tem or the corresponding linearised version and that its discretization can be solved in a
similar manner. The choice of a matrix-free algorithm for solving an Euler-type system
should a priori take into account the available experience in this �eld and also, in a more
concrete standpoint, the solution algorithm already written in the
ow analysis software un-
der study. The development of solutions techniques for the Euler equations have been much
in
uenced by the choice between explicit low-storage iteration and implicit -higher-storage-
iteration. The implicit iteration involves generally the solution of a linearised system which
preconditions the time advancing, allowing a faster convergence.

In Sec.4.4.1, we exhibited two possible answers:
- (a) we can consider solving it with an explicit time advancing iteration as in (30).
- (b) in the case where the initial software involves already a simpli�ed preconditioner for
the state equation, we can try to use it for solving the adjoint state equation as in (31).

With the option (a), we can use a time step deduced from the linear analysis that would
apply to a similar time-advancing scheme for the state equation. Let us assume that the
adjoint residual computation that we have derived (by Automatic Di�erentiation) is a few
times, let us say k times more expensive in terms of computation time than the assembly of
the state equation. Then each pseudo-time step of adjoint is k times more expensive than
a pseudo-time step for state equation and thus this k factor would be the ratio between the
computing costs of evaluations of adjoint state and direct state .
This evaluation can be slightly lowered by various factors such as the economy in time
step size evaluation for adjoint, a better convergence of adjoint iteration due to linearity, a
possible acceleration by residual averaging ([13]), and the possibly higher residual norm to
impose before stopping adjoint iteration (higher that for state).

RR n° 4363

24 Courty & Dervieux & Koobus & Hascoet

Note than the arti�cial time advancing can be replaced by a matrix-free linear GMRES
(without preconditioner). This would result in a slightly larger complexity of each iteration
but a faster convergence.

In our study, we consider option (b). It is indeed very natural to solve the adjoint state
with the help of the transpose of the �rst-order Jacobian A1 introduced in Sec. 2.2 as a
preconditioner:8>>><

>>>:

(A1)
t �(0) =

@J

@W
(
;W)

(A1)
t (�(n+1) ��(n)) = �(@	2

@W
)t
Q(n)

+
@J

@W
(
;W):

(33)

This algorithm applies a Defect Correction (DeC) iteration to a second-order accurate
approximation of a �rst-order Friedrichs-type system preconditioned with a �rst order ap-
proximation. Desideri and Hemker ([3]) have extensively studied this type of iteration for
the advection and Euler equations and proved that convergence rate can be mesh indepen-
dant and as small as 0:5. In the sequel, we refer to algorithm (33) as the DeC one.

Remark Here we have not considered the addition of the mass-matrix
M

�tn
term. It

might be useful to re-introduce it when the linear system with A1 reveals to be diÆcult to
solve, but we have not studied this option in the present work.

6 Numerical illustrations

Showing how to use the gradient for optimizing the nozzle shape is out of the scope of this
paper. We concentrate on the best way in computing the objective functional gradient.
EÆciency, storage requirements and accuracy of the strategy proposed are measured and
discussed for the model problem introduced in Sec.2.

6.1 Conditions of Numerical Experiments

We condider the following target shape:

1 : y(x) =
1

2
�

1

35
+

1

35
sin(�(x+

1

2
));

This shape
target is used for computing a target pressure and then speci�es completely
the objective cost function in continuous and discrete context.

The following initial shape is also considered:

init : y(x) =
1

2
�

1

40
+

1

40
sin(�(x+

1

2
)):

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 25

The function
init speci�es the initial domain
init of the continuous optimisation loop.
For any mesh of
init, the coordinates
init(xi) of
init of upper vertices specify the

discrete initial shape, that is the point at which we want to compute the gradient of the
discrete objective functional.

The
ow conditions under study are de�ned as follows: far�eld Mach number is 0:74.
Various meshes with respectively 400, 1240, 2760, and 4880 vertices are used in our

experiments. In the present study we do not address the possible diÆculties arising from
truly unstructured meshes but instead we consider meshes of I-J type.

6.2 Direct state solution

In order to help analysis in the sequel, we depict the state variable for the initial shape. The

ow is shows a classical transonic nozzle
ow structure, with a supersonic pocket at nozzle,
limited on downward (right) side by a shock (Mach is then as high as 1.4), the location of
which is around the abscissa of 1.7, see the Mach number contours in Fig.5

Figure 5: State solution, Mach number (without TVD limiters, 4880-node mesh)

6.3 Adjoint system solution

Let us assume that we apply a DeC loop with at each iteration a complete solution of the
�rst-order system (in practise we have done this with many Jacobi iterations). Then the
number of Dec iterations is not so small as predicted by Desideri and Hemker ([3]). But it
takes for most meshes less than 200 DeC iterations for dividing the equation residual by 12
orders of magnitude.

In practice, we do not need a complete convergence of the �rst inner linear loop, but
only a few tens to hundred Jacobi sweeps for a good convergence of DeC in less than 300
iterations. This small e�ort depends strongly on mesh size but the global scheme remains of
comparable eÆciency to the state solution algorithm. In particular, the comparably larger
cost of co-state residual evaluation appears not to be a penalty when it is done only at most
three hundred times.

Some contours of the adjoint state solution are depicted in Figs.6 and 7 with two di�erent
mesh �neness. Both computations are carried without TVD limiters in the whole chain of

RR n° 4363

26 Courty & Dervieux & Koobus & Hascoet

calculations. The in
uence of limiters is discussed in the sequel.

Figure 6: Adjoint state, second component, medium mesh of 2760 nodes

Figure 7: Adjoint state, second component, �ne mesh of 4880 nodes

The understanding of the continuous adjoint system of Partial Di�erential Equations is
a delicate question addressed already by several authors, see [2], [10], [11], [12]. One can
remark indeed, that for the Euler equations, the adjoint system is �rst-order hyperbolic
nature, linear, but non-conservative. It presents diverging characteristics at vicinity of state
variable shocks, and converging characteristics near state variable sonic lines.

Concerning discontinuities, since the Euler solutions satisfying entropy condition are lim-
its of viscous solutions, the adjoints are also limit of viscous adjoint solutions, which indicates
that continuous matching could solve the apparent ambiguity of characteristics divergence.

As a result, a rather smooth behavior is observed on the adjoint in place where the state
shows a strong shock.
On the contrary, direct-state sonic lines turn to produce on the adjoint a kind of linear shock.

6.4 Gradient validation

This strategy of exact analytic di�erentiation can be validated by comparison with divided
di�erences. We emphasize that is not possible when using the direct discretization of the
adjoint PDE equations.

We expect AD-based gradients to be at least as accurate as those provided by divided
di�erences.

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 27

We present in Fig. 8 a comparison between the gradient values obtained with the pre-
sented analytic adjoint method and the values obtained by applying divided di�erences on
each component of the parameter
.

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

Divided differences
Automatic differentiation

Figure 8: Gradient of the objective functional as a function of the horizontal independant
variable. The continuous line is computed with the proposed exact adjoint method. The 14
crosses are obtained from applying sucessively divided di�erences to the 14 unknowns of the
objective functional. Calculations are carried out for a mesh of 400 nodes

Although the mesh is a coarse one of 400 nodes, one must pay attention to the evalua-
tion of the numerical gradients. Perturbations as small as 10�7 are applied to the control
components, the state equation is solved to machine zero (10�14), and second-order divided
di�erences are applied. This does not produce the best accuracy for all components, but for
any of these components, researching an adequate choice of the perturbation size leads to
at least 6 digits identical to the A.D. results. The cost of such an evaluation is much larger
than 2n times the solution of the state system for n parameters.

Let us remark that a much more accurate validation can also be performed by generating
a forward mode sensitivity analysis with Odyssee.

RR n° 4363

28 Courty & Dervieux & Koobus & Hascoet

Since the adjoint approach can be built also in a continuous (i.e. nondiscretized) context,
it is reasonable to investigate the convergence of the discrete gradient to a continuous one.
This study is sketched in Fig.9. We observe that most sensitive parameters correspond to
sonic line and shock locations.

-2

-1

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

400 nodes
1240 nodes
4880 nodes
2760 nodes

Figure 9: Convergence to the continuous limit for the gradient: discrete gradients from four
meshes of 400, 1240, 2760, and 4880 nodes are presented

The above results where obtained without using the TVD limiters in the CFD kernel.
We complete our examination of the gradient by a study of the impact of using limiters. We
restrict our outputs to one mesh, with 1240 nodes. At this level of coarseness, the limiters
have a medium in
uence on the state variables : inlet and outlet values are slightly changed,
the shock moves a little downward and gets rid of the small overshoots, see the horizontal
cut of Mach number in Fig. 10.

The adjoint state solution is more perturbed by this choice, since quasi-constant values
show larger di�erences, see the horizontal cut of second component in Fig. 11.

In Fig. 12, we present the �nal impact of limiters on the gradient components. We
observe that the global behavior is smoothened. At direct-state shock (abscissa near 1.7),
the kind of Dirac is not moved, but is smoothened and has a lower peak. At sonic point,

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 29

Solution without TVD limiter

-2 -0.5 1 2.5 4

0.527318

0.778564

1.02981

1.28106

1.5323
Solution with TVD limiter

-2 -0.5 1 2.5 4

0.527318

0.778564

1.02981

1.28106

1.5323

Figure 10: State solution, horizontal cut of the Mach number, with and without TVD
limiters (1240-node mesh)

where we have a sort of shock for the adjoint state, limiters carry again some smoothing
more diÆcult to interprete. On the other regions, values are unchanged while the adjoint
shows di�erent but constant values. This can be explained by the involvement of space
derivatives in the gradient formulations, so that mean variations of state and adjoint have
no consequence on the gradient.

7 Conclusion

Optimal design techniques are being renewed by adjoint methods. In the present report,
we propose our adjoint-based gradient for a typical optimal design problem. For this, we
describe a two-step strategy for the application of reverse mode automatic di�erentiation.

First, we explain how to derive an exact adjoint-based gradient without explicit storage
of the Jacobian. This method is adapted to complex systems as those arising in compressible
CFD, for which exact jacobian matrices are rarely stored, since they would take too much

RR n° 4363

30 Courty & Dervieux & Koobus & Hascoet

Solution with TVD limiter

-2 -0.5 1 2.5 4

-0.883273

3.90666

8.69659

13.4865

18.2764
Solution without TVD limiter

-2 -0.5 1 2.5 4

-0.883273

3.90666

8.69659

13.4865

18.2764

Figure 11: Adjoint state solution, horizontal cut of the second component, with (lower curve)
and without TVD limiters (1240-node mesh)

memory space. The proposed method does not use a transposed Jacobian, but only the
adjoint system residual.

Second, we explain how to obtain the adjoint residual routine by using the reverse mode
of Automatic Di�erentiation. In the case of steady systems like those used in complex
Continuum Mechanics, some manual pre- and post-processing are still necessary, because
existing di�erentiation tools do not take advantage of the fact that iterations in assembly
loops are independent. We describe the complete process leading to the assembly of the ad-
joint residual, and to the assembly of all other derivatives needed to computing the gradient.

The resulting di�erentiated software shows satisfying performances. We validated the
accuracy of the gradient by comparison with divided di�erences.

In our strategy, Automatic Di�erentiation is applied only to the routines dealing with
equations and functional assembly and never to solution algorithms. This means that new
dedicated algorithms should be designed for the adjoint system.

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 31

-2

-1

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

Gradient with TVD limiter
Gradient without TVD limiter

Figure 12: Gradient, with and without TVD limiters(1240-node mesh)

For solution adjoint system, we think that better algorithms can be imagined for replacing
the rather rustical Defect Correction. They could be for example quasi-Newton ones, and
would in particular allow eÆcient domain decomposition extensions.
For solution algorithms applying to the whole optimality system, we are thinking of two
interesting directions. One is the adaptation of SQP optimization algorithms to large scale
CFD systems. The other is the application of simultaneaous or one-shot iterations for the
optimality system.
In both case, we need the adjoint residual, that will be computed in the way proposed here.

Acknowledgements

This work was partly supported by the EU Aeroshape project.

RR n° 4363

32 Courty & Dervieux & Koobus & Hascoet

References

[1] Beux (F.). { Shape optimization of an Euler
ow in a nozzle. in Notes on nu-
merical
uid mechanics, vol. 55, Periaux et al. Eds, EUROPT - A European
Initiative on Optimum Design Methods in Aerodynamics, pp. 115-131, Vieweg,
Braunsweig Wiesbaden, 1994

[2] Cli� (E.) and Shenoy (A.) On the optimality system for the 1-D Euler
ow
problem AIAA paper 96-3993, 6th AIAA/NASA/ISSMO Symposium on Multi-
disciplinary Analysis and Optimization, september 4-6, Bellevue, WA, 1996

[3] Desideri (J.-A.) and Hemker (P.W.). { Convergence analysis of iterative implicit
and defect-correction algorithms for hyperbolic problems, SIAM J. Sci. Comput.,
88-118, 1995

[4] Francescatto (J.) and Dervieux (A.). { A semi-coarsening strategy for unstruc-
tured multigrid based on agglomeration, International Journal for Numerical
Methods in Fluids, vol. 26, 1998, pp. 927{957.

[5] Griewank (A.). { Evaluating Derivatives Principles and Techniques of Algorith-
mic Di�erentiation. Frontiers in Applied Mathematics 19, SIAM, 2000

[6] Hascoet (L.), Fidanova (S.) and Held (C.). { Iteration-
wise Adjoining, in AD2000, Nice 2000 accessible on site:
http://www-sop.inria.fr/tropics/Laurent.Hascoet/ index.html

[7] Corliss, G. and Faure, C. and Griewank, A. and Hascoet, L. and Naumann,
U. (editors). { Automatic Di�erentiation of Algorithms, from Simulation to
Optimization. Springer, LNCSE, 2001

[8] Hascoet, L. and Fidanova, S. and Held, C., Adjoining Independent Computa-
tions, in [7], p. 185-190

[9] Hovland (P.), Mohammadi (B.) and Bischof (C.). { Automatic Di�erentiation
of Navier-Stokes computations.{ Argonne National Laboratory MCS-P687-0997,
1997

[10] Iollo (A.) and Salas (M.D.) Entropy jump across an inviscid shock wave ICASE
report 95-12 and Theoretical and Computational Fluid Dynamics, 1995

[11] Iollo (A.) and Salas (M.D.) Contribution to the optimal shape design of two-
dimensional internal
ows with embedded shocks ICASE report 95-20, 1995

[12] Iollo (A.), Salas (M.D.) and Ta'asan (S.) Shape optimization governed by the
Euler equations using an adjoint method ICASE report 93-98, 1993

INRIA

REVERSE DIFFERENTIATION FOR OPTIMUM DESIGN 33

[13] Jameson (A.). { Aerodynamic design via control theory. { Report 1824 MAE,
Princeton University, New Jersey, 1988.

[14] Marco (N.) and Dervieux (A.). { Numerical optimizers for aerodynamic design
using transonic �nite-element solvers. { BRITE-ECARP Final report, July 1995.

[15] Mohammadi (B.). { Practical application to
uid
ows of automatic di�erentia-
tion for design problems. { von Karman Lecture Series, 1997

RR n° 4363

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopˆole de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-l`es-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhˆone-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

