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Abstract

A Reduced-Order Model (ROM) is developed for the prediction of unsteady transonic flows

past an airfoil submitted to small deformations, at moderate Reynolds number. Considering a

suitable state formulation as well as a consistent inner product, the Galerkin projection of the

compressible flow Navier-Stokes equations, the High-Fidelity (HF) model, onto a low-dimensional

basis determined by Proper Orthogonal Decomposition (POD), leads to a polynomial quadratic

ODE system relevant to the prediction of main flow features. A fictitious domain deformation

technique is yielded by the Hadamard formulation of HF model and validated at HF level. This

approach captures airfoil profile deformation by a modification of the boundary conditions whereas

the spatial domain remains unchanged. A mixed POD gathering information from snapshot series

associated with several airfoil profiles can be defined. The temporal coefficients in POD expansion

are shape-dependent while spatial POD modes are not. In the ROM, airfoil deformation is intro-

duced by a steady forcing term. ROM reliability towards airfoil deformation is demonstrated for

the prediction of HF-resolved as well as unknown intermediate configurations.
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I. INTRODUCTION

The increasing demand concerning the implementation of realistic flow simulations

into iterative processes like real-time control, optimal shape design or parametrical

studies, highlights the need for hierarchical modeling approaches. In this context, such

approaches can provide an interesting balancing between physical accuracy and compu-

tational cost. Following this idea, High-Fidelity (HF) models characterized by a high

physical universality can be replaced by low-dimensional models that represent local ap-

proximations of HF models, allowing a strong reduction of the number of degrees of freedom.

The present work focuses on the development of a Reduced-Order Model (ROM) for

the prediction of unsteady transonic flows around an airfoil submitted to small defor-

mations. The main contributions of the study are: (i) the elaboration of a ROM of the

fully compressible flow non-linear Navier-Stokes equation system by Proper Orthogonal

Decomposition (POD)-Galerkin approach, (ii) the introduction of small shape deformations

in the ROM on the basis of the Hadamard formulation of HF model, (iii) the analysis of

ROM reliability towards small shape deformations.

In the context of model reduction, the technique relying on the Galerkin projection of

HF model onto a low-dimensional basis determined by POD, among other approaches, has

been widely applied. The POD, also referred to as Principal Component Analysis [1] or

Karhunen-Loève expansion [2], was initially utilized in fluid mechanics for coherent structure

identification in turbulent flows [3]. It is often used to capture main flow features by a low

number of basis functions or modes. As a consequence, POD-Galerkin approach is both

physics- and data-driven since HF physical model is present through its Galerkin projection

while POD modes are determined from flow snapshot series. The first aspect enforces

the physical relevance of the approach while the second is responsible for both dimension

reduction and local validity.

On the basis of Navier-Stokes equations and under incompressibility assumption,

POD-Galerkin approach has been considered to derive ROMs of laminar and transitional

flows predicted by direct numerical simulation [4–10], turbulent flows simulated by large

eddy simulation [11] or statistical approaches [12], for example, as well as noisy laminar
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flows issued from stochastic simulations relying on polynomial chaos representations [13].

Compressible flows have been less investigated, especially in the non-linear fully compress-

ible case. A framework based on POD-Galerkin approach has been reported in [14] for the

linearized inviscid Euler equations. Adopting a linearization about a state determined by

solving the non-linear governing equations (Euler or viscous-inviscid coupling), ROMs based

on time- and frequency-domain POD have been elaborated for the prediction of transonic

flows in turbomachinery and airfoil aeroelasticity context [15–18]. An aeroelastic POD

ROM of a complete aircraft configuration in the transonic regime has been developed in the

frequency domain on the basis of a linearized formulation of HF model [19]. A non-linear

extension of frequency-domain POD-based ROM has been developed by means of automatic

differentiation [20] and led to efficient prediction of inviscid transonic flows around an airfoil.

The present study concerns non-linear ROM of transonic flows in the time domain. In the

fully compressible case, the coupling of the kinematic quantities with two thermodynamic

variables induces two main difficulties concerning POD-Galerkin aproach. The classical

conservative formulation of the state vector does not lead to polynomial fluxes as in the

incompressible case. This strongly complexifies the Galerkin projection and does not allow

once for all computation of ROM coefficients. Moreover, in this context, the inner product

usually considered for POD in the incompressible case is not dimensionally consistent.

Under isentropic flow assumption, that is valid for moderate Mach numbers, a ROM of the

compressible cavity flow has been put forward [21]. This assumption allows to express the

governing equations as quadratic fluxes and an energetic inner product involving both flow

and sound velocities can be defined. However, in the fully compressible case, the physical

context of this work, the above mentioned difficulties have to be overcome. As reported

in the present paper, the two key enablers are a modified state formulation along with

constant viscosity assumption that lead to quadratic fluxes [22] and a consistent definition

of the non-dimensional inner product as suggested in a preliminary work [23].

Beyond the elaboration of an efficient ROM for unsteady transonic flows, one of the main

objectives of this study is to develop a ROM able to handle airfoil small deformations and

reliable for the prediction of the effect of such deformations on predominant flow features.

From a general point of view, a crucial issue in ROM development is the robustness of its
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predictive capacities in a certain neighborhood about reference configurations. Within such

trust-regions, ROMs are expected to respond similarly to HF model. The integration of

POD-Galerkin models into control procedures involving flow actuation [e.g. 24–27] or into

parametrical studies concerning Reynolds number for example [4, 6, 8], has emphasized

POD ROM sensitivity. These studies have highlighted inherent issues and limitations

of this approach and suggested improvements, especially concerning POD basis validity

and the introduction of flow actuation in the ROM. In the present work, these points are

addressed in the case of small parametrical deformations of airfoil profile.

In the litterature, only a few studies have dealt with ROM of flows around deformed

bodies. The approaches based on an actual deformation of the computational grid have

to face several issues concerning POD and especially the evaluation of spatial inner

products between snapshots associated with different domains [28]. If the number of

discretization points is unchanged during deformation, the ‘index-based’ POD approach

[29] can be considered: the discretized POD modes are not associated with a specific spatial

location but with space discretization point numbering. A drawback of this approach

is the dependency of POD modes on the method considered to propagate the body

deformation within the domain. As a consequence, for small deformations, considering a

reference domain that is not modified by the deformation and introducing this deformation

through a modification of the boundary conditions appears as a convenient alternative.

In particular, the ‘transpiration’ method, that enforces the impermeability condition on

the fictitious surface, has been used for both HF modeling [30, 31] and ROM [32] on the

basis of Euler equations. In the present physical context that concerns viscous flows in the

transonic regime, a fictitious domain deformation technique is developed on the basis of the

Hadamard formulation of HF model. As discussed in the following, this approach mimics

efficiently airfoil deformation at HF level and yields a simple framework for introducing

shape deformation in ROM.

The paper is organized as follows. HF model, related numerical method as well as the

physical context of the study are briefly described in §II. A ROM of the transonic flow past

NACA0012 airfoil is elaborated in §III from this HF model via POD-Galerkin approach. In

§IV, a fictitious domain deformation technique is developed and validated at HF level. It is
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applied in §V where ROM approach is extended to handle airfoil profile deformations. The

main findings of the present work are summarized in §VI.

II. HIGH-FIDELITY MODEL

The system of the compressible flow Navier-Stokes equations is considered as HF model

for the prediction of the present transonic flows. The governing equations are briefly recalled

(§IIA) as well as the numerical method (§II B). The physical context of the study that

concerns flow unsteadiness induced by compressibility effects is shortly described in §IIC.

A. Governing equations

The compressible flow is described in Cartesian coordinates. ·,t and ·,i subscripts denote

respectively time and space derivatives. Greek subscripts and superscripts are used for

implicit summations. The density is denoted by ρ and the velocity components by ui. The

pressure p satisfies the ideal gas law p = ρRT where T is the temperature and R is the

ideal gas constant (R = 287 J kg−1 K−1 for air). The fluid viscosity µ is evaluated through

Sutherland’s law:

µ (T ) = µ0

√

T

T0

1 + Cs

T0

1 + Cs

T

, (1)

where Cs = 110.4 K, µ0 = 1.711 × 10−5 Pa s and T0 = 273.15 K. τij =

µ (ui,j + uj,i − 2/3uα,αδij) are the components of the viscous effort tensor where δij is Kro-

necker symbol. The heat flux components qi are defined as qi = −(γpµ/Pr)CvT,i, where

Pr is Prandtl number, γp the polytropic coefficient (γp = 1.4 and Pr = 0.72 are generally

considered for air) and Cv = R/(γp − 1) is the specific heat coefficient. The total energy e

is defined as e = CvT + u2
α/2.

The state vector is denoted by v, the inviscid and viscous fluxes of the governing equations

by Fi and F
vis
i respectively. The Navier-Stokes equations for unsteady compressible flows

can be expressed as follows, in two dimensions:

v,t + Fα,α = F
vis
α,α with v =















ρ

ρu1

ρu2

ρe















, Fi =















ρui

ρuiu1 + pδ1i

ρuiu2 + pδ2i

ρuie+ pui















, F
vis
i =















0

τ1i

τ2i

τiαuα − qi















. (2)
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Initial and boundary conditions associated with system (2) are described in the following.

B. Two-dimensional Navier-Stokes simulation

Complete description and validation studies of the numerical method have been reported

in [33, 34] concerning transonic flows around an airfoil at moderate Reynolds numbers.

Since a similar transonic flow is considered in this work, only main numerical parameters

and computational domain characteristics relevant to the present study are recalled in this

section.

1. Numerical method

The complete time-dependent Navier-Stokes equations are solved in two dimensions under

the conservative form (2), in a general non orthogonal curvilinear coordinate system. A non-

dimensional formulation based on chord length (c), uniform upstream velocity and density

is considered. The ICARE/IMFT [34] in-house finite volume software for compressible flows

around bodies is employed. The Roe upwind scheme [35] with Monotonic Upstream Schemes

for Conservative Laws (MUSCL) approach [36] is used for discretization of convection and

pressure terms. Diffusion terms are discretized by central differences. Space schemes are

second-order accurate. Temporal integration is ensured by an explicit four-stage Runge-

Kutta scheme that is second-order accurate [37]. Time step convergence study has been

reported in the previously mentioned references.

2. Computational domain and boundary conditions

The computational domain is presented in figure 1. A C-type grid (369 × 89 points)

is used for the present non-confined flow around an airfoil at zero angle of incidence.

Especially, 10 c separate the leading edge from the outflow boundary and 7 c the trailing

edge from the outer boundary. Detailed grid convergence have been previously performed

to ensure independance towards both grid refinement and domain size [33, 34].

The upstream Mach number Ma∞ = ‖u∞‖/
√

γpRT∞, Reynolds number Re∞ =
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FIG. 1: Sketch of the computational domain. u∞ denotes upstream velocity.

ρ∞‖u∞‖c/µ∞ and flow temperature T∞ = 300 K are imposed as freestream conditions

at the outer boundary. Subscript ·∞ denotes upstream quantities. At the outflow boundary

a first-order extrapolation of all state variables is used. Along the wake line, the values are

specified by averaging the variables from the adjacent points above and below. On the airfoil,

the boundary conditions are no-slip and constant temperature. The stagnation temperature

is imposed on the airfoil surface:

Twall =

(

1 +
γp − 1

2
Ma2

∞

)

T∞. (3)

An additional condition is used to completely determine the state vector on the airfoil

surface. Zero normal density gradient is imposed on the airfoil.

Uniform fields defined from freestream conditions are considered as initial conditions.

C. Transonic flow past an airfoil at moderate Reynolds numbers

The two-dimensional transonic flow around NACA0012 airfoil at zero angle of incidence

and moderate chord-based Reynolds number (Re∞ ∈ [0.5, 1]×104) develops an unsteadiness

induced by compressibility effects. This flow has been extensively investigated on the

basis of numerical simulations [33, 34, 38]. At incompressible regimes (Ma∞ < 0.3), the
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flow is steady. As Mach number increases, instability mode and unsteady phenomena

emerge leading to transition to turbulence. At Ma∞ = 0.3, an undulation appears in the

wake. As Mach number increases, this undulation can trigger the symmetrical recirculation

bubbles developing near the trailing edge because of the enlargement of the boundary

layers downstream of the acceleration regions. This leads to the onset of the von Kármán

instability. In Mach number interval [0.5, 0.7], this mode becomes more pronounced and a

periodic alternating vortex shedding is clearly developed. At Ma∞ = 0.75, a lower frequency

phenomenon related with the oscillation of the supersonic pockets on each side of the airfoil

is identified. This unsteadiness is the onset of buffet phenomenon. At higher Reynolds

numbers, it is characterized by a strong oscillation of the shock waves [39, 40]. Buffet has

disappeared at Ma∞ = 0.85 whereas the von Kármán vortex shedding is observed until

Ma∞ = 0.95.

In the present study, upstream Mach and Reynolds numbers are 0.85 and 5000 respec-

tively. Flow unsteadiness is thus governed by the von Kármán instability as illustrated in

figure 2. In figures 2(a) and 2(b), instantaneous iso-contours of Mach number and pres-

sure coefficients Cp = (p − p∞)/(0.5ρ∞u
2
∞

) allow to locate the supersonic pockets that are

steady in the present case, as well as the vortex street. The alternating shedding pattern

is emphasized in figure 2(c) by instantaneous iso-contours of non-dimensional vorticity. It

is responsible for a periodic oscillation of the aerodynamic lift coefficient, for example, as

illustrated in the following. This transonic flow is considered in the present work to analyze

the proposed shape-dependent ROM approach and less regular physical configurations will

be envisaged in a future publication. A ROM of this transonic flow around NACA0012

airfoil is elaborated in next section.

III. REDUCED-ORDER MODELING OF TRANSONIC FLOW AROUND

NACA0012 AIRFOIL

A ROM of transonic flows is developed by means of Galerkin projection of the compress-

ible flow Navier-Stokes equations onto a low-dimensional basis determined by POD. The

issues induced by the coupling of kinematic and thermodynamic variables in the state vec-

tor are addressed concerning POD-Galerkin approach in §IIIA and §III B. A stabilisation
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FIG. 2: NACA0012 profile, no incidence, Ma∞ = 0.85, Re∞ = 5000: instantaneous iso-contours

of (a) Mach number, (b) pressure coefficient and (c) non-dimensional vorticity. Dashed iso-lines

denote negative iso-contours.

procedure for POD-based ROM is presented in §IIIC. Application to the reference transonic

flow around NACA0012 airfoil is provided in §IIID before extending the ROM to handle

small shape deformations in next sections.

A. Proper Orthogonal Decomposition for compressible flows

The state vector v is decomposed into a mean part v and a fluctuating part ṽ. The

POD is applied to the fluctuating part. It consists in expanding ṽ as a linear combination

of specific spatial eigenfunctions Φi weighted by time-dependent coefficients ai [41]:

v(x, t) = v(x) + ṽ(x, t) = v(x) +
∞

∑

i=1

ai(t)Φi(x) ≈ v(x) +

Npod
∑

i=1

ai(t)Φi(x), (4)

where Npod is the number of retained POD modes. Since the POD is applied to the fluctu-

ating part, the steady boundary conditions of HF model that linearly depend on the state

vector are satisfied exactly by any truncated POD expansion (4). In the following, 〈·〉 de-

notes the time-averaging operator and (·, ·)Ω a spatial inner product that has to be defined on

the domain Ω ⊂ R
2. An energy-based inner product has been reported in [21] for isentropic

flows. In the fully compressible case considered in the present study, the kinematic vari-

ables are associated with two thermodynamic quantities. The number of state variables is

denoted by d (d = 4 in the two-dimensional case). A dimensionally consistent inner product
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can be reached by a normalization of each state variable contribution by the corresponding

space-averaged variance σ2
i as follows, for two given states, vI and vII :

(

v
I ,vII

)

Ω
=

d
∑

i=1

1

σ2
i

∫

Ω

vI
i v

II
i dx with σ2

i =

∫

Ω

〈ṽ2
i 〉dx. (5)

This inner product involves a systematic normalization procedure previously used in [42].

This approach avoids dependency on a given non-dimensional formulation of the governing

equations. The orthogonal projector onto span{Φ1, . . . ,Φi} for i ≥ 1, is denoted by Πi with

Π0 ≡ 0. The orthonormal spatial POD modes are the successive solutions of the following

optimization problem:

Φi+1 = arg max
Ψ

〈(ṽ − Πiṽ,Ψ)2
Ω〉 with (Ψ,Ψ)Ω = 1. (6)

Following ‘snapshot-POD’ approach [43], solving the optimization problem (6) is equivalent

to solve the following eigenproblem involving the two-point time correlation tensor K(t, t′) =

(ṽ(·, t), ṽ(·, t′))Ω:

〈K(t, ·)ψi〉(t′) = λiψi(t) with 〈ψiψj〉 = δij . (7)

Subscript ·(t′) indicates that the integration involves the second time variable of K while t

is fixed. The spatial POD modes that convey statistical content can be evaluated from the

eigenfunctions ψi associated with positive eigenvalues λi (λ1 ≥ λ2 ≥ . . . > 0) as follows:

Φi(x) =
1√
λi

〈ṽ(x, ·)ψi〉. (8)

In the discrete context, ‘snapshot-POD’ approach is generally considered when the num-

ber of space discretisation point (Nx) is higher than the number of flow samples or snapshots

in time series (Nt). This is the case in the present work where snapshots are issued from

numerical simulation. Moreover Npod is expected to be small as compared to Nx and Nt.

B. POD-Galerkin model

The compressible flow Navier-Stokes equations are expressed as quadratic fluxes by means

of the following variable change [22] and assuming constant viscosity µ:

v =















ρ

ρu1

ρu2

ρe















→ w =















1/ρ

u1

u2

p















. (9)
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Considering variable change (9), HF governing equations (2) can be written as follows:

w,t + Gαw,α = G
vis
α with (10)

Gi =















ui − (1/ρ) δ1i − (1/ρ) δ2i 0

0 ui 0 (1/ρ) δ1i

0 0 ui (1/ρ) δ2i

0 γppδ1i γppδ2i ui















and G
vis
i =

















0

(1/ρ) τ1i,i

(1/ρ) τ2i,i

γpµ

Pr
(p/ρ),ii + (γp − 1) uα,iταi

















.

(11)

The ith POD mode associated with state vector w is expressed as follows:

Φi =















Φ
(1/ρ)
i

Φu1
i

Φu2
i

Φp
i















. (12)

The Galerkin projection of (10) onto the Npod-dimensional POD basis yields the following

quadratic polynomial ODE system, under constant viscosity assumption, for i = 1, . . . , Npod:















ȧi = (Ci + Cc
i ) +

Npod
∑

j=1

(

Lij + Lc
ij

)

aj +
Npod
∑

j,k=1

Qijkajak = fi (C
c,Lc,a)

ai(0) = (w(·, 0) − w,Φi)Ω .

(13)

Ci, Lij and Qijk are ‘physics-driven’ coefficients issued from the Galerkin projection

while Cc
i and Lc

ij are additional calibration coefficients included to ensure ROM accuracy

as detailed in §IIIC. The constant coefficients issued from the Galerkin projection are

computed as follows:

Ci = (Gvis,α
11 − G

α
1 Φ̌1,α,Φi)Ω, (14a)

Lij = (Gvis,α
1(j+1) + G

vis,α
(j+1)1 − G

α
1 Φ̌j+1,α − G

α
j+1Φ̌1,α,Φi)Ω, (14b)

Qijk = (Gvis,α
(j+1)(k+1) − G

α
j+1Φ̌k+1,α,Φi)Ω, (14c)

where Φ̌ = [w Φ1 . . . ΦNpod
]. Gi

j and G
vis,i
jk terms involved in the implicit summations in

11



(14a-14c) are defined as follows:

G
i
j =















Φ̌ui

j −Φ̌
(1/ρ)
j δ1i −Φ̌

(1/ρ)
j δ2i 0

0 Φ̌ui

j 0 Φ̌
(1/ρ)
j δ1i

0 0 Φ̌ui

j Φ̌
(1/ρ)
j δ2i

0 γpΦ̌
p
jδ1i γpΦ̌

p
jδ2i Φ̌ui

j















and G
vis,i
jk =

















0

Φ̌
(1/ρ)
j τ̌1ik,i

Φ̌
(1/ρ)
j τ̌2ik,i

γpµ

Pr
(Φ̌p

j Φ̌
(1/ρ)
k ),ii + (γp − 1)Φ̌uα

j,i τ̌αik

















,

(15)

where τ̌ijk = µ(Φ̌ui

k,j + Φ̌
uj

k,i − 2/3Φ̌uα

k,αδij). For given POD basis and mean flow, ROM coeffi-

cients can be computed a priori and once for all. The evaluation of the additional coefficients

Cc
i and Lc

ij involved in ROM (13) is described in next section.

HF model boundary conditions appear in the ROM through POD basis functions. As

previously mentioned, steady conditions depending linearly on the state vector are exactly

satisfied while other ones are approximated through expansion (4).

C. Calibration procedure

As reported in [7] and [11] for example, dynamical systems issued from POD-Galerkin

approach can suffer from an unstable character that can lead to erroneous predictions. In

laminar regime, this lack of accuracy can be induced both by the assumptions made during

ROM elaboration, as for example considering a constant viscosity in the present case, and

by POD basis truncation that can modify the dynamical system stability properties. The

latest point has been emphasized on model problems in [7] and [44] and is referred to

as ROM structural instability. In a similar way, in turbulent regime, the fact that some

dissipative structures, that play a major role in flow energy balance, are neglected when

POD basis is truncated, can be a source of error in the ROM. Many approaches have been

suggested to enforce ROM accuracy, among others: addition of artificial viscosity [45, 46],

calibration procedures [8, 10, 11], addition of penalization terms [5, 22], introduction of

shift modes [7], Navier-Stokes residual-based procedures [47].

A calibration method is adopted here in a similar way to [11] in the incompressible

case. This approach consists in minimizing ROM prediction error with respect to reference

dynamics issued from the projection of HF snapshots onto POD basis:

apod
i = (w̃,Φi)Ω , (16)
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while controling calibration cost. The following prediction error is considered:

E(Cc,Lc) =

Npod
∑

i=1

∫ Ts

0

(

apod
i − apod

i (0) −
∫ t

0

fi(C
c,Lc,apod)dt′

)2

dt, (17)

where Ts is the time interval of snapshot series and fi is the right-hand side of ROM (13).

Reference temporal coefficients apod
i (16) are used in the Cauchy problem integration instead

of those issued from ROM (13) integration. This linearizes the optimization problem solved

during calibration procedure as detailed at the end of this section. Other definitions could

be envisaged for ROM prediction error as the error between reference dynamic derivatives

and fi, for example. The following normalized error is considered in calibration procedure:

E (Cc,Lc) =
E (Cc,Lc)

E(0Npod
, 0N2

pod
)
. (18)

The calibration cost measures the weight of the calibration coefficients compared to those

issued from Galerkin projection (Ci and Lij in (13)):

C (Cc,Lc) =
‖Cc‖2

Npod
+ ‖Lc‖2

N2
pod

‖C‖2
Npod

+ ‖L‖2
N2

pod

, (19)

where the norms are defined by ‖C‖2
Npod

= C2
α and ‖L‖2

N2
pod

= L2
αβ .

The calibration coefficients Cc
i and Lc

ij in (13) are found by minimizing the following

function that balances ROM prediction error and calibration cost by means of a blending

coefficient 0 < θ < 1:

J (Cc,Lc, θ) = θE (Cc,Lc) + (1 − θ)C (Cc,Lc) . (20)

The blending coefficient θ can also be regarded as a regularization parameter in Tikhonov

regularization framework [48, 49].

Gathering all calibration coefficients in a single matrix Kc = [Cc Lc], minimizing J is

equivalent to solve the following Npod linear systems of size Npod + 1:

A
c (Kc

i·)
t = b

i, (21)

where superscript ·t denotes the transposition and Kc
i· the ith row of Kc. Ac and bi are

defined as follows:

Ac
ij =

∫ Ts

0

(
∫ t

0

ǎidt
′

) (
∫ t

0

ǎjdt
′

)

dt+ θ̃δij (22)
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and

bji =

∫ Ts

0

(

apod
j − apod

j (0) −
∫ t

0

fj

(

0Npod
, 0N2

pod
,apod

)

dt′
) (

∫ t

0

ǎidt
′

)

dt, (23)

with

θ̃ =
(1 − θ)

θ

E
(

0Npod
, 0N2

pod

)

‖C‖2
Npod

+ ‖L‖2
N2

pod

and ǎ = [1 apod
1 . . . apod

Npod
]. (24)

D. Application: transonic flow past NACA0012 airfoil

The previous low-dimensional modeling approach is applied to build a ROM of the tran-

sonic flow past NACA0012 airfoil at zero angle of incidence, at the above mentioned Mach

and Reynolds numbers. POD basis is extracted from Nt = 100 snapshots collected over one

period of the von Kármán vortex shedding of Strouhal number St = fvkc/‖u∞‖ = 1.340.

fvk is the dimensional fundamental frequency of the vortex shedding. This number of flow

samples or lower ones are generally considered for laminar flows with a strong periodic char-

acter [e.g. 4, 8] but similar results have been reached in the present case with Nt = 30, for

example. The statistical content of each POD mode is measured by the relative magnitude

of the corresponding eigenvalue (λi) of time correlation tensor K (7). This is shown in figure

3, as well as the cumulative statistical content conveyed by the truncated basis, defined by:

INpod
=

Npod
∑

i=1

〈(w̃,Φi)
2
Ω〉

〈‖w̃‖2
Ω〉

, (25)

where ‖ · ‖Ω is the norm induced by inner product (5). If the projected dataset in (25) is

the same as the one used to extract POD modes then INpod
=

∑Npod

i=1 λi/
∑Nt

i=1 λi. Here,

Npod = 10 modes are retained which allows to capture more than 99.99% of snapshot serie

statistical content.

In figure 4 selected POD modes associated with u1 and p are qualitatively presented.

These modes do not represent flow structures but can provide information about space

correlations for example [23, 50]. Their symmetric/antisymmetric patterns about the wake

line have been previously reported for incompressible periodic flows governed by the von

Kármán instability [e.g. 4, 7].

Reference temporal evolutions of these modes, apod
i (16), are shown in figure 5 (circles).

A ROM is built from the mean flow and the 10-dimensional POD basis. It is integrated
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truncated POD basis as a function of mode number.
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FIG. 4: 1st, 3rd and 7th POD modes associated with longitudinal velocity (left) and pressure (right).

Plain/dached iso-lines denote positive/negative valued iso-contours.

over one vortex shedding period from the exact initial condition apod(0). ROM integration

is ensured by a fourth-order-accurate four-stage Runge-Kutta scheme.

While the first temporal coefficients are qualitatively well predicted, amplitude and phase

drifts are observed for higher index modes (figure 5(a-c), plain lines). This illustrates the

previously mentioned unstable behavior of POD ROMs. The calibration diagram showing
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FIG. 5: Time-history of selected POD coefficients issued from: snapshot projection onto POD

modes (apod
i , circles), ROM integration (arom

i , plain lines), over one period of the von Kármán

vortex shedding: (a-c) uncalibrated and (d-f) calibrated ROMs.

the absolute prediction error E (17) as a function of the calibration cost C (19) is plotted in

figure 6 (plain line). In addition, the effective error evaluated afterwards in a similar way to

E but involving the predicted coefficients arom
i in the Cauchy problem integration (17) in-

stead of reference ones is also plotted (dashed line). As functions of C, both prediction errors

exhibit similar behaviors. A calibration cost C = 20% is considered. This leads to stable

and accurate predictions (figure 5(d-f)). This calibration cost threshold is retained in the

following. It is shown in section VC that, despite calibration procedure, the ROM remains

sensitive to changes in the physical configuration and especially to airfoil profile deformation.

The present application exemplifies POD ROM approach from a qualitative point of view.

In the following, airfoil shape deformation is introduced and quantitative error analysis is

provided in this context.
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IV. AIRFOIL DEFORMATION

Different approaches can be envisaged to take into account of airfoil profile deformation

in the ROM. However, defining rigorously a POD basis valid for distinct spatial domains

associated to several airfoil profiles presents some difficulties. Two main issues arise: the

practical issue of dealing with different domains concerning the spatial inner product and

the actual deformation of POD modes, and the validity of POD basis over a certain range

of deformations. The latest point, that is an inherent difficulty concerning the use of POD

ROM for parametrical studies, is addressed in §VA. The present section focuses on the first

point. Considering a single POD basis on different domains implies an appropriate mapping

of POD modes to each deformed configuration. This point was solved in [29] by means

of an ‘index-based’ POD where the discretized modes are not associated with a specific

spatial location but with space discretization point numbering. This approach allows to

handle snapshots issued from distinct deformed domains. Nonetheless, this implies that

POD modes directly depend on the technique utilized to deform the grid and thus the

amount of statistical content conveyed by the low-dimensional basis also depends on this

procedure. An extension of this technique was also developed by considering several POD

bases [51]. From a general point of view, a specific POD basis could be considered for each

deformed configuration. As shown in [52] for example, POD basis interpolation methods

exist for parametrical studies. However, when the parametrical study involves spatial

domain modification, the application of this type of procedures is not trivial. Moreover, the
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evaluation of a specific POD basis for each new profile implies a new computation of all

ROM coefficients, which can be numerically expensive, especially if Nx is large.

Therefore, an alternative can consist in considering a reference spatial domain that is

not altered by shape deformations. On such a domain, airfoil profile modification could

be introduced through an additional forcing term in the governing equations, following

immersed boundary method [53], for example. A new methodology, originally inspired by

‘transpiration’ approach for Euler equations [31] and that does not require modification of

the governing equations is suggested in the present study, for small shape deformations.

This approach relies on the Hadamard formulation [54] of HF model which was previously

used in the context of optimal shape design on the basis of Euler equations [55, 56].

As detailed in the following, this technique yields fictitious boundary conditions that allow

to mimic airfoil deformation on a reference domain with no modification of HF governing

equations. This can be used to derive simple ROM able to predict airfoil deformation effects

on flow evolution, as reported in next section.

In this section, the fictitious deformation approach on a fixed reference domain is de-

scribed (§IVA) and validated on HF model (§IVB).

A. Hadamard formulation for domain deformation

In his pioneering work [57], Hadamard studied the variation of the solution of a partial

differential equation with respect to its domain Ωγ in the neighborhood of a reference domain

Ω0. He demonstrated that this variation can be well defined on the reference domain.

This Hadamard derivative is the solution of a differentiated partial differential equation

with a boundary source term distributed on Γ0 = ∂Ω0 which is linear with respect to the

boundary variation. Following Hadamard, the boundary variation is parameterized by a

normal displacement γn (figure 7):

Γγ = {x = x0 + γ(x0)n(x0), ∀x0 ∈ Γ0}. (26)

In the following, R denotes the differential volumic residual:

R (v) = v,t + Fα,α − F
vis
α,α, (27)
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FIG. 7: Reference domain and modified boundary.

using the same notations as in (2). C holds for boundary residuals. The boundary residuals

involve residuals at all boundaries. Only the residual on the airfoil surface needs to be

specified here:

C (v) =















∇nρ

u1

u2

T − Twall















, (28)

where ∇n is the profile outward normal gradient.

For a given geometry Ωγ defined by γ, vNS (γ) is the set of flow variables solving the

HF Navier-Stokes equations as introduced in (2). In an integral formulation where Ψ1, Ψ2

and ∗ correspond respectively to two test functions and to a dimensionally consistent scalar

product in R
4, this can be written as follows:

v
NS =















ρNS

ρNSuNS
1

ρNSuNS
2

ρNSeNS















, (29)

v = v
NS(γ) ⇔

∫

Ωγ

Ψ1 ∗ R (v) dx +

∫

Γγ

Ψ2 ∗ C (v) dσ = 0, ∀Ψ1,Ψ2. (30)

(30) defines vNS(γ) as soon as γ is given. The delicate point is that vNS(γ) is defined

on a domain Ωγ which varies with γ. The contribution of Hadamard and of other workers
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addressing this issue is to give a rigorous context to the differentiation of vNS(γ) with

respect to γ. The reader interested in this theory can examine references [54, 57, 58]. In the

following, this method is applied to (30).

For a variation δγ of the shape, the variation δvNS of the flow unknown vNS is approxi-

mated by the following truncated Taylor formula that is second-order accurate with respect

to an adhoc norm of δγ:

δvNS (γ, δγ) = v
NS (γ + δγ) − v

NS (γ) ≈ ∂vNS

∂γ
(γ) δγ. (31)

RHS in (31) is obtained from the total derivative of the flow equation (30):

∫

Ωγ

Ψ1 ∗
∂R

∂v

∂v

∂γ
δγdx +

∫

Γγ

Ψ2 ∗
∂C

∂v

∂v

∂γ
δγdσ +

∫

Γγ

Ψ1 ∗ R (v) δγdσ

+

∫

Γγ

Ψ2 ∗ ∇nC (v) δγdσ +

∫

Γγ

Ψ2 ∗ HC (v) δγdσ = 0, ∀Ψ1,Ψ2, (32)

where H is Γγ curvature. Since vNS(γ) is solution of the flow system for γ, then the third

and fifth integrals in (32) vanish.

In the following, a small perturbation δγ is considered about γ = 0:

v
NS (δγ) = v

NS (0) + δvNS (0, δγ) (33)

and δvNS (0, δγ) ≈ ∂vNS

∂γ
(0) δγ. (34)

The differential volumic term can be approximated as follows, without loosing second order

accuracy:

R
(

v
NS(δγ)

)

≈ R
(

v
NS(0)

)

+
∂R

∂v

(

v
NS(0)

)

δvNS (0, δγ)

≈ R
(

v
NS(0)

)

+
∂R

∂v

(

v
NS(0)

) ∂vNS

∂γ
(0) δγ. (35)

A similar approximation can be considered for C
(

vNS(δγ)
)

.

Then, summing (30) and (32) for γ = 0 yields:

∫

Ω0

Ψ1∗R
(

v
NS (δγ)

)

dx+

∫

Γ0

Ψ2∗C
(

v
NS (δγ)

)

dσ ≈ −
∫

Γ0

Ψ2∗∇nC
(

v
NS(0)

)

δγdσ, ∀Ψ1,Ψ2.

(36)

Neglecting smaller terms, (36) is used as the equation defining an approximation of vNS (δγ)

that is denoted by vH (δγ) in the following. As a consequence, the flow solution associated

with deformed domain Ωδγ is approximated by the solution of Navier-Stokes equations on
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reference domain Ω0 with an extra boundary source term. In contrast to the usual Hadamard

formulation, the non-linear expression of HF model is retained in the left hand side of (36).

Formulation (36) produces an unsteady right-hand side on the boundary even if shape

perturbation δγ is steady. Indeed, reference flow (δγ = 0) does fluctuate with time. As a

first step in the present study the time variation of the normal gradients is neglected. This

is justified here by the quasi-steady character of these quantities in the near-wall region of

interest. They are frozen at the mean values, denoted as previously by an overline. The

Hadamard formulation thus yields the following boundary conditions on the airfoil surface

in reference geometry (Ω0):

∇nρ
H (δγ) (x, t) = −∇n∇nρNS (0) (x) δγ (x) ,

uH
i (δγ) (x, t) = −∇nu

NS
i (0) (x) δγ (x) for i = 1, 2,

TH (δγ) (x, t) = Twall −∇nTNS (0) (x) δγ (x) . (37)

The impact of the different approximations made in this analysis needs to be evaluated.

This is done in next section.

B. Validation at HF level

The objective of this validation study is to quantify the agreement between HF simula-

tions performed on deformed grids (referred to as NS) and on the reference NACA0012 grid

with fictitious boundary conditions (37) issued from the Hadamard formulation of HF model

(referred to as H), taking into account that the suggested approach does not involve any

modification of the governing equations. The following deformation, that depends on the

shape parameter κ, is applied along the outward normal vector, to the discretized profile:

δγ (κ)
(

x
i
)

= κ× 0.006

(

exp

(

−(i− 67)2

50

)

+ exp

(

−(i− 117)2

50

))

for i ∈ {1, . . . , 183},
(38)

where points xi are located at the trailing edge for i = 0/184, at the leading edge for

i = 92 and at x1/c = 0.306, at the lower/upper side of the airfoil, for i = 67/117.

The shape parameter κ defines the symmetrical perturbation amplitude. Two deformed

profiles are considered in this section: κ = {−1, 1}, which corresponds in each case to

10 % variation of airfoil thickness, as illustrated in figure 8. κ = 0 leads to NACA0012 profile.
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FIG. 8: (a) Normal shape deformation along airfoil chord for three values of κ and (b) corresponding

airfoil profiles.

Mean flows issued from NS and H simulations are compared in figure 9. For each state

variable in modified formulation (9), k = −1 (k = 1) field is shown in the upper part

(lower part respectively) of figures 9(a-d). Mean flows around NACA0012 profile (κ = 0)

are also presented to illustrate the significant influence of shape modification, especially on

the size and position of the supersonic pockets, even if the deformation is moderate. The

same type of comparison between instantaneous fields is shown in figure 10. For comparison

purpose, the fields are phased according to the minimum streamwise velocity signal at point

(x1/c, x2/c) = (2.12, 0.05). A good agreement is achieved between mean and instantaneous

results issued from NS and H approaches.

The relative error between fields issued from NS and H approaches is quantified as follows

on ΩT which is the part of the spatial domain that is not affected by grid deformation

(x1/c ≥ 1), for each variable wi and for the whole state vector in modified formulation (9):

EH (wi, δγ) =

√

√

√

√

∫

ΩT (wNS
i (δγ) − wH

i (δγ))
2
dx

∫

ΩT w
NS
i (δγ)

2
dx

and EH
G (w, δγ) =

‖wNS (δγ) − w
H (δγ) ‖ΩT

‖wNS (δγ) ‖ΩT

,

(39)

where, as previously, ·NS and ·H denote fields issued from NS and H simulations respectively.

The subdomain ΩT is considered to avoid interpolations and hazardous estimations in non-

overlapping regions. The spatial inner product inducing norm ‖ · ‖ΩT is defined as (5)

but on ΩT and considering a generalized expression for σ2
i that will be explicited in next

section (41). These errors concerning mean and instantaneous (same phased fields as in

figure 10) fluctuating flows are reported in table I. In both deformed cases, error levels
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FIG. 9: Mean fields of the state variables: (a) 1/ρ (m3/kg), (b) u1 (m/s), (c) u2 (m/s) and (d) p

(Pa); NS simulation (bold plain iso-lines and contours), H simulation (bold dashed iso-lines) and

NACA0012 (κ = 0) simulation (thin dashed iso-lines), for κ = −1 (upper part) and κ = 1 (lower

part).

remain satisfactory. Lower error levels are observed in κ = −1 case as expected, since this

deformation induces smaller changes in flow pattern than κ = 1 one.

In figure 11, relative error EH
G (w̃, δγ) is monitored over one von Kármán vortex shedding

cycle, starting from the previous phased fields. Both deformations of interest only induce

small modifications of the vortex shedding fundamental frequency. Strouhal number varies

from St = 1.288 (κ = 1) to St = 1.364 (κ = −1). The relative prediction errors of this

frequency between NS and H simulations are 0.90 % and < 0.01 % for cases κ = 1 and

κ = −1 respectively. The slow growth of the instantaneous error in case κ = 1 (figure

11) is thus due to the slight over-estimation of the Strouhal number. To illustrate airfoil

deformation effects, the unsteady lift coefficients issued from NS and NACA0012 profile
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FIG. 10: Same as figure 9 concerning phased fields.

TABLE I: Prediction errors induced by the use of the fictitious boundary conditions instead of

domain deformation.

κ Field EH (1/ρ, δγ) % EH (u1, δγ) % EH (u2, δγ) % EH (p, δγ) % EH
G (w, δγ) %

1 w 0.09 0.11 3.76 0.09 0.09

1 w̃ 15.57 13.47 12.28 15.54 14.31

-1 w 0.03 0.05 3.21 0.03 0.03

-1 w̃ 6.86 4.18 3.08 8.00 5.79

simulations are plotted in figure 12, as well as the lift coefficient issued from H simulation in

case κ = 1. In this latest case, state variables have been interpolated to map the boundary

of the deformed profile. The lift coefficient is rigorously simulated by H approach. The

relative error on lift oscillation amplitude is 1.12 % whereas deformation κ = 1 induces an
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FIG. 12: Unsteady lift coefficients issued from HF simulations around NACA0012 profile and

deformed profiles by NS approach, and by H approach in case κ = 1. The signals have been phased

for comparison purpose in case κ = 1.

amplitude increase of more than 35 % compared with κ = 0 profile.

The fictitious boundary conditions derived from the Hadamard formulation mimic effi-

ciently airfoil profile deformations of moderate amplitudes, without any modification of the

computational domain. In next section, HF simulations carried out by means of this fictitious

domain deformation technique are used to build a ROM sensitive to airfoil deformation.
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V. REDUCED-ORDER MODELING OF TRANSONIC FLOW AROUND A DE-

FORMED AIRFOIL

The previously described low-dimensional modeling approach (§III) is extended to han-

dle airfoil shape deformations introduced at HF level through the Hadamard formulation

described in §IV. Three main points have to be addressed:

• How to define a POD basis valid for a certain range of shape deformations?

• How to introduce airfoil deformation in the ROM?

• How to calibrate the ROM in this context?

§VA focuses on the first point and §VB on the two following ones. A procedure based on

a single mixed POD basis and on a forcing of the ROM by appropriate control functions is

put forward. The corresponding ROM is applied in §VC and its reliability towards shape

deformation is examined.

A. Mixed POD basis

Two different approaches are generally considered concerning POD in the context of

parametric studies: single basis a priori valid on the whole parameter space of interest [e.g.

24, 27] or adaptive basis [19, 47, 59–61]. The present study focuses on shape deformations

that do not lead to strong modifications in flow topology. Therefore, a single POD basis

is retained. However, the approach suggested here could be integrated directly in a basis

adaption procedure like for example Trust-Region POD algorithm [59].

In the following, all HF simulations around deformed airfoils are issued from the

previously validated Hadamard formulation (H simulations in §IVB) on reference domain

Ω0. For more simplicity in POD ROM presentation, the considered perturbation δγ

depends on a single shape parameter κ. This does not alter the generality of the suggested

framework since extension to multiple shape parameters is straightforward. The state

vector associated with deformation δγ(κ) and expressed in modified formulation (9) is

denoted by w(x, t, κ) = w(δγ(κ))(x, t), for x ∈ Ω0, since the Hadamard formulation is

considered. Its fluctuation is denoted by w̃(x, t, κ) = w(x, t, κ) − w(x, κ), where w is the
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corresponding space/shape-dependent mean state.

For each profile κ = {−1, 0, 1}, the statistical content INpod
(25) extracted by the

previous POD basis built from κ = 0 snapshot series are plotted in figure 13(a-c). In all

cases, snapshot series are composed of Nt = 100 samples collected over one period of the

von Kármán vortex shedding. In cases κ = −1 and κ = 1, the statistical content conveyed

by POD bases issued from κ = −1 and κ = 1 snapshot series respectively are also plotted,

for comparison purpose. In the two deformed configurations, κ = 0 POD basis fails in

capturing all snapshot variance, even if the number of modes is increased.

To extract a higher level of statistical content from several snapshot series with a single

basis, POD procedure can be extended by replacing time-averaging operator in (6) by the

following, for any time/shape-dependent quantity q(t, κ) and Ns shapes:

⌊q⌋ =
1

Ns

Ns
∑

i=1

〈q (·, κi)〉. (40)

Time/shape-averaging operator is thus denoted by ⌊·⌋ and time-averaging operator by 〈·〉.
An extension towards continuously distributed shape case is straightforward by replacing

discrete summation in (40) by an integration over continuous κ.

The averaged statistical variance involved in the inner product (5) is extended as follows:

σ2
i =

∫

Ω0

⌊w̃2
i ⌋dx. (41)

‘Snapshot-POD’ technique thus consists in finding the eigenfunctions of time/shape corre-

lation tensor K(t, t′, κi, κj) = (w̃(·, t, κi), w̃(·, t′, κj))Ω0 :

⌊K(t, ·, κi, ·)ψi⌋(t′,κj) = λiψi(t, κi) with ⌊ψiψj⌋ = δij , (42)

and Φi(x) =
1√
λi

⌊w̃(x, ·, ·)ψi⌋ for λi > 0. (43)

In (42), subscript ·(t′,κj) indicates that the integration involves the second time and shape

variables of K while t and κi are fixed.

POD temporal coefficients are thus shape-dependent while spatial POD modes are not:

w(x, t, κ) ≈ w(x, κ) +

Npod
∑

i=1

ai(t, κ)Φi(x). (44)
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FIG. 13: (a-c) Relative statistical content of the truncated POD basis as a function of mode

number, for snapshots collected in configuration: (a) κ = 0, (b) κ = −1 and (c) κ = 1. In (b) and

(c) the relative statistical content captured by κ = 0 basis is plotted for comparison purpose. (d)

Relative statistical content of each POD mode: κ = 0 basis and mixed κ = {−1, 0, 1} basis.

The statistical contents conveyed by the mixed POD basis (43) that includes information

from κ = {−1, 0, 1} snapshot series are plotted in figures 13(a-c). Each INpod
presented in

these figures involves the same extended definition of σ2
i (41) in the inner product. It can be

observed that if 10 modes are retained, the conveyed statistical content in each configuration

is close to the statistical content conveyed by a dedicated POD basis, as shown in figures

13(a-c). This number of modes is considered in the following. The spectrum associated with

the mixed basis is less steep than κ = 0 basis one (figure 13(d)). This means that the role

played by higher index modes is increased when vortex shedding pattern modifications that

are induced by airfoil deformation have to be captured by a single spatial basis.
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B. Airfoil deformation in ROM

Considering expansion (44) along with mixed POD modes (43), a ROM is built as de-

scribed in section IIIB. In this ROM, shape deformation only appears through the mean

flow w(x, κ), which can be regarded as a forcing term or a control function [24] of the dy-

namical system. As a forcing term, the mean flow has to be known and if it is not, it must

be estimated. In the present study, two different approaches are suggested to evaluate the

control function in not previously HF-resolved configurations, from known flows. The first

one consists in introducing an actuation function that is a linear function of shape param-

eter. This actuation function involves an actuation mode Φa that is called ‘deformation

mode’ in the following. The statistical approach suggested in flow control context in [62, 63]

can be adapted to the present problem. The control function is defined by:

ŵ1 (x, κ) = w (x, 0) + κΦa (x) . (45)

The deformation mode is the function that best represents, in average, the part of the dataset

that is not captured by the truncated POD basis, the whole dataset being centered about

w (x, 0):

Φa = arg min
Ψ

⌊‖J (·, ·, ·,Ψ) ‖2
Ω0
⌋ with J (x, t, κ,Ψ) = w̆ (x, t, κ) − κΨ (x) (46)

and

w̆ (x, t, κ) = w (x, t, κ) − w (x, 0) − ΠNpod
(w (x, t, κ) − w (x, 0)) , (47)

where ΠNpod
is the orthogonal projector onto span{Φ1, . . . ,ΦNpod

}.
The corresponding mode is [63]:

Φa =
⌊κw̆⌋
⌊κ2⌋ . (48)

As reported in [63], this approach can be easily extended to handle multiple shape

parameters.

For comparison purpose, an interpolation of known mean flows is also considered to

estimate the forcing term. For example, if κ = {−1, 0, 1} mean flows are known, any

intermediate forcing function can be estimated as:

ŵ2 (x, κ) = w (x, 0)−w (x,−1) − w (x, 1)

2
κ+

(

w (x,−1) + w (x, 1)

2
− w (x, 0)

)

κ2. (49)
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In the particular case where κ = {−1, 0, 1} flows are known, it can be noticed that, if

POD basis fails in capturing the shift between mean flows (ΠNpod
(w (x, κ) − w (x, 0)) ≈ 0,

for κ = {−1, 1}), which is generally the case [7], then ŵ1 corresponds to the linear part of ŵ2.

The calibration procedure presented in section IIIC is applied separately to each known

configuration with calibration cost threshold C = 20%. In unknown intermediate cases, the

calibration coefficients issued from case κ = 0 calibration are considered.

C. ROM prediction

ROM reliability concerning the prediction of the time/shape-dependent POD coefficients

is assessed for HF-resolved and unknown configurations.

1. HF-resolved flows

Three configurations are assumed to be known by HF Hadamard simulation (κ =

{−1, 0, 1}). The corresponding snapshot series are used to extract POD modes as previ-

ously detailed (43). In each case, the ROM is forced by the exact known mean flow and

the calibration coefficients used are those determined independently for each configuration

(κ = 0, κ = −1 or κ = 1). In figures 14-16, selected temporal coefficients predicted by the

ROM (arom) are shown as functions of time and in phase diagram, for each known case. The

same initial condition (apod
i (0, 0) = (w̃(·, 0, 0),Φi)Ω0) is considered for all ROM integrations.

From this initial condition, the integration is performed over more than 40 vortex shed-

ding cycles. As shown in figures 14-16(a-c), the predicted dynamics are stable and converge

towards periodic oscillations. The phase diagrams in figures 14-16(d-f) depict predicted

coefficients once the periodic regime is reached. For comparison purpose, the reference tem-

poral coefficients associated with known flows (apod(t, κ) = (w̃(·, t, κ),Φi)Ω0) are also plotted

(symbols). It can be observed that airfoil deformation induces significant modulations of

POD temporal coefficients. In all three known configurations, forced ROMs achieve reliable

predictions of reference temporal coefficients. In figures 15 and 16, the temporal coefficients

issued from ROMs forced by exact mean flows but where calibration coefficients are those

evaluated in case κ = 0 are also presented (ROM0, dashed line). Satisfactory predictions are
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FIG. 14: Selected POD temporal coefficients in case κ = 0: (a-c) ROM prediction as a function of

time, (d-f) reference and ROM prediction in phase diagram. In (d-f) ROM prediction is plotted

after convergence on limit cycle is reached.

achieved by these ROMs that are only driven by the forcing term. This point illustrates the

sensitivity of the dynamical system towards control function and the fact that this sensitivity

is not inhibited by calibration procedure.

The relative prediction error of each POD mode energy level and the instantaneous pre-
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FIG. 15: Same as figure 14 in case κ = −1. In ROM0, calibration coefficients are those determined

in case κ = 0.

diction error of POD temporal coefficients are defined as follows:

Ee (i, κ) =
〈(arom

i (·, κ))2〉 − 〈(apod
i (·, κ))2〉

〈(apod
i (·, κ))2〉

, ER (t, κ) =

√

√

√

√

√

√

√

√

Npod
∑

i=1

(

arom
i (t, κ) − apod

i (t, κ)
)2

Npod
∑

i=1

(

apod
i (t, κ)

)2
,

(50)

where, as previously, apod
i and arom

i denote reference and predicted temporal coefficients re-

spectively. As shown in figure 17, the energy levels of POD modes are accurately estimated

by the ROM when dedicated calibration coefficients are used. When the calibration coeffi-

cients related to case κ = 0 are used in cases κ = {−1, 1} (ROM0), satisfactory predictions
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FIG. 16: Same as figure 15 in case κ = 1.

are achieved, as depicted qualitatively in figures 15 and 16.

In figure 18, instantaneous errors ER (50) are plotted for predicted coefficients issued

from ROM (κ = {−1, 0, 1}) and ROM0 (κ = {−1, 1}). For comparison purpose, reference

and predicted signals have been phased. The prediction error remains small in all cases when

the corresponding calibration coefficients are used (ROM) and moderate when only κ = 0

calibration coefficients are considered (ROM0). The slow growth of the error observed in

case κ = 1 (ROM0, figure 18(b)), is induced by a slight under-estimation of vortex shedding

frequency.

In spite of the limited effect of shape deformation on Strouhal number, the prediction of

the fundamental frequency can be monitored. The predicted Strouhal numbers and relative
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FIG. 17: Relative error of POD mode energy levels predicted by ROM.
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FIG. 18: Instantaneous prediction error of POD temporal coefficients as a function of time. Phased

signals once limit cycle is reached.

errors compared with HF simulations are reported in table II. Even if a lower precision

is achieved when calibration coefficients issued from case κ = 0 are used in deformed

configurations (κ = {−1, 1}), the prediction error remains small.

The present analysis shows that better predictions are achieved when the dedicated cali-

bration coefficients are used. The differences observed between ROM and ROM0 accuracies

emphasize the dependency of the calibration coefficients on the shape parameter κ. The

development of an adaptive calibration procedure that would provide a relationship between

κ and the calibration coefficients is a challenging issue that is beyond the objectives of the

present work. The present study shows that a satisfactory prediction of the predominant

features of the transonic unsteady flow past an airfoil can be achieved by considering

calibration coefficients associated with a reference case (here κ = 0), in the neighborhood

of the configuration of interest. In particular, the first POD temporal coefficients which
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TABLE II: Prediction of the von Kármán vortex shedding frequency by ROM and relative error

compared with HF simulation.

Shape - κ Forcing function Calibration - κ Strouhal number Relative error w.r.t. HF (%)

0 w(x, 0) 0 1.342 0.15

-1 w(x,−1) 0 1.370 0.47

-1 w(x,−1) -1 1.364 0.03

1 w(x, 1) 0 1.280 1.48

1 w(x, 1) 1 1.299 0.02

0.5 w(x, 0.5) 0 1.297 1.85

0.5 ŵ1(x, 0.5) 0 1.298 1.78

0.5 ŵ2(x, 0.5) 0 1.299 1.70

0.5 w(x, 0.5) 0.5 1.322 0.02

0.5 ŵ1(x, 0.5) 0.5 1.323 0.08

0.5 ŵ2(x, 0.5) 0.5 1.323 0.07

convey most of the system statistical content are accurately predicted. As mentioned

previously, this emphasizes ROM sensitivity to forcing term, independently of calibration

procedure. This is an important point for the prediction of configurations not resolved by

HF model, as discussed in §VC2.

To illustrate ROM predictive capacities concerning the physical variables, the unsteady

lift coefficients issued from HF and low-dimensional approaches in case κ = 1 are shown in

figure 19. ROM prediction matches accurately HF signal and ROM0 prediction is also in

good agreement. The relative errors concerning lift oscillation amplitude are 0.02 % (ROM)

and 2.45 % (ROM0).

2. Unknown flow

ROM reliability concerning the prediction of flows not previously resolved by HF model

is examined in the intermediate case κ = 0.5. As in previous cases, the statistical content
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FIG. 20: Relative statistical content of the truncated mixed POD basis as a function of mode

number in case κ = 0.5.

extracted by the κ = {−1, 0, 1} mixed POD basis from centered snapshot series is monitored

(figure 20). The conveyed statistical content in this intermediate case is similar to previous

cases (see figures 13(a-c)). It is recalled that κ = 0.5 snapshots are not utilized to build

POD basis in this intermediate case.

In the following, two levels of knowledge are considered concerning the forcing term in

case κ = 0.5. The first level assumes that the mean flow is known and thus it can be used
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as a forcing term in the ROM. In the second level, the mean flow has to be estimated as

previously described. The deformation mode Φa issued from κ = {−1, 0, 1} snapshot series

is shown in figure 21. Approximations of the mean flow according to (45) and (49) are both

in good agreement with the exact mean flow, the relative error EH
G (39) is lower than 0.02

% in both cases.

As a first step, to assess the efficiency of the mean field approximations as forcing

terms, the calibration coefficients used are those determined in case κ = 0.5 (ROM).

The relative error of POD mode energy levels evaluated once the periodic regime is

reached are small for the three forcing approaches, as shown in figure 22 (a). Both mean

field approximations lead to very similar results and do not modify significantly ROM

accuracy compared to w. A small difference can be noticed for modes 5 and 6 where

ŵ1 leads to slightly more accurate predictions than ŵ2. The difference observed has

no incidence on the instantaneous prediction error (figure 23(a)) that is small for the

three forcing terms. The vortex shedding frequency is accurately predicted (table II)

as well as the unsteady lift coefficient, compared to HF simulation (figure 24(a)). The

relative error of lift oscillation amplitude is lower than 0.4 % for the three forcing terms.

Therefore the mean field can be replaced by its approximations without altering ROM accu-

racy, in the present intermediate case where the dedicated calibration coefficients are known.

In the case of an intermediate configuration not resolved by HF model, the dedicated
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FIG. 23: Same as figure 18 in case κ = 0.5.

calibration coefficients are generally not known. In the following, the calibration coefficients

used are those determined in case κ = 0. The corresponding ROM is referred to as ROM0, as

previously. In figures 25 and 26, selected temporal coefficients issued from ROM0 forced by

w and ŵ1 are presented. For comparison purpose, the reference coefficients plotted in figures

26(d-f) (circles) are the projections of snapshot series centered about the approximated mean

field ŵ1. As shown quantitatively in the following, both mean field approximations yield

very close results and thus only temporal coefficients related to ŵ1 forcing are qualitatively

presented here.

The predicted temporal coefficients converge towards periodic oscillations as in previous

cases. A satisfactory comparison is achieved between predicted and reference coefficients in

phase diagrams. The relative error of POD mode energy levels (figure 22(b)) confirms in

particular the efficient prediction of the first four temporal coefficients, that are responsible

for most of the system statistical content. Similar predictions are achieved when consider-

ing w, ŵ1 and ŵ2 as forcing terms, as shown previously in the case where the dedicated

38



0 0.0005 0.001 0.0015 0.002 0.0025
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

PSfrag replacemen
(a)

κ = 0.5 - ROM - w

κ = 0.5 - ROM - ŵ2
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FIG. 24: Same as figure 19 in case κ = 0.5.

calibration coefficients are known (figure 22(a)). This is confirmed by monitoring the in-

stantaneous prediction error (figure 23(b)). A slight under-estimation of Strouhal number

is responsible for the slow growth of this instantaneous error in all cases. The fundamental

frequencies predicted in this intermediate case as well as the relative errors compared with

HF simulation are reported in table II.

The unsteady lift coefficients issued from ROM0 predictions and HF model are plotted

in figure 24(b). The relative error of oscillation amplitude remains lower than 1 % for the
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FIG. 25: Same as figure 14 in case κ = 0.5 where mean flow is known.

three forcing terms, while the deformation κ = 0.5 induces an increase of more than 15 %

of this amplitude, compared with case κ = 0.

The ROM has been applied for the prediction of a flow that was not previously resolved

by HF approach. The two suggested approximations of the forcing term yield very similar

results compared to the exact mean field. A comparison of ROM and ROM0 predictions

shows that the main source of inaccuracy is the calibration procedure and more precisely,

the use of the calibration coefficients evaluated in case κ = 0, as discussed in §VC1. The

reliability of the ROM driven by the exact and approximated mean flows has been quantified.

ROM0 achieves an accurate prediction of the predominant features of a completely unknown
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FIG. 26: Same as figure 14 in case κ = 0.5 where mean flow is approximated by ŵ1 (45).

unsteady transonic flow, as illustrated by the efficient prediction of the lift coefficient.

VI. CONCLUSION

A ROM of the fully compressible Navier-Stokes equations has been proposed for the

prediction of unsteady transonic flows past an airfoil submitted to small deformations. This

relies on the three following contributions.

First, a POD-Galerkin modeling approach has been designed on the basis of a modified

state formulation, a consistent inner product and a suitable calibration procedure, leading
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to a 10-dimensional quadratic ODE system relevant to the prediction of main flow features

captured by POD.

Second, on the basis of the Hadamard formulation of HF model, a fictitious domain

deformation technique has been suggested. This approach allows to handle small shape

perturbations without deforming the reference spatial domain: normal shape perturbations

are mimicked by a modification of the conditions on fictitiously deformed boundaries. A

numerical validation of this technique on HF model has been provided. In ROM context,

this approach simplifies POD implementation and avoids in particular interpolation issues

related to the evaluation of inner products between fields defined on different domains and

to the mapping of POD modes on deformed grids.

Third, the POD-Galerkin model has been extended via a new definition of time/space

POD that gathers information from snapshot series around several profiles by means of a

time/shape-averaging operator. In the present work, spatial POD modes are independent

of shape parameter whereas POD temporal coefficients are shape-dependent. Airfoil

deformation is captured in the ROM by a steady forcing term defined as the exact or

approximated mean flow field. To approximate the forcing term, a linear actuation based

on a ‘deformation mode’ has been considered as well as a quadratic interpolation approach.

Profile deformations that lead to significant modulations of POD temporal coefficients

have been examined. ROM reliability towards airfoil parametrical deformation has been

quantified. HF-resolved as well as unknown intermediate configurations are efficiently

predicted by the ROM compared with HF simulations. This is particularly promising in

the perspective of the application of this low-dimensional modeling approach in optimal

shape design procedures involving unsteady transonic flow simulations.
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