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Introduction

Aim: Tangent and Adjoint of a numerical code simulating a2D model of a synthetic jet actuator.

Synthetic jet actuators [GWP+03]
Synthetic jet actuators are small scale devices generating a
jet-like motion by oscillating fluid in a chamber connected to
the air flow via an orifice.

Possible Applications

Embed into aircraft wing to control flow separation
Propulsion system for microfluid systems
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Synthetic Jet
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Mesh Movement Algorithm

Time-dependent Navier-Stokes eqn.s on a moving mesh.

Mesh movement for interior point xnewi = xi +�xi governed
by forced boundary motion smoothed into interior mesh,

�xi = 1Di Xj2Nbr(i) 1jxi � xj j�xj ; with Di = Xj2Nbr(i) 1jxi � xj j ;

repeated 50 times - Gauss-Seidel smoothing/linear solve.
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The Time-Dependent CFD Solver
Finite-volume semi-discretisation of N-S equations for cell i,�Viqi�t = Ri(q;x):
Backward Euler gives nonlinear system for qn+1.V n+1i qn+1i � V ni qni�t = Ri(qn+1i ;xn)

0 = Ri(qn+1i ;xn)� V n+1i qn+1i � V ni qni�t

Introduce pseudo-timestepping with pseudo-time � ,V n+1i �qn+1i�� = Ri(qn+1i ;xn)� V n+1i qn+1i � V ni qni�t :

Iterate to convergence using low-storage 4-stage
Runge-Kutta scheme.
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Schema of the Numerical Code
Read in mesh geometry X (nodes, cells, faces)
Initialise flow variables and boundary conditions
Read in design variables designvars : a; p
Read in number of time-steps N and 
elopt
Set F = 0

For i from 0 to N

Move the mesh boundary using a sin scheme a sin(pX + �)

Update interior mesh then cell and face information
While (not converged) ! FIXPOINT
Converge the flow variables using a RK4 solve:
Compute residual R = r(Q; j) for each cell j

Update the flow variables Q using R

End While
Update F = F +Pi=2;3Q(i; 
elopt)2
EndDo
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Fortran 95 Features of the code

The input code (4500 loc) uses dynamic allocation, modules,
derived types and array operations

A derived type example

type bound_type !define the boundary structure
integer(2)::uns !unsteady flag
integer(2)::dim !dimensional or not(1=Yes)
integer(2)::var !
real(8), allocatable::bQ(:,:)!primitive Q
character::TP*80 !type,
character*32::extra(2)!store extra information.
end type bound_type
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Fortran 95 Features of the code

A Module Example

module mesh_info
use prop
...
integer(4)::nodenum ! number of nodes
integer(4)::cellnum ! number of cells
integer(4)::facenum ! number of faces
integer(2)::nthread ! number of threads
type(node_type), allocatable::node(:) !node set
type(cell_type), allocatable::cell(:) !cell set
type(face_type), allocatable::face(:) !face set
type(thre_type), allocatable::thre(:) !thread set
end module mesh_info

To differentiate this CFD solver, we used the AD tools TAF
and TAPENADE.
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Code Preparation

TAF forward worked and gave consistent results with FD.

TAF generated adjoint used to blow up at runtime (?)

To further investigate the adjoint, we cleaned up the original
code by using a sed script:

real(8) �! double precision (Portability)
integer(4) �! integer
Dynamic Allocation �! Static Allocation
Module �! Common Block
Derived Type �! set of arrays
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First Results

Mesh size: 654 nodes, 582 cells, 1235 faces2 independents (period & amplitude) and 1 dependent
(kinetic energy per cell volume = 572.0564 for this run).

Method Gradient # Sig. Fig.
TAF(fwd) -3230806.74033 54833.2739837 11
TAF(rev) -2990768.62366 51687.4932185 1
TAPENADE(fwd) -3230806.74031 54833.2739834 11
TAPENADE(rev) -3230806.74033 54833.2739835 11

DEBUG: Can AD tools adopt optimisation options as
compilers do?
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Potential Debug Problem
Consider an array partially overwritten [Ralf Giering]

subroutine incompletarray(bval,ff,nx,ny)
double precision::ff(nx,ny), ... !declarations
ff = 2.d0
call boundary(bval,ff,nx,ny)!partially overwrites ff
end subroutine incompletarray

By default, TAF adjoint code will look as follows:

subroutine adincompletarray(bval,adbval,ff,adff,nx,ny)
! declarations
call boundary (bval,ff,nx,ny)
!Recomputation of ff is wrong
call adboundary(adbval,adff,nx,ny)
end subroutine adincompletarray

TAF assumes boundary completely overwrites ff so
recomputation algorithm omits ff=2.d0 line and ff has
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Some Observations

TAF adjoint, by default uses a recomputation strategy but
provides a fair tradeoff off between storage/recomputation
via directives.

TAPENADE adjoint provides a recursive checkpointing
strategy performed at subroutine levels to tradeoff off
between storage and recomputation.

TAPENADE’s Stack may be insufficient in terms of memory
requirement.

We have coded Fortran 95 taping routines with RAM buffer
(module array) and local disk files using direct access.
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Exploiting Code Insights

Fixed Point Iteration (Rule 22 of [Gri00, p. 299]): Fixed point
iterations can and should be adjoined by recording only
single steps.

Method CPU(rF ) (s) Tape_size CPU(rF )

CPU(F )

TAPENADE(fwd) 69 — 3.8
TAPENADE(rev) 7755 1.585 GB 484.6
TAPENADE(rev,FP) 5751 0.182 GB 319.5
TAPENADE(rev,FP,Par.) 5715 0.180 GB 317.5

The gradient rF = h �3230835:9523 54833:2466 i (using

the same number of iterations as for the forward pass) is up
to 6 significant digits as compared to the gradient using the
mechanical adjoining used by TAPENADE.
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Optimisation

Start Jet Animation

Given a fixed amount of work C(x) that the system cannot
exceed, the objective is to maximise the kinetic energy F (x)

from a nominated cell in the upwards movement of the jet.maxx F (x)C(x) � 110�3 � p � 10�1 !p is the period10�2 � a � 10�1 !a is the amplitude

Initial Guess Optimun
Method Period Ampl. Period Ampl. Iter.
FMINCON 1.D-2 1.D-2 0.46D-2 0.45D-1 15
FMINCON(AD) 1.D-2 1.D-2 1.54D-2 1.05D-1 11
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Velocity Profile at Convergence
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On the Left [Right] is represented the upstream velocity profile of
the jet before [after] the optimisation.
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Concluding Remarks

AD Adjoint mode performs better for applications with fairly
large number of independents.

For a given constraint, it is possible to choose the frequency
and the amplitude of the fluid oscillation so as to maximise
the kinetic energy of the jet’s upwards movement.

Improvements for the adjoint calculation (Fixpoint Iteration,
Parallel Loops [HFH01]).

Increase the number of the design variables in order to make
the generated adjoint competitive.

Run the adjoint for a finer mesh with (big number of nodes
e.g., 20,000).

It is safer to compile and run the original code on different
platforms prior to differentiation!
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