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Abstract. We present a new algorithm for combining a fully anisotropic goal-oriented
mesh adaptation with the transient fixed point method for unsteady problems. The mini-
mization of the error on a functional provides both the density and the anisotropy (stretch-
ing) of the optimal mesh. This method is used for specifying the mesh for a time sub-
interval from the state and the adjoint. The global transient fixed point iterates the
re-evaluation of meshes and the states over the whole time interval until convergence.
Applications to unsteady blast-wave Euler flows are presented.
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1 INTRODUCTION

Engineering problems commonly require computational fluid dynamics (CFD) solutions
with functional outputs of specified accuracy. The computational resources available for
these solutions are often limited and errors in solutions and outputs are often unknown.
CFD solutions may be computed with an unnecessarily large number of grid points (and
associated high cost) to ensure that the outputs are computed within the required accu-
racy.

One of the powerful methods for increasing the accuracy and reducing the computation
complexity is mesh adaptation, whose purpose is to control the accuracy of the numerical
solution by changing the discretization of the computational domain according to mesh
size and mesh directions constraints. The technique adopted in this work is the anisotropic
mesh adaptation for unsteady flows introduced by Alauzet et al. in [2] combined with a
goal-oriented mesh adaptation method. The choice of anisotropic mesh is motivated by
its strong influence on the accuracy of many CFD predictions. This technique allows (i)
to significantly reduce the number of degrees of freedom, thus impacting favorably the
CPU time, (ii) to automatically capture the anisotropy of the physical phenomena, and
(iii) to access to high order asymptotic convergence.

Recent works have shown a fertile development of metric-based, or Hessian-based meth-
ods [11, 13, 16, 20], which rely on an ideal representation of the interpolation error and of
the mesh. Getting rid of error iso-distribution and prefering Lp error minimization allow
to take into account discontinuities with higher-order convergence [22].

However, these methods are limited to the minimization of some interpolation errors for
some solution fields. If for many applications, this simplifying standpoint is an advantage,
there are also many applications where Hessian-based adaptation is far from optimal
regarding the way the degrees of freedom are distributed in the computational domain.
Indeed, metric-based methods aim at controlling the interpolation error but this purpose
is not often so close to the objective that consists in obtaining the best solution of a
PDE. Further, in many engineering applications, a specific scalar output needs to be
accurately evaluated, e.g. lift, drag, heat flux. To address this need, the goal-oriented
mesh adaptation focuses on deriving the best mesh to observe a given output functional.
Goal-oriented methods result from a series of papers dealing with a posteriori estimates
[8, 15, 23, 24]. Extracting informations concerning mesh anisotropy from an a posteriori
estimate is a difficult task. Starting from a priori estimates, Loseille et al. proposed in
[21] a fully anisotropic goal-oriented mesh adaptation technique for steady compressible
Euler flows. This latter method combines goal oriented error estimate and the application
of Hessian-based analysis to truncation error.

Mesh adaptation for unsteady flows is an active research field and brings an attracting
increase in simulation efficency. Complexity of the algorithms is larger than for steady
case: time discretisation needs also to be adapted, possibly in a manner that combines
well with mesh adaptation. Meshes can be moved as in [7], locally refined [10] or rebuild
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as in [2, 18]. Many error sensors, a posteriori estimates and goal-oriented methods have
been considered in the literature, see a typical contribution in [8]. Hessian-based methods
are essentially applied with a non-moving mesh system. A transient fixed-point mesh
adaptation method was proposed in [2]. The Hessian criteria at the different time steps
was synthetized with the metric intersection method [2, 17]. In [17] it is proposed to
minimize the L∞(Lp) norm (supremum in time of the Lp spatial norm) of the Hessian-
based criterion.

This paper addresses the extension to unsteady flows of the fully anisotropic goal-
oriented mesh adaptation method. To this end, we combine the anisotropic goal-oriented
error estimate of [21] and the transient fixed-point mesh adaptation algorithm of [2, 17].
This work rises several methodological issues. It is necessary in particular to master
the complexity in development and the computational (memory and time) cost of the
unsteady adjoint.

In the sequel we propose a numerical description of the problem for the case of the un-
steady Euler equations. It is followed by the introduction and description of the unsteady
adjoint state solver. We give a goal-oriented a priori estimate for the unsteady model in
Section 4. Section 5 describes the global adjoint-based transient fixed-point algorithm.
Numerical application to the simulation of a blast wave and some concluding remarks end
this paper.

2 UNSTEADY EULER MODEL

2.1 Euler equations

The unsteady Euler equations in the computational domain Ω ⊂ R3 write:

Ψ(W ) = Wt +∇.F(W ) = 0 in Ω, (1)

where W = t(ρ, ρu, ρv, ρw, ρE) is the vector of conservative variables. The Euler flux
F(W ) = (F1(W ),F2(W ),F3(W )) writes:

F1(W ) =


ρu

ρu2 + p
ρuv
ρuw
ρHu

 , F2(W ) =


ρv
ρuv

ρv2 + p
ρvw
ρHv

 , F3(W ) =


ρw
ρuw
ρvw

ρw2 + p
ρHw

 ,

where ρ, p and H hold respectively for the density, the thermodynamical pressure and the
total enthalpy. Symbols u, v and w stand for the Cartesian components of velocity vector
u = (u, v, w). For a calorically perfect gas, we have p = (γ − 1)(ρE − 1

2
ρ‖u‖2

2), where
γ is constant. We can write this system and its boundary conditions under a compact
variational formulation in the functional space W ∈ V = [H1(Ω)]

5
as follows:

∀φ ∈ V, (Ψ(W ) , φ) =

∫
Ω

φWt dΩ +

∫
Ω

φ∇.F(W ) dΩ−
∫

Γ

φ F̂(W ).n dΓ = 0 , (2)
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where Γ is the boundary of the computational domain Ω, n the outward normal to Γ and
the boundary flux F̂ contains the different boundary conditions, which involve inflow,
outflow and slip boundary conditions.

2.2 Discrete model

We use a vertex-centered finite volume formulation applied to unstructured tetrahe-
dral meshes. A detailed description of the version implemented in our in-house flow solver
Wolf can be found in [3]. We assume that the computational domain Ω is approximated
by a discretised domain Ωh equipped by a tetrahedral mesh H. To each vertex is asso-
ciated a control volume or finite volume cell, denoted Ci. The boundary of Ci is defined
by the rule of medians. Higher-order interpolations on both side of cell interfaces are
done by applying a MUSCL type method using downstream and upstream tetrahedra.
Stabilisation is obtained by introducing the cell-interface extrapolations into a HLLC ap-
proximate Riemann solver. Monotone shock capturing is obtained with a generalization
of the Superbee limiter with three entries [12].

In [21], we have reformulated this particular finite-volume scheme under the form of
a finite element variational formulation. Let us introduce the following approximation
space:

Vh =
{
φh ∈ V ∩ C0(Ω̄) | φh|K is affine ∀K ∈ H

}
.

The interpolation operator of the previous section is chosen as the usual P1 operator:

Πh : V ∩ C0(Ω̄)→ Vh such that Πhϕ(xi) = ϕ(xi),

for all vertices xi of H. The weak discrete formulation writes:

∀φh ∈ Vh, (Ψh(Wh) , φh) = 0,

with

(Ψh(Wh) , φh) =

∫
Ωh

φhWh,t dΩh +

∫
Ωh

φh∇.Fh(Wh) dΩh (3)

−
∫

Γh

φhF̂h(Wh).n dΓh +

∫
Ωh

φhDh(Wh)dΩh

with Fh = ΠhF and F̂h = ΠhF̂ and Γh = ∂Ωh. The numerical diffusion term Dh is at
least a third order term with respect to mesh size, everywhere limiters do not apply. Even
for shocked flows, we have found it is interesting to neglect it, see [21]. This option is also
followed in this paper.

2.2.1 Time advancing

An explicit scheme is used to advance the Euler equations in time. Once the equations
have been discretized in space, a set of ordinary differential equations in time is obtained:
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Wt − Φ(W ) = 0. To discretize the previous relation, a Strong-Stability-Preserving (SSP)
Runge-Kutta scheme is considered. Such time discretization methods have non-linear
stability properties like TVD which are particularly suitable for the integration of system
of hyperbolic conservation laws where discontinuities appear. This holds for the first order
Runge-Kutta scheme which is considered here:

W n+1 = W n + ∆tΦ(W n) (4)

This scheme is stable for a Courant number of 1.

3 UNSTEADY ADJOINT STATE AND LAGRANGE MULTIPLIERS

Starting from an initial solution W 0 of the state equation (1), the solution at time tn,
i.e., W (tn), is computed using a time integration scheme. We first consider the first order
Runge-Kutta method given by Relation (4):

Ψ̃n(W n,W n−1) =
W n −W n−1

δtn
+ Φ(W n−1) = 0, (5)

with δtn = tn+1 − tn the (n+1)-th time step and Φ the numerical flux function. The
problem of minimizing the error on target funtional j(W ) = (g,W ), subject to Euler
system (1) can be rewritten into an unconstrained problem via the Lagrange method.
The extended cost function (also known as the Lagrangian functional) reads:

L = j −
N∑
n=0

[(W ∗,n)T Ψ̃n] (6)

with W ∗,0,W ∗,1, ...,W ∗,N the N + 1 vectors of Lagrange multipliers (which are the time-
dependent adjoint states). A necessary condition for an extrema is that the gradient of L
with respect to W 0, ...,WN and W ∗,0, ...,W ∗,N vanishes. Since the states W 1, ...,WN are
calculated starting from W 0 using the constraint given by Relation (5), we get easily:

∂L
∂W ∗,n = 0, for n = 0, ..., N.

The Lagrange multipliers W ∗,n must now be chosen such that

∂L
∂W n

= 0, for n = 0, ..., N,

which, in case of two-levels schemes as (5), leads to:
∂j

∂WN
− (W ∗,N)T

∂Ψ̃N

∂WN
= 0

∂j

∂W n
− (W ∗,n)T

∂Ψ̃n

∂W n
− (W ∗,n+1)T

∂Ψ̃n+1

∂W n
= 0, ∀ n = 0, ..., N − 1.
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This can be written equivalently as:
W ∗,N =

( ∂Ψ̃N

∂WN

)−T( ∂j

∂WN

)T
W ∗,n =

( ∂Ψ̃n

∂W n

)−T[( ∂j

∂W n

)T
−
(∂Ψ̃n+1

∂W n

)−T
(W ∗,n+1)T

]
, ∀ n = 0, ..., N − 1.

(7)

Since W 1, ...,WN have been calculated from the initial state W 0, the vector of La-
grange multipliers W ∗,n can be computed backwards using the whole set of flow solutions
W 0, ...,WN . System (7) is known as the system of adjoint equations for Model (1). In
this context, the Lagrange multipliers are also known as the adjoint variables. The next
step is to study how the Jacobians ∂Ψ̃n

∂Wn and ∂Ψ̃n+1

∂Wn can be evaluated. In our case, for the
first order Runge-Kutta scheme, we have:

∂Ψ̃n

∂W n
=

1

δtn
I and

∂Ψ̃n+1

∂W n
= − 1

δtn+1
I +

∂

∂W n
Φ(W n)

and the adjoint system (7) becomes:
W ∗,N = δtN

( ∂j

∂WN

)T
W ∗,n = δtn

[( ∂j

∂W n

)T
+

(W ∗,n+1)T

δtn+1
−
( ∂Φ

∂W n
(W n)

)T
(W ∗,n+1)T

]
, ∀ n = 0, ..., N − 1.

4 ERROR ANALYSIS

4.1 Formal analysis

Let Ω be a subdomain of R3 with a smooth enough boundary. Let V1 be the space of
real square integrable functions defined on Ω, and V

′
1 its dual for the L2 scalar product,

which lies in D(Ω), the space of usual distributions. Let V1 = V1 ∩ C0(Ω̄) be a subspace
of V1 of smoother functions than those of V1. Since we are interested in systems of PDE,
we consider the spaces of n-uples of functions/distributions in the previous spaces:

V = (V1)n ; V ′ = (V ′1)n ; V = (V1)n

equipped with the induced topologies.

In order to define a continuous system of PDE, we introduce a mapping Ψ : V → V ′:

w = (w1, w2, .., wn) 7→ Ψ(w) = (Ψ(w)1,Ψ(w)2, ..,Ψ(w)n) (8)

We consider a continuous system of PDE called the state equation which is written as
follows:

Find w ∈ V such that Ψ(w) = 0 in V ′ . (9)
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We can also write the state equation under a variational statement:

w ∈ V , ∀ϕ ∈ V , (Ψ(w), ϕ) = 0, (10)

where the operator (, ) holds for a V ′ × V product. The functional under study is also
defined on V , i.e., j : V → R defined by:

w 7→ j(w) = (g, w) . (11)

The continuous adjoint w∗ is solution of:

w∗ ∈ V , ∀ψ ∈ V ,

(
∂Ψ

∂w
(w)ψ,w∗

)
= (g, ψ) . (12)

We now describe the discretized PDE system. Let Vh be a subspace of V of finite
dimension N . A central assumption is that we can write the discrete state equation as
follows:

wh ∈ Vh , ∀ϕ ∈ V , (Ψh(wh), ϕ) = 0.

In particular, we can write:

(Ψh(w), ϕh)− (Ψh(wh), ϕh) = (Ψh(w), ϕh)− (Ψ(w), ϕh) = ((Ψh −Ψ)(w), ϕh). (13)

For the a priori analysis, we assume that solutions w and w∗ are sufficiently regular:

w ∈ V ∩ C0(Ω̄) and w∗ ∈ V ∩ C0(Ω̄),

and that we have an interpolation operator:

Πh : V ∩ C0(Ω̄) → Vh.

The objective is to estimate the following approximation error on the functional:

δj = j(w)− j(wh) .

In [21] the following a priori formal estimate is proposed:

δj ≈ ((Ψh −Ψ)(w), w∗) . (14)

The next session is devoted to the application of Estimate (14) to the unsteady Euler
system.
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4.2 Application to unsteady Euler equations

The main term of the a priori error estimation of δj writes:

δj = (g,W −Wh) ≈ ((Ψh −Ψ)(W ),W ∗),

where W ∗ is the continuous adjoint state, solution of:

∂Ψ

∂W
W ∗ = g.

Considering Ψh(W ) the extension of the discrete residual, we obtain a more general for-
mulation and with the use of Πh the interpolation operator previously defined we have:

(Ψh(W ) , φ) =

∫
Ωh

Πhφ ΠhWt dΩh +

∫
Ωh

Πhφ ∇. (ΠhF(ΠhW )) dΩh

−
∫

Γh

Πhφ ΠhF̂(ΠhW ).n dΓh. (15)

where the dissipation term Dh has been neglected. From Relations (2) and (15), after
integrating by parts, the a priori error estimate becomes:

δj ≈
∫

Ωh

W ∗ (ΠhW −W )t dΩh +

∫
Ωh

∇W ∗ (F(W )− ΠhF(W )) dΩh

−
∫

Γh

W ∗ (F̄(W )− ΠhF̄(W ))).n dΓh. (16)

We observe that this estimate of δj is expressed in terms of interpolation errors for the
fluxes and for the time derivative (which can be considered like a source term for Equa-
tions (1)) and in terms of the continuous functions W and W ∗.

Error bound with a safety principle The integrands in (16) contain positive and
negative parts which can compensate for some particular meshes. In our strategy, we
prefer to avoid these parasitic effects. To this end, all integrands are bounded by their
absolute values:

(g,Wh −W ) ≤
∫

Ωh

|W ∗| |(W − ΠhW )t| dΩh

+

∫
Ωh

|∇W ∗| |F(W )− ΠhF(W )| dΩh

+

∫
Γh

|W ∗| |(F̄(W )− ΠhF̄(W )).n| dΓh. (17)

In other words, we prefer to locally over-estimate the error.
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4.3 Optimal metric for the interpolation error

We recall here the continuous mesh framework [19] introduced to find the optimal
mesh minimizing the interpolation error estimate for a given mesh size or a given error
threshold. Indeed, it allows us to define proper differentiable optimization [1, 6] or to use
the calculus of variations that is undefined on the class of discrete meshes. This framework
lies in the class of metric-based methods.

Continuous mesh model and continuous linear interpolation error. A contin-
uous mesh M = (M(x))x∈Ω of Ω is a Riemannian metric field [9]. For all x of Ω, M(x)
is a symmetric tensor having (λi(x))i=1,3 as eigenvalues along the principal directions

R(x) = (vi(x))i=1,3. Sizes along these directions are denoted (hi(x))i=1,3 = (λ
− 1

2
i (x))i=1,3.

With this definition, M admits the more practical local decomposition:

M(x) = d
2
3 (x)R(x)

 r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)

 tR(x),

where

• the node density d is equal to: d = (h1h2h3)−1 = (λ1λ2λ3)
1
2 =

√
det(M),

• the three anisotropic quotients ri are equal to: ri = h3
i (h1h2h3)−1.

The anisotropic quotients represent the overall anisotropic ratio of a tetrahedron taking
into account all the possible directions. It is a complementary measure to anisotropic ratio
given by maxi(hi)/mini(hi). By integrating the node density, we define the complexity C
of a continuous mesh which is the continuous counterpart of the total number of vertices:

C(M) =

∫
Ω

d(x) dx =

∫
Ω

√
det(M(x)) dx.

This real-value parameter is useful to quantify the global level of accuracy of the continu-
ous mesh M = (M(x))x∈Ω. It has been shown in [19] that M defines a class of equivalence
of discrete meshes. The equivalence relation is based on the notion of unit mesh with
respect to M.

This model is also particularly well suited to the study of the interpolation error.
Indeed, there exists a unique continuous interpolation error that models the (infinite) set
of interpolation errors computed on the class of unit meshes. See [19] for the proof along
with equivalence between discrete and continuous formulations. For a smooth function u,
the continuous linear interpolate πMu is a function of the Hessian Hu of u and verifies:

(u− πMu)(x) =
1

10
trace(M− 1

2 (x) |Hu(x)|M− 1
2 (x))

9
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=
1

10
d(x)−

2
3

3∑
i=1

ri(x)
2
3
tvi(x) |Hu(x)|vi(x), (18)

where |Hu| is deduced from Hu by taking the absolute values of its eigenvalues. πM
replaces the discrete operator Πh in this continuous framework.

Optimal mesh. The problem of mesh adaptation consists in finding the mesh H of Ω
that minimizes the linear interpolation error u−Πhu controlled in Lp norm. The problem
is thus stated in an a priori way:

Find HLp having N nodes such that ELp(HLp) = min
H
‖u− Πhu‖Lp(Ωh) . (19)

As it, Problem (19) is a global combinatorial problem which turns out to be intractable
practically. Indeed, both topology and vertices locations need to be optimized. This
ill-posed problem can be reformulated in the continuous mesh framework [19, 20]. It is
then possible to set the well-posed global optimization problem of finding the optimal
continuous mesh minimizing the continuous interpolation error in Lp norm:

Find MLp such that ELp(MLp) = min
M

(∫
Ω

(u(x)− πMu(x))p dx

) 1
p

, (20)

under the constraint

C(M) =

∫
Ω

√
detM(x)dx = N. (21)

which models the total number of nodes. According to [19], if H is a unit mesh with
respect to M and u is a smooth function, then the following bound holds:

‖u− ΠHu‖Lp(Ωh) ≤ ‖u− πMu‖Lp(Ω) =

(∫
Ω

(
trace(M− 1

2 (x)|Hu(x)|M− 1
2 (x))

)p
dx

) 1
p

,

(22)
Writing the optimality conditions provides the unique (by convexity) optimal continuous
mesh MLp = (MLp(x))x∈Ω solution of Problem (20) under Constraint (21):

MLp = DLp (det |Hu|)−
1

2p+3 |Hu| with DLp = N
2
3

(∫
Ω

(det |Hu|)
p

2p+3

)− 2
3

. (23)

4.4 Optimal goal-oriented error estimate metric

We propose to work in the continuous mesh framework [19] in order to find the optimal
mesh minimizing the a priori goal-oriented error estimate (17) for a given mesh size or a
given error threshold.

10
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Error model minimization. Working in this framework enables us to write Estimate
(17) in a continuous form:

(g,Wh −W ) ≈ E(t,M) =

∫
Ω

|W ∗| |(W − πMW )t| dΩ

+

∫
Ω

|∇W ∗| |F(W )− πMF(W )| dΩ

+

∫
Γ

|W ∗| |(F̄(W )− πMF̄(W )).n| dΓ, (24)

where states W = W (t) and W ∗ = W ∗(t) are taken at time level t and where M =
(M(x))x∈Ω is a continuous mesh defined by a Riemannian metric space and πM is the
continuous linear interpolate defined hereafter. For the sequel, it will be useful to split the
description of the mesh into the volumic mesh, described by M and the surfacic mesh for
the boundary, described by M̄. Further, we consider the space error for a set {t0, ..., tm}
of time levels. We then introduce:

E(M, M̄) =
∑
k

∫
Ω

gk|(1− πM)uk|dΩ +
∑
k

∫
Γ

ḡk|(1− πM̄)ūk|dΓ . (25)

In the different couples (gk, uk), we account for all the integrands in the volumic in-
tegral, that is the term from the time derivative, and the 15 terms resulting from the
multiplication of interpolation error of Euler fluxes by adjoint spatial derivatives. And
this, for all the m+ 1 time levels. In the different couples (ḡk, ūk), we account for the five
terms resulting from the multiplication of interpolation error of boundary Euler fluxes by
adjoint components, this, for all m+ 1 time levels.

We can now formulate the following (continuous) mesh optimization problem:

Find (Mopt, M̄opt) = ArgminM,M̄E(M, M̄), (26)

under the constraint
C(M) + C(M̄) = N.

The constraint is added to the previous problem in order to bound mesh fineness. In this
continuous framework, we impose the total number of nodes (in volume and in surface)
to be equal to a specified positive integer N . We now detail the continuous mesh and
continuous interpolation framework.

Optimal goal-oriented metric. The optimal metric is composed of a volume tensor
field Mgo defined in Ω and a surface one M̄go defined on Γ. We have:

11
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• for each vertex x of Ω, a 3 × 3 matrix arising from the volume contribution of the
sum of the Hessian of each component of the Euler fluxes weighted by the gradient
of the adjoint state and the Hessian of the state time derivative weighted by the
adjoint state:

H(x, tn) =
m∑
n=1

5∑
j=1

([∆t]j(x, tn)) + [∆x]j(x, tn) + [∆y]j(x, tn) + [∆z]j(x, tn)) , (27)

where
[∆t]j(x, tn) =

∣∣W ∗
j (x, tn)

∣∣ · |H((Wj,t))(x, tn)|,

[∆x]j(x, tn) =

∣∣∣∣∂W ∗
j

∂x
(x, tn)

∣∣∣∣ · |H(F1(Wj))(x, tn)|,

[∆y]j(x, tn) =

∣∣∣∣∂W ∗
j

∂y
(x, tn)

∣∣∣∣ · |H(F2(Wj))(x, tn)|,

[∆z]j(x, tn) =

∣∣∣∣∂W ∗
j

∂z
(x, tn)

∣∣∣∣ · |H(F3(Wj))(x, tn)|,

with W ∗
j denoting the jth component of the adjoint vector W ∗ and H(Fi(Wj)) the

Hessian of the jth component of the vector Fi(W ),

• for each vertex x of Γ, a 2× 2 matrix arising from the surface contribution:

H̄(x, tn) =
m∑
n=1

5∑
j=1

∣∣∣W ∗(x, tn)
∣∣∣ · ∣∣∣H̄ ( 3∑

i=1

F̄i(W )(x, tn) · ni

)∣∣∣, (28)

where n = (n1, n2, n3) is the outward normal of Γ.

The standard L1 norm normalization is then applied independently on each metric Goal
Oriented (“go”) tensor field:

Mgo(x) = C det(|H(x, tn)|)−
1
5 |H(x, tn)| and

M̄go(x) = C̄ det(|H̄(x, tn)|)−
1
4 |H̄(x, tn)|.

(29)

Constants C et C̄ depends on the desired complexity N .
In [21], it is shown that C and C̄ are the solutions of the nonlinear algebraic problem.

aC−
3
5 + bC−

1
2 = N

C̄ = C

with a =

∫
Ω

g
3
5 det(|H(x, tn)|)

1
5 ,

and b =

∫
Γ

ḡ
1
2 det(|H̄(x, tn)|)

1
4 . (30)
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Note that the metric M̄go(x) is 2D and needs to be transformed onto a 3D metric
prior to the intersection with Mgo(x) to get the final goal-oriented metric. This is done
by setting an hmax size along the normal direction to the surface in M̄go(x) leading to
Mgosurf . Finally, the global optimal continuous mesh Mopt = (Mopt(x))x∈Ω is defined by:

Mopt(x) =

{
Mgo(x) for x ∈ Ω
Mgo(x) ∩Mgosurf (x) for x ∈ Γ

(31)

The continuous problem (26) has been solved from an explicit optimality condition
producing the optimal metric field as a function of state and adjoint. In practice, it re-
mains to approximatively solve the coupled system of state, adjoint, and mesh-optimality.
This is done with a goal-oriented adaptive loop which we describe in Section 5.

5 UNSTEADY MESH ADAPTATION ALGORITHM

5.1 Computing the goal-oriented metric

The optimal metric defined in Section 4.4 by Relations (27,28,29,31) is a function of
the adjoint state, of the gradient of the adjoint state and of the Hessians of the Euler
fluxes and time derivative. In practice, these continuous states are approximated by the
discrete states and derivative recovery is applied to get gradients and Hessians. The
discrete adjoint state W ∗

h is taken to represent the adjoint state W ∗. The gradient of the
adjoint state ∇W ∗ is replaced by ∇RW

∗
h and the Hessian of each component of the flux

vector H(Fi(W )) is obtained from HR(Fi(Wh)). ∇R (resp.HR) stands for the operator
that recovers numerically the first (resp.) second order derivatives of an initial piecewise
linear by element solution field. In this paper, the recovery method is based on the double
L2-projection. Its formulation along with some comparisons to other methods is available
in [3]. Goal-oriented mesh adaptation requires to adapt the surface mesh of the surface
Γ on which the functional is observed. This standpoint is needed in order to ensure a
valid coupling between the volume mesh and the surface mesh. We use Yams [14] for the
adaptation of the surface and the volume mesh.

5.2 Unsteady mesh adaptation model

The transient fixed-point mesh adaptation algorithm introduced in [2] consists in split-
ting the simulation time interval [0, T ] into n mesh-adaptation sub-intervals:

[0, T ] = [0 = t0, t1] ∪ ... ∪ [ti, ti+1] ∪ ... ∪ [tn−1, tn].

The idea is to build, for each sub-interval [ti, ti+1], a mesh which is adapted to the chosen
time evolving features of the solution occurring during the sub-interval. This is done by
means of a fixed-point iteration procedure which enables to enhance the capture of the
phenomena and the mesh adaptation at these features at each new iterations. The mesh-
solution couple is improved in this way until convergence. Then, the next sub-interval is
treated.

13
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The transient fixed-point mesh adaptation algorithm cannot be used efficiently when
an adjoint-based criterion is adopted. Instead, we define a global transient fixed-point
mesh adaptation algorithm. More precisely, the mesh-solution couple convergence is now
global on the whole time-frame [0, T ]. At each fixed-point iteration (α), the global mesh

is represented by a n-uple of meshes M(α) = (M(α)
1 , ...,M(α)

n ), each M(α)
k being used

to advance the solution on the sub-interval [tk−1, tk]. It results in a complex iterative
algorithm since forward/backward computations are performed to solve the unsteady
state/adjoint systems.

The following steps are carried out:

1. Set α=0 and define an initial global mesh M(0) for [0, T ].

2. Compute state W (α) on time interval [0, T ] withM(α), i.e., usingM(α)
k for advancing

W (α) from tk−1 to tk.

3. For decreasing k, i.e. k = n, n− 1, ..., 1 :

• compute backwards the adjoint state W
∗,(α)
k on interval [tk, tk−1] (in practice

[tk, tk−1] contains several time steps)

• compute from W
(α)
k and W

∗,(α)
k the new individual meshM(α+1)

k corresponding
to time sub-interval k.

4. Let M(α+1) = (M(α+1)
1 , ...,M(α+1)

n ).

5. Repeat from step 2, with α = α + 1.

Memory consumption is saved by storing the state solution W (α) only at some check-
points defined by user. We have chosen to store W (α) at beginning of sub-intervals [tk−1, tk]
and recompute it at the beginning of Step 4.

The error carried out by the tranfers between two different meshes is mastered by using
the conservative transfer introduced in [4].

The fixed-point iteration is stopped when the deviation between two successive solu-
tions at time 0 is sufficiently small.

6 NUMERICAL EXPERIMENTS

In this section we present some preliminary results on the 2D test case of a channel
flow past a semi-circular object, shown in Figure (1).
We consider a “blast-like“ initialization inside a circle of radius r0 = 0.15 around x0 =
(1.2, 0.0), given by: ρ = 10.0, v = (0, 0) and e = 25.0.

The cost function j was the impulse over the target surface S in Figure (1):

j(W ) =
1

2

∫
S

(p− p∞)2ds.
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The goal-oriented mesh adaptation technique previously defined, of deriving an optimal
mesh to observe the functional has been applied to Euler model and the flowfields were
integrated in time using the first-order Runge-Kutta scheme. The presence of multiple
shock reflections is clearly evident. Slip boundary conditions has been considered involving
the rebound of the shock wave.

Backwards progression of the adjoint state is illustrated in Figure (2). When adjoints
are zero no mesh adaptation is performed since the metric defined to prescibe the mesh
is constructed of terms weigthed by the adjoint and his gradient (cf. Section 4.4). Hence
the flowfield is advanced at least until the target surface is reached.

The evolution of the adaptive meshes sequence is shown in Figure (3). We can observe
that the chosen area of refinement by the goal oriented error estimate evolves during the
computation depending on the information currently available.

Figure 1: Channel flow 2D mesh

Figure 2: Adjoint solutions evolving backwards in time
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Figure 3: Evolution of the meshes in time

7 CONCLUSIONS

We have designed a new mesh adaptation algorithm which prescribes the spatial mesh
of an unsteady simulation as the optimum of a goal-oriented error analysis. This methods
specifies both mesh density and anisotropy by variational calculus. Extension to unsteadi-
ness is applied in an implicit mesh-solution coupling which needs a non-linear iteration,
the fixed point. In contrast to the Hessian-based fixed-point, the iteration covers the
whole time interval, including forward steps for evaluating the state and backward ones
for the adjoint. The new algorithm is applied to a blast wave Euler test case and shows
on this calculation the favourable behavior expected from an adjoint-based method, that
is an automatic selection of the mesh necessary for the target output. Several impor-
tant issues were difficult to address in this short paper and will be addressed in a longer
publication. Among them, the strategies for choosing the splitting in time sub-intervals
and the accurate integration of time errors in the mesh adaptation process with a more
general formulation of the mesh optimisation problem is examined in [5].
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[17] D. Guégan, O. Allain, A. Dervieux, and F. Alauzet. An l∞-lp mesh adaptive method
for computing unsteady bi-fluid flows. Int. J. Numer. Meth. Engng, 2010. Submitted.
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