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ADTAGEO Gradient-Mode – Example

Computational graph of statement:

y = x1 + x2 + x3;

with v0 = x1, v−1 = x2, v−2 = x3

v0 v−1 v−2

y

v1

c1,0 c1,−1

v1 = v0 + v−1

cij = ∂vi

∂vj
, j ≺ i

v2

v2 = v1 + v−2

c2,1

c2,−2

cy ,2 = 1
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ADTAGEO Gradient-Mode – Elemination

After execution of the assignment:

Elimination of Intermediates:

y = x1 + x2 + x3;

v0 v−1 v−2

y

clj += cli · cij

j ≺ i , l ≺ i

cy ,−2 = cy ,2 · c2,−2

cy ,0 = cy ,1 · c1,0

cy ,−1 = cy ,1 · c1,−1

ADIFOR: Statement Level Reverse

AD-enabled NAGWare Fortran 95 compiler
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ADTAGEO Gradient-Mode – Elemination

Program: y . . . local variable, inside scope of y

{ double y = x1 + x2 + x3; z = x3 + x4 + y; }

v0 v−1 v−2 v−3

z

y

cy ,0 cy ,−1
cy ,−2

cz ,y

cz ,−2
cz ,−3
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ADTAGEO Gradient-Mode – Elemination

Program: y . . . local variable, leaving scope of y

{ double y = x1 + x2 + x3; z = x3 + x4 + y; }

v0 v−1 v−2 v−3

z
clj += cli · cij

j ≺ i , l ≺ i

cz ,0 cz ,−1
cz ,−2

cz ,−3
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ADTAGEO at a glance – The idea behind

More talking about an IDEA than a another AD-TOOL

A new way of doing Algorithmic Differentiation

Do not build the computational graph of complete
(sub)programs

Instead:

Maintain a Life -DAG
Eliminate as soon as possible as many vertexes as possible.

Eliminate on the fly, Online elimination.

DAG represents the active variables alive at any one time.

→ Small graph – Huge memory savings

(gradients: factor 100)
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ADTAGEO at a glance – Requirements

ADTAGEO performs vertex elimination whenever

(i) An active variable is deallocated/destroyed

(ii) An active variable is overwritten

Perfect fitting into OOP scenario

(i) is covered by Destructor (assuming it exists in language)
(ii) is covered by assignment operator
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ADTAGEO – And Sourcetransformation

Requirements of ADTAGEO??

(i) Recognise leaving of the scope of variables (deallocation)
(ii) Recognise assignments (overwrites)

Produce source code for graph manipulations

therefore: one have access to the storage associated with
pointers at runtime

no pointer aliasing problem
DEALLOCATE becomes your best friend: Eliminate all array
elements at once opens possibility to optimise the elimination
order

Elements of arrays are handled as single entities

partial overwrites are no topic
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Implementation

Proof of concept

optimized for understanding
not optimized for speed

Implemented in C++

Heavy use of class map from the Standard Template Library to
store partials locally at every node (edges in graph)

Rapid prototyping (First Order):

140 lines of code for +-*/ and sin, cos, exp
One week (with basic testing)

Any new operator / intrinsic requires 4 lines
(2 lines for open and closing curly braces)

Rapid prototyping – Hessian:

100 additional lines of code for Hessian elimination
One additional day (plus two nights)
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Implementation – DAGLAD

class daglad{
private:

double val; //function value
map<daglad*, double> args; //arguments = incoming edges
map<daglad*, double> uses; //used by = outgoing edges

public:

daglad() { ...}; //constructor
void eliminate() {...}; //eliminate current vertex
~daglad() { eliminate(); ...}; //destructor
void operator = (...) { eliminate(); ...}; // asgnm.
friend dagdoub operator + (...); // arithmetic operators
friend double operator % (...); . . . // retrieval op

}; /* class daglad */
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Implementation – DAGLAD

Program:

y = x1 + x2 + x3; z = x3 + x4 + y;

x1 x2 x3

y

∂y

∂x1

∂y

∂x2

∂y

∂x3

x4

z

∂z
∂y

∂z
∂x3

∂z
∂x4

y.args

y.uses
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Implementation – Usage (prototype)

Easy mode:

Redeclare (required) variables to be of type daglad

Retrieve first order derivatives somewhere in the code using the
% operator

y[j]%x[i] ≡
∂yj

∂xi

Advanced mode:

Check/prepare/write code for better performance
Right mixture of forward and reverse mode [see below]
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Implementation – Example

#include "daglad.hpp"

main(){
daglad x1(0.5), x2(1.3), y;

double xx1, xx2, yy, dy, dyy;

y = exp(x1)*sin(x1+x2); // compute f(x)
dyy = y%x1; // first element of gradient

xx1 = x1.val(); xx2 = x2.val(); //shortcuts
dy = exp(xx1)*(sin(xx1+xx2)+cos(xx1+xx2));

cout << " dF1 = " << dyy << " diff " << (dyy-dy) << endl;

dyy = y%x2; // second element of gradient
dy = exp(xx1)*cos(xx1+xx2);

cout << " dF1 = " << dyy << " diff " << (dyy-dy) << endl;

cout << " x1 = " << x1 << endl << " x2 = " << x2 << endl;

cout << " y = " << y << endl;

}
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Implementation – Example Output (reformatted)

dF1 = 1.23101 diff 2.22045e-16

dF2 = -0.374593 diff 0

x1 = |1,l:0,0.5,3, args={} , uses={[3,4,0,1.23101]}|
x2 = |2,l:0,1.3,2, args={} , uses={[3,4,0,-0.374593]}|
y = |3,l:4,1.6056,0,

args={[2,0,2,-0.374593][1,0,3,1.23101]}
uses={} |
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Implementation – Highlights

No specification of independents/dependents

No call of forward / reverse sweeps
mode is defined by variable allocation

No tape, No top level routine

Access to derivatives everywhere (Correctness of derivatives has
to be ensured)

Graph represents the sparsity structure

BUT: ADTAGEO is not only sparsity propagation
ADTAGEO computes derivatives in sparse mode, therefore no
structural zeros are computed
Avoid propagation of a seed matrix / directions / . . .
Avoid Jacobian compression
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Implementation – Memory consumption

y[1] = 0;

for( i = 0; i < 100000; i++ ) {
y[0] = y[1] + x[0] + x[1];

y[1] = y[0] + x[0] + x[1];

y[0] = x[0] + x[1];

}

complete DAG 82 Megabyte
ADTAGEO 880 Kilobyte

It is a tiny, but perfect example for ADTAGEO
It is in fact a small gather-scatter-loop !!

Eliminate instead of storing or recompute!
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Implementation – Storing edges locally

Benefits of storing the edges locally

for (int i = 0; i < N; i++ )

y = y*x1*x2*sin(x1)*x1+x2*sin(x1)*x2+x2;

N 100.000 250.000

CPU SYS ELP CPU SYS ELP

map 7.19 0.63 7.85 19.22 2.40 72.00

hash-map 5.53 0.60 6.17 12.87 1.40 14.50

local 2.30 0.00 2.35 5.77 0.00 5.89
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Implementation – Cache behavior ( n=250.000 )

for (int i = 0; i < N; i++ )

y = y*x1*x2*sin(x1)*x1+x2*sin(x1)*x2+x2;

major minor

page faults

map 6.817 188.676

hash-map – ≈ 70.000

local – ≈ 300
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Implementation – Mixing Forward and Reverse

Talking about the loop in Speelpennings example
void speelforw( int dim, daglad* x, daglad& y ) {

y = 1; // initialise
for ( int i = 0; i < dim; i++ ) // loop over elements

y = y * x[i]; // compute product
} // end of speelforw

Hybrid mode
Split loop into chunks of C elements

=⇒ spent small amount of additional memory (compared
with forward)

Loop over chunks

Deallocate / Eliminate inside of loop over chunks
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Runtime Forward / Reverse / R-Split / F-Split

Size of chunks: C = 100

N 1.000 2.500 5.000 10.000 25.000 50.000 100.000

Forward 1.9 14.8 62.5 – – – –

Reverse 0.0 0.0 0.1 0.2 0.5 0.9 1.9

R-Split 0.0 0.1 0.7 2.8 17.3 70.0 280.1

F-Split 0.0 0.3 1.1 3.6 19.3 73.9 286.9

Notes:
Surprising runtime behavior of Forward Split mode

Memory used: Reverse 32MB R-Split 11MB F-Split 19MB
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Hessian Elimination – Simplest Case

Looking at a graph snippet, only dealing with

ci ,j =
∂vi

∂vj

ci ,j ,k =
∂2vi

∂vj∂vk

j

i

l

ci ,j

cl ,i

ci ,j ,j

cl ,i ,i

j

l

cl ,j = cl ,i · ci ,j

cl ,j ,j = cl ,i · ci ,j ,j + cl ,i ,i · ci ,j · ci ,j
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Hessian Elimination – Becoming more general

j k

i

l

j k

l

cl ,j ,j cl ,k,k

cl ,j ,k

cl ,k,j

cl ,j ,j = cl ,i · ci ,j ,j + cl ,i ,i · ci ,j · ci ,j

cl ,j ,k = cl ,i · ci ,j ,k + cl ,i ,i · ci ,j · ci ,k
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Hessian Elimination – Even more general

cl ,j ,k += cl ,i · ci ,j ,k + cl ,i ,i · ci ,j · ci ,k

j ≺ i , k ≺ i , i ≺ l

j k

l

cl ,j ,k

cl ,k,j

j k

i

l
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Hessian Elimination – Even more general

j

ip

l

j

p

l

cl ,j ,p

cl ,p,j

j

l

cl ,p,j += cl ,p,i · ci ,j

j ≺ i , i ≺ l , p ≺ l , p 6= i
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Hessian Elimination – Summary

j ≺ i , k ≺ i , i ≺ l :

cl ,j ,k += cl ,i · ci ,j ,k + cl ,i ,i · ci ,j · ci ,k

j ≺ i , i ≺ l , p ≺ l , p 6= i :

cl ,p,j += cl ,p,i · ci ,j

cl ,j ,p += cl ,i ,p · ci ,j
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Hessian Elimination –

What’s about Hessian Symmetry?

j k

l

cl ,j ,k = cl ,k,j

Can be exploited with canonicalised keys:

(j , k) ≡ cl ,j ,k always fulfills j ≥ k
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Hessian Elimination – Symmetric Elimination

j ≺ i , k ≺ i , j ≥ k , i ≺ l :

cl ,j ,k += cl ,i · ci ,j ,k + cl ,i ,i · ci ,j · ci ,k

j ≺ i , i ≺ l , p ≺ l , p 6= i :

if( p 6= j )

cl ,p,j += cl ,p,i · ci ,j

else

cl ,p,p += 2 · cl ,p,i · ci ,p
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Hessian Elimination – Hessian Example

#include "daglad.hpp"

main(){
daglad x1(0.5), x2(1.3), y;

double xx1, xx2, yy, dy, dyy;

y = exp(x1)*sin(x1+x2); // compute f(x)
dyy = y%x1; // first element of gradient

xx1 = x1.val(); xx2 = x2.val(); //shortcuts
dy = exp(xx1)*(sin(xx1+xx2)+cos(xx1+xx2));

cout << " dF1 = " << dyy << " diff " << (dyy-dy) << endl;

dyy = y%x2; // second element of gradient
dy = exp(xx1)*cos(xx1+xx2);

cout << " dF1 = " << dyy << " diff " << (dyy-dy) << endl;

cout << " x1 = " << x1 << endl << " x2 = " << x2 << endl;

cout << " y = " << y << endl;

}
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Hessian Elimination –

Hessian Example Output (reformatted)

dF1 = 1.23101 difference 2.22045e-16

dF1 = -0.374593 difference 0

x1 = |1,l:0,0.5,3, args={} , uses={[3,4,0,1.23101]} |

x2 = |2,l:0,1.3,2, args={} , uses={[3,4,0,-0.374593]} |

y = |3,l:4,1.6056,0,

args={[2,0,2,-0.374593][1,0,3,1.23101]} ,

uses={} ,

hessian={[(5,6),1], // BUG has to be removed
[(2,2),-1.6056],

[(1,4),-0.374593], // BUG has to be removed
[(1,5),1.64872], // BUG has to be removed
[(1,2),-1.9802],

[(1,1),-0.749186], }|
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Hessian implementation – Easy part

map<pair<daglad*,daglad*>,double> hessian;

to store existing Hessian elements at node / active variable

add additional parameters for Hessian elements to constructors
(2 places)

extend operators and intrinsics

daglad sin (const daglad &a)

{ // has hessian: -sin(a) = -t
double t = sin(a.val);

return daglad( t, a, cos(a.val),

true, -t

);

};
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Hessian implementation – Easy part

extend operators and intrinsics (cont’d)

// daglad * daglad

daglad operator * (const daglad &a,

const daglad &b)

{ //has hessian: [ 0 1; 1 0]
return daglad( a.val * b.val, a, b.val, b, a.val,

true, 0, 1, 0

);

};
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Hessian implementation – Not so easy part

extend eliminate() to deal with hessians
based on the elimination rules seen

Overall changes on prototype to got Hessians
roughly 100 lines of code added

80% in eliminate()
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Outlook – Todo

Hessian retrieval – User interface
Complete Hessians

Hessian - Vector - Products

Bugfix
Delete all Hessian elements storing derivatives with respect to
eliminated nodes

Problems arises from the += if the corresponding variable is
overwritten
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Outlook – Future research

Detect and exploit partial separability

Propagate residuals

R → 0 ⇐⇒ (A ∗ R)′ = A′R
︸︷︷︸

→0

+AR ′ = AR ′

Performance Analysis
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Outlook – ADTAGEO → ALLEGRO

Making prototype faster:

Instant elimination: reduce number of vertexes

Easy for unary operators
Open question: How to avoid copy/delete in DAG?

Replace maps by hashmap, attemp to avoid use of STL

Elimination of LHS intermediates in assignments already

Never more than 2 edges for intermediate vertexes
−→ Specialised class for intermediate vertexes

Statement Level Reverse Mode ala ADIFOR
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Outlook – ADTAGEO → ALLEGRO

Classes for vectors of daglad’s

Destructor: access to a whole bunch of vertexes
Optimize elimination sequence: heuristics, ANGEL
Test: Speelpenning, randomised element ordering

N FM elim RM elim OM elim

500000 30s 92% 25s 92% 12s 75%

Extend user interface

Develop Hessian retrieval machanism
Return compressed rows / columns of Jacobian / Hessian too
Sparse Jacobian/Hessian-Vector products
Enforce accumulation / elimination
Self verifying mode: Derivatives completely accumulated ?
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Conclusions

We have seen (Pros)

A new view to AD, strongly based Life-DAG

Easy to implement
Convenient to use (at least C++ implementation)
Throws away/changes/mix up some of the good old AD-terms:

Independent / Dependent
Forward and Reverse mode
Seeding, Compression of Jacobians

Elimination rules for Hessians keeping symmetry

We have also seen (Cons)

Dynamic sparsity handling (Overhead)
STL map: Handling dynamic data structures all the time
(Overhead)

We have not seen (so far)

Performance tests/Comparisons
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Thank you!

Additionally:
Many thanks to Till Tantau, author of BEAMER and PGF

(Portable Graphics Format, used to draw the graphs):

http://sourceforge.net/projects/latex-beamer/
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