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Methodology. Pressure deviation can propagate over long distances. Two
typical examples are shock waves and linear acoustics. Shock waves involve
the sonic boom, which can be seen as a steady shock wave (in a wind tunnel,
typically), and the blast wave (typically unsteady). Linear acoustic waves
refer also either to a transient wave of bounded duration, or to a periodic
vibration. A important context in the study of these different type of waves
is the case where we are interested only by the effect of the wave on a sensor
ocupying a very small locus in the region affected by the pressure perturba-
tion. Further simplifying, we can be interested by a single scalar measure of
this effect, for example the total energy Etot received by the sensor during
a given time interval. If the pressure perturbation is emitted at a very long
distance, in an open and complex spatial domain, the numerical simulation of
this phenomenon, that would be necessary to predict Etot, can be extremely
computer intensive, if not impossible. Now, many events in the simulation
are useless for our target, some others not very important, some others of
crucial importance. The local mesh fineness should reflect this hierarchy.

The issue we address in this work is the application of mesh adaptation
for designing the best mesh for obtaining a scalar output like Etot with a given
accuracy.

The technique adopted in this work is the anisotropic mesh-adaptation
introduced by Alauzet et al. in [1] combined with a goal-oriented method.
The choice of anisotropic mesh is motivated by its strong influence on the
accuracy of many CFD predictions. This technique allows (i) to substantially
reduce the number of degrees of freedom, thus impacting favorably the CPU
time, (ii) to automatically capture the anisotropy of the physical phenomena,
and (iii) to access to high order asymptotic convergence. Recent works have
shown a fertile development of metric-based, or Hessian-based methods [6, 5],
which rely on an ideal representation of the interpolation error and of the
mesh. Getting rid of error iso-distribution and prefering Lp error minimiza-
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tion allow to take into account discontinuities with higher-order convergence
[11].

Metric-based methods aim at controlling the interpolation error but this
purpose is not often so close to the objective that consists in obtaining the
best solution of a PDE. Further, in many engineering applications, a spe-
cific scalar output needs to be accurately evaluated, e.g. lift, drag, heat
flux. To address this need, the goal-oriented mesh adaptation focuses on
deriving the best mesh to observe a given output functional. Goal-oriented
methods result from a series of papers dealing with a posteriori estimates
([13, 3, 7, 12]. Extracting informations concerning mesh anisotropy from an
a posteriori estimate is a difficult task. Starting from a priori estimates,
Loseille et al. proposed in [10] a fully anisotropic goal-oriented mesh adap-
tation (FAGOMA) technique. This latter method combines goal oriented
rationale and the application of Hessian-based analysis to truncation error.
This method was described for the simulation of a steady sonic boom.

Figure 1: Nonlinear blast wave past a cylinder, adjoint state and resulting
adaptive mesh.

Mesh adaptation for unsteady flows is also an active research field and
brings an attracting increase in simulation efficiency. Complexity of the al-
gorithms is larger than for steady case: time discretisation needs also to
be adapted, possibly in a manner that combines well with mesh adapta-
tion. Meshes can be moved as in [2], locally refined [4] or rebuild as in [9].
Many error sensors, a posteriori estimates and goal-oriented methods have
been considered in the literature, see a typical contribution in [3]. A tran-
sient fixed-point (TFP) method was proposed in [1]. The Hessian criteria at
the different time steps was synthetized with the metric intersection method
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[1, 8]. In [8] it is proposed to minimise the L∞(Lp) norm (supremum in time
of the Lp spatial norm) of the Hessian-based criterion. The present work
combines the FAGOMA of [10] and the TFP advances of [1, 8].

Nonlinear blast wave. We present some preliminary results on the 2D test
case of a channel flow past a semi-circular object. We consider a “blast-like“
initialization inside a circle on the left part of domain’s bottom. The cost
function measures the impulse over a target surface lying on the right bot-
tom, two diameters after the circular obstacle, see Fig.1.

Linear acoustics wave. In a first investigation of acoustics waves, we
consider a sound source located at the left-bottom of a square domain. We
are interested by the mesh-adaptive calculation of the impact of it on a micro
M located on the center of the same domain bottom. The role expected from
mesh adaptation is to reduce as much as possible mesh fineness in the parts
of computational domain where accuracy loss does not influence the quality
of sound prediction on the micro. This is illustrated in Fig.2.

Figure 2: Influence of an acoustic wave on a micro located close to it. Mesh
resolution concentrates between source and micro M.
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