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Outline

Higher order is commonly used on convergence and on derivatives in opti-
mization. First order methods are gradient based and have Q-order 1 or
Q-super-linear (for Quasi-Newton methods) rate of convergence. Second or-
der methods are using the Hessian and have Q-order 2 rate of convergence.
Rate of convergence (Q-order) and the degree of the derivatives will not match
for ’difficult’ problems.

• Regularization ⇒ Trust-region Subproblem (TRS)

• Trust region Methods in Unconstrained Optimization → TRS

• AD can give higher order

• Higher Order TRS
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Linear Least Squares (LLS)

Given m × n matrix A and b ∈ IRm where m ≥ n. Compute x ∈ IRn so that

min
1
2
‖Ax − b‖2

Let A = V ΣUT be the singular value decomposition and let

Σ† = diag(
1
σ1

, . . . ,
1
σr

, 0, . . . , 0), r = rank(A).

Define A† = V Σ†UT . The solution x is

x = A†b =
r∑

i=1

uT
i b

σi
vi

where U = [u1 · · ·un] and V = [v1 · · · vm].
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Singular Values σi for Rank Deficient Problem
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Singular Values σi for Discrete Ill-posed Problem
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Discrete Picard Condition

A, b come from discretization from an ill-posed problem. All σi > 0 so for-
mally

x = A†b =
n∑

i=1

uT
i b

σi
vi

However

uT
i b

σi
↘ 0 as i increases (the discrete Picard condition.)

Introduce noise in problem b = b̃ + ε.
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Coefficients
uT

i b

σi
for exact data and noisy data
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One Solution to the Noisy Problem: Regularization

The following three problems are equivalent and make the ’noisy’ prob-
lem smooth

Given µ ≥ 0 solve min 1
2‖Ax − b‖2

2 + µ‖x‖2
2.

Given λ ≥ 0 solve (AT A + λI)x = AT b.

Given ∆ ≥ 0 solve min‖x‖≤∆
1
2‖Ax − b‖2. TRS

Equivalence from the Karush-Kuhn-Tucker conditions. (There exits open
intervals for the three parameters µ, λ, ∆ so that x is the solution to all
three problems)

Where is AD?
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Gauss - Newton and Nonlinear Least Squares

Given a nonlinear function F : IRn → IRm.

Inexact Gauss-Newton Method:

Given x0

while not converged do
Compute F ′(xi)
Find approximate solution si of mins∈IRn

1
2‖F ′(xi)s + F (xi)‖2

2

Update xi+1 = xi + si

end-while

F ′(x) is the m × n Jacobian matrix at x

Noise is inherit in the LLS problem!

unless high accuracy of F and F ′
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Higher Order Model Function

Gauss-Newton is based on 1.order approximation of F at x, i.e.
F (x + s) ≈ M1(s) = F (x) + F ′(x)s and solve for the step s

min
s∈IRn

‖M(s)‖2
2.

Finding approximate solution si by constraining ‖s‖ ≤ ∆ leads to Levenberg
- Marquard methods. These are trust-region methods that use a linear model
M(s) = F ′(xi)s + F (xi) at xi of F (xi + s) with approximate solution

min
‖s‖≤∆

‖M(s)‖2
2.

Use more accurate model

M2(s) = F (xi) + F ′(xi)s +
1
2
(T s)s, T = F ′′(xi)
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Higher Order Model Function (2)

Let m(s) ≈ f(x + s) = F (x + s)T F (x + s) and solve

min
‖s‖≤∆

m(s)

where

m2(s) = f(x) + ∇f(x)T s +
1
2
sT∇2f(x)s

m3(s) = f(x) + ∇f(x)T s +
1
2
sT∇2f(x)s +

1
6
sT (T s)s, T = ∇3f(x)
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The Basic Trust Region Method

Given x0 and ∆0 (0 ≤ γ2 < γ1 < 1, 0 ≤ γ4 ≤ γ5 < 1 ≤ γ3)
while not converged do

Compute model mi(s).
Compute approximate solution si of TRS:

min‖s‖≤∆ mi(s).

Compute f(xi + si), mi(si) and ρi = f(xi)−f(xi+si)
f(xi)−mi(si) = actual

predicted

Update xi+1 =

⎧⎨
⎩

xi + si if ρ ≥ γ2

xi otherwise

Update ∆i+1: ‖si‖ ≤ ∆i+1 ≤ γ3‖si‖ if ρi ≥ γ1

γ4‖si‖ ≤ ∆i+1 ≤ γ5‖si‖ if ρi < γ1

end-while
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Properties

m1(s) = f(x) + ∇f(x)T s - linear model
m2(s) = m1(s) + 1

2sT∇2f(x)s- quadratic model
m3(s) = m2(s) + 1

6sT (T s)s - cubic model.

Under ’reasonable’ conditions the basic trust region algorithm be globally
convergent, i.e. for given ε > 0 and any x0 there exists an index i so that
‖∇f(xi)‖ ≤ ε. for the models.

Need to understand the Trust Region Subproblem (TRS)

min
‖s‖≤∆

m(s).
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Exact Solution of TRS mi(s), i = 1, 2, 3

The trust region subproblem with m1

min
‖s‖≤∆

f + gT s

gives the Step Constrained Cauchy point s̃

s̃ = − ∆
‖g‖g
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Exact Solution of TRS m2(s)

min
‖s‖≤∆

f + gT s +
1
2
sT Hs

s is a solution with Lagrange multiplier δ if and only if

(i) (H + δI)s + g = 0

(ii) H + δI is positive semi definite

(iii) δ ≥ 0 and δ(‖s‖ − ∆) = 0.

(Gay (1981) and Sorensen (1982))

The solution is on the form s(δ) = −(H + δI)−1g provided H + δI pos.def.
and s(δ) = ∆ (i.e. small ∆ gives large δ). For H + δI positive semi-definite
we have two cases: g is orthogonal to the null-space of H + δI and we have
the so called ’hard-case’ and g not orthogonal in which case we have a smooth
solution.
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H positive definite
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H semi definite
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Exact Solution of TRS for LLS

min
‖s‖≤∆

f + gT s +
1
2
sT Hs

Let S1 = N (H + λI) (N is the nullspace). We have the hard case when
g ⊥ S1. For LLS recall that H = AT A and g = −AT b (so λ = 0 for the
hard case)

gT vk = −σkbT uj , 1 ≤ j ≤ mk

where uj , vj is associated with singular value σk with multiplicity mk.
(Rojas-Sorensen (2002))
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The Hard Case is the Normal
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Note that gT vj = 0 is the (exact) hard case and gT vj = −σju
T
j b.
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A major Challenge: The Cubic Model

min
‖s‖≤∆

m3(s).

• We can characterize (if and only if) the (local) solution of TRS.

• We can compute the local minimizers. In a way

• What do we know about the (global) solution path? In the general case
it bifurcates, stops and is not continuous

• The solution path we want consists of local and global solutions.
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Global Convergence with the Cubic Model

min
‖s‖≤∆

m3(s).

• Convergence results require m3(si) ≤ γ0m1(s̃i). (Here s̃i is the step
constrained Cauchy-point). Not always the case for fixed γ0 > 0

• A problem arises in the proof of convergence when tensor is getting large.
Assume that the tensor is uniformly bounded

• These results uses existence of si No guaranteed working algorithm to
compute si.

• Can we say anything about the rate of convergence? Except in the case
when f is strictly convex at a (local) solution
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Vector Representation of Tensors

n

n

n

n n

n n

nn

Columns - Rows - Tubes
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Data structures for Super-symmetric tensors

Tijk =
∂3f

∂xi∂xj∂xk
(x)

Clearly
Tijk = Tjik = Tikj = Tjki = Tkij = Tkji

To store the tensor we need to store (n + 2)(n + 1)n/6 (real) numbers

Tijk 1 ≤ k ≤ j ≤ i ≤ n

Linear array:

T((i − 1)i(i + 1)/6 + (j − 1) ∗ j/2 + k) ≡ Tijk, 1 ≤ k ≤ j ≤ i ≤ n

c# and java offer new possibilities to store the super-symmetric tensor
and using standard notation T[i][j][k]. Tube (i, j) is the array T[i][j]
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Sparse Tensors

Griewank-Toint (partial separability): The Hessian matrix is said to be
sparse if

∇2f(x)ij = 0 for all x ∈ IRn (i, j) ∈ Z.

Then the sparsity structure of the tensor T is determined by the sparsity
structure of the Hessian matrix.

Tijk = 0 when (i, j), (i, k) or (j, k) ∈ Z.

Symmetric skyline format is ’vector’ based and can be extended to sparse
super-symmetric tensors using array of arrays or a linear array with only
n pointers as datastructure .
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Tensor Methods are in Use

Around 50 papers in the database (in optimization and computational
science). Around 50% of the papers ’Higher order methods have been
considered by....’.

Brett W. Bader, PhD 2003, University of Colorado
Ali Bouaricha, PhD 1992, University of Colorado
Ta-Tung Chow, PhD 1989, University of Colorado
Paul D. Frank, PhD 1984, University of Colorado

Workshop on Tensor Decompositions and Applications August 2005 to
discuss ’Large scale problems’.
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Concluding Remarks

• AD has given us the opportunity to use higher derivatives. Too
messy for hand-coding

• Very few classes of methods in optimization are capable to utilize
3rd derivative.

• Few efficient data structures for sparse super symmetric tensors.

• Are they right the researches that claim tensor methods can never
compete with Newton’s method in terms of speed of convergence
when the Hessian matrix is nonsingular at the solution. ⇒ Is there
a big enough class of problems where 3rd derivative will be ’useful’.

• Ongoing work by Geir Gundersen, University of Bergen
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