
Second Order Derivatives with ADTAGEO
Algorithmic Differentiation Through Automatic Graph Elimination

Ordering

Andreas Griewank Jan Riehme

Institute for Applied Mathematics
Humboldt Universität zu Berlin

{griewank,riehme}@math.hu-berlin.de

15th April 2005
Automatic Differentiation Workshop

Nice, France

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 1
/ 40

Second Order Derivatives with ADTAGEO
ADjoints and TAngents by Graph Elimination Ordering

Andreas Griewank Jan Riehme

Institute for Applied Mathematics
Humboldt Universität zu Berlin

{griewank,riehme}@math.hu-berlin.de

15th April 2005
Automatic Differentiation Workshop

Nice, France

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 2
/ 40

Outline

1 ADTAGEO Gradient-Mode

2 ADTAGEO at a glance

3 Implementation

4 Hessian Elimination

5 Hessian implementation

6 Outlook

7 Conclusions

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 3
/ 40

ADTAGEO Gradient-Mode – Example

Computational graph of statement:

y = x1 + x2 + x3;

with v0 = x1, v−1 = x2, v−2 = x3

v0 v−1 v−2

y

v1

c1,0 c1,−1

v1 = v0 + v−1

cij = ∂vi

∂vj
, j ≺ i

v2

v2 = v1 + v−2

c2,1

c2,−2

cy ,2 = 1

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 4
/ 40

ADTAGEO Gradient-Mode – Elemination

After execution of the assignment:

Elimination of Intermediates:

y = x1 + x2 + x3;

v0 v−1 v−2

y

clj += cli · cij

j ≺ i , l ≺ i

cy ,−2 = cy ,2 · c2,−2

cy ,0 = cy ,1 · c1,0

cy ,−1 = cy ,1 · c1,−1

ADIFOR: Statement Level Reverse

AD-enabled NAGWare Fortran 95 compiler

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 5
/ 40

ADTAGEO Gradient-Mode – Elemination

Program: y . . . local variable, inside scope of y

{ double y = x1 + x2 + x3; z = x3 + x4 + y; }

v0 v−1 v−2 v−3

z

y

cy ,0 cy ,−1
cy ,−2

cz ,y

cz ,−2
cz ,−3

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 6
/ 40

ADTAGEO Gradient-Mode – Elemination

Program: y . . . local variable, leaving scope of y

{ double y = x1 + x2 + x3; z = x3 + x4 + y; }

v0 v−1 v−2 v−3

z
clj += cli · cij

j ≺ i , l ≺ i

cz ,0 cz ,−1
cz ,−2

cz ,−3

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 7
/ 40

ADTAGEO at a glance – The idea behind

More talking about an IDEA than a another AD-TOOL

A new way of doing Algorithmic Differentiation

Do not build the computational graph of complete
(sub)programs

Instead:

Maintain a Life -DAG
Eliminate as soon as possible as many vertexes as possible.

Eliminate on the fly, Online elimination.

DAG represents the active variables alive at any one time.

→ Small graph – Huge memory savings

(gradients: factor 100)

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 8
/ 40

ADTAGEO at a glance – Requirements

ADTAGEO performs vertex elimination whenever

(i) An active variable is deallocated/destroyed

(ii) An active variable is overwritten

Perfect fitting into OOP scenario

(i) is covered by Destructor (assuming it exists in language)
(ii) is covered by assignment operator

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 9
/ 40

ADTAGEO – And Sourcetransformation

Requirements of ADTAGEO??

(i) Recognise leaving of the scope of variables (deallocation)
(ii) Recognise assignments (overwrites)

Produce source code for graph manipulations

therefore: one have access to the storage associated with
pointers at runtime

no pointer aliasing problem
DEALLOCATE becomes your best friend: Eliminate all array
elements at once opens possibility to optimise the elimination
order

Elements of arrays are handled as single entities

partial overwrites are no topic

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 10
/ 40

Implementation

Proof of concept

optimized for understanding
not optimized for speed

Implemented in C++

Heavy use of class map from the Standard Template Library to
store partials locally at every node (edges in graph)

Rapid prototyping (First Order):

140 lines of code for +-*/ and sin, cos, exp
One week (with basic testing)

Any new operator / intrinsic requires 4 lines
(2 lines for open and closing curly braces)

Rapid prototyping – Hessian:

100 additional lines of code for Hessian elimination
One additional day (plus two nights)

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 11
/ 40

Implementation – DAGLAD

class daglad{
private:

double val; //function value
map<daglad*, double> args; //arguments = incoming edges
map<daglad*, double> uses; //used by = outgoing edges

public:

daglad() { ...}; //constructor
void eliminate() {...}; //eliminate current vertex
~daglad() { eliminate(); ...}; //destructor
void operator = (...) { eliminate(); ...}; // asgnm.
friend dagdoub operator + (...); // arithmetic operators
friend double operator % (...); . . . // retrieval op

}; /* class daglad */

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 12
/ 40

Implementation – DAGLAD

Program:

y = x1 + x2 + x3; z = x3 + x4 + y;

x1 x2 x3

y

∂y

∂x1

∂y

∂x2

∂y

∂x3

x4

z

∂z
∂y

∂z
∂x3

∂z
∂x4

y.args

y.uses

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 13
/ 40

Implementation – Usage (prototype)

Easy mode:

Redeclare (required) variables to be of type daglad

Retrieve first order derivatives somewhere in the code using the
% operator

y[j]%x[i] ≡
∂yj

∂xi

Advanced mode:

Check/prepare/write code for better performance
Right mixture of forward and reverse mode [see below]

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 14
/ 40

Implementation – Example

#include "daglad.hpp"

main(){
daglad x1(0.5), x2(1.3), y;

double xx1, xx2, yy, dy, dyy;

y = exp(x1)*sin(x1+x2); // compute f(x)
dyy = y%x1; // first element of gradient

xx1 = x1.val(); xx2 = x2.val(); //shortcuts
dy = exp(xx1)*(sin(xx1+xx2)+cos(xx1+xx2));

cout << " dF1 = " << dyy << " diff " << (dyy-dy) << endl;

dyy = y%x2; // second element of gradient
dy = exp(xx1)*cos(xx1+xx2);

cout << " dF1 = " << dyy << " diff " << (dyy-dy) << endl;

cout << " x1 = " << x1 << endl << " x2 = " << x2 << endl;

cout << " y = " << y << endl;

}
Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 15
/ 40

Implementation – Example Output (reformatted)

dF1 = 1.23101 diff 2.22045e-16

dF2 = -0.374593 diff 0

x1 = |1,l:0,0.5,3, args={} , uses={[3,4,0,1.23101]}|
x2 = |2,l:0,1.3,2, args={} , uses={[3,4,0,-0.374593]}|
y = |3,l:4,1.6056,0,

args={[2,0,2,-0.374593][1,0,3,1.23101]}
uses={} |

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 16
/ 40

Implementation – Highlights

No specification of independents/dependents

No call of forward / reverse sweeps
mode is defined by variable allocation

No tape, No top level routine

Access to derivatives everywhere (Correctness of derivatives has
to be ensured)

Graph represents the sparsity structure

BUT: ADTAGEO is not only sparsity propagation
ADTAGEO computes derivatives in sparse mode, therefore no
structural zeros are computed
Avoid propagation of a seed matrix / directions / . . .
Avoid Jacobian compression

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 17
/ 40

Implementation – Memory consumption

y[1] = 0;

for(i = 0; i < 100000; i++) {
y[0] = y[1] + x[0] + x[1];

y[1] = y[0] + x[0] + x[1];

y[0] = x[0] + x[1];

}

complete DAG 82 Megabyte
ADTAGEO 880 Kilobyte

It is a tiny, but perfect example for ADTAGEO
It is in fact a small gather-scatter-loop !!

Eliminate instead of storing or recompute!

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 18
/ 40

Implementation – Storing edges locally

Benefits of storing the edges locally

for (int i = 0; i < N; i++)

y = y*x1*x2*sin(x1)*x1+x2*sin(x1)*x2+x2;

N 100.000 250.000

CPU SYS ELP CPU SYS ELP

map 7.19 0.63 7.85 19.22 2.40 72.00

hash-map 5.53 0.60 6.17 12.87 1.40 14.50

local 2.30 0.00 2.35 5.77 0.00 5.89

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 19
/ 40

Implementation – Cache behavior (n=250.000)

for (int i = 0; i < N; i++)

y = y*x1*x2*sin(x1)*x1+x2*sin(x1)*x2+x2;

major minor

page faults

map 6.817 188.676

hash-map – ≈ 70.000

local – ≈ 300

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 20
/ 40

Implementation – Mixing Forward and Reverse

Talking about the loop in Speelpennings example
void speelforw(int dim, daglad* x, daglad& y) {

y = 1; // initialise
for (int i = 0; i < dim; i++) // loop over elements

y = y * x[i]; // compute product
} // end of speelforw

Hybrid mode
Split loop into chunks of C elements

=⇒ spent small amount of additional memory (compared
with forward)

Loop over chunks

Deallocate / Eliminate inside of loop over chunks

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 21
/ 40

Runtime Forward / Reverse / R-Split / F-Split

Size of chunks: C = 100

N 1.000 2.500 5.000 10.000 25.000 50.000 100.000

Forward 1.9 14.8 62.5 – – – –

Reverse 0.0 0.0 0.1 0.2 0.5 0.9 1.9

R-Split 0.0 0.1 0.7 2.8 17.3 70.0 280.1

F-Split 0.0 0.3 1.1 3.6 19.3 73.9 286.9

Notes:
Surprising runtime behavior of Forward Split mode

Memory used: Reverse 32MB R-Split 11MB F-Split 19MB

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 22
/ 40

Hessian Elimination – Simplest Case

Looking at a graph snippet, only dealing with

ci ,j =
∂vi

∂vj

ci ,j ,k =
∂2vi

∂vj∂vk

j

i

l

ci ,j

cl ,i

ci ,j ,j

cl ,i ,i

j

l

cl ,j = cl ,i · ci ,j

cl ,j ,j = cl ,i · ci ,j ,j + cl ,i ,i · ci ,j · ci ,j

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 23
/ 40

Hessian Elimination – Becoming more general

j k

i

l

j k

l

cl ,j ,j cl ,k,k

cl ,j ,k

cl ,k,j

cl ,j ,j = cl ,i · ci ,j ,j + cl ,i ,i · ci ,j · ci ,j

cl ,j ,k = cl ,i · ci ,j ,k + cl ,i ,i · ci ,j · ci ,k

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 24
/ 40

Hessian Elimination – Even more general

cl ,j ,k += cl ,i · ci ,j ,k + cl ,i ,i · ci ,j · ci ,k

j ≺ i , k ≺ i , i ≺ l

j k

l

cl ,j ,k

cl ,k,j

j k

i

l

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 25
/ 40

Hessian Elimination – Even more general

j

ip

l

j

p

l

cl ,j ,p

cl ,p,j

j

l

cl ,p,j += cl ,p,i · ci ,j

j ≺ i , i ≺ l , p ≺ l , p 6= i

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 26
/ 40

Hessian Elimination – Summary

j ≺ i , k ≺ i , i ≺ l :

cl ,j ,k += cl ,i · ci ,j ,k + cl ,i ,i · ci ,j · ci ,k

j ≺ i , i ≺ l , p ≺ l , p 6= i :

cl ,p,j += cl ,p,i · ci ,j

cl ,j ,p += cl ,i ,p · ci ,j

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 27
/ 40

Hessian Elimination –

What’s about Hessian Symmetry?

j k

l

cl ,j ,k = cl ,k,j

Can be exploited with canonicalised keys:

(j , k) ≡ cl ,j ,k always fulfills j ≥ k

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 28
/ 40

Hessian Elimination – Symmetric Elimination

j ≺ i , k ≺ i , j ≥ k , i ≺ l :

cl ,j ,k += cl ,i · ci ,j ,k + cl ,i ,i · ci ,j · ci ,k

j ≺ i , i ≺ l , p ≺ l , p 6= i :

if(p 6= j)

cl ,p,j += cl ,p,i · ci ,j

else

cl ,p,p += 2 · cl ,p,i · ci ,p

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 29
/ 40

Hessian Elimination – Hessian Example

#include "daglad.hpp"

main(){
daglad x1(0.5), x2(1.3), y;

double xx1, xx2, yy, dy, dyy;

y = exp(x1)*sin(x1+x2); // compute f(x)
dyy = y%x1; // first element of gradient

xx1 = x1.val(); xx2 = x2.val(); //shortcuts
dy = exp(xx1)*(sin(xx1+xx2)+cos(xx1+xx2));

cout << " dF1 = " << dyy << " diff " << (dyy-dy) << endl;

dyy = y%x2; // second element of gradient
dy = exp(xx1)*cos(xx1+xx2);

cout << " dF1 = " << dyy << " diff " << (dyy-dy) << endl;

cout << " x1 = " << x1 << endl << " x2 = " << x2 << endl;

cout << " y = " << y << endl;

}
Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 30
/ 40

Hessian Elimination –

Hessian Example Output (reformatted)

dF1 = 1.23101 difference 2.22045e-16

dF1 = -0.374593 difference 0

x1 = |1,l:0,0.5,3, args={} , uses={[3,4,0,1.23101]} |

x2 = |2,l:0,1.3,2, args={} , uses={[3,4,0,-0.374593]} |

y = |3,l:4,1.6056,0,

args={[2,0,2,-0.374593][1,0,3,1.23101]} ,

uses={} ,

hessian={[(5,6),1], // BUG has to be removed
[(2,2),-1.6056],

[(1,4),-0.374593], // BUG has to be removed
[(1,5),1.64872], // BUG has to be removed
[(1,2),-1.9802],

[(1,1),-0.749186], }|

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 31
/ 40

Hessian implementation – Easy part

map<pair<daglad*,daglad*>,double> hessian;

to store existing Hessian elements at node / active variable

add additional parameters for Hessian elements to constructors
(2 places)

extend operators and intrinsics

daglad sin (const daglad &a)

{ // has hessian: -sin(a) = -t
double t = sin(a.val);

return daglad(t, a, cos(a.val),

true, -t

);

};

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 32
/ 40

Hessian implementation – Easy part

extend operators and intrinsics (cont’d)

// daglad * daglad

daglad operator * (const daglad &a,

const daglad &b)

{ //has hessian: [0 1; 1 0]
return daglad(a.val * b.val, a, b.val, b, a.val,

true, 0, 1, 0

);

};

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 33
/ 40

Hessian implementation – Not so easy part

extend eliminate() to deal with hessians
based on the elimination rules seen

Overall changes on prototype to got Hessians
roughly 100 lines of code added

80% in eliminate()

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 34
/ 40

Outlook – Todo

Hessian retrieval – User interface
Complete Hessians

Hessian - Vector - Products

Bugfix
Delete all Hessian elements storing derivatives with respect to
eliminated nodes

Problems arises from the += if the corresponding variable is
overwritten

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 35
/ 40

Outlook – Future research

Detect and exploit partial separability

Propagate residuals

R → 0 ⇐⇒ (A ∗ R)′ = A′R
︸︷︷︸

→0

+AR ′ = AR ′

Performance Analysis

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 36
/ 40

Outlook – ADTAGEO → ALLEGRO

Making prototype faster:

Instant elimination: reduce number of vertexes

Easy for unary operators
Open question: How to avoid copy/delete in DAG?

Replace maps by hashmap, attemp to avoid use of STL

Elimination of LHS intermediates in assignments already

Never more than 2 edges for intermediate vertexes
−→ Specialised class for intermediate vertexes

Statement Level Reverse Mode ala ADIFOR

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 37
/ 40

Outlook – ADTAGEO → ALLEGRO

Classes for vectors of daglad’s

Destructor: access to a whole bunch of vertexes
Optimize elimination sequence: heuristics, ANGEL
Test: Speelpenning, randomised element ordering

N FM elim RM elim OM elim

500000 30s 92% 25s 92% 12s 75%

Extend user interface

Develop Hessian retrieval machanism
Return compressed rows / columns of Jacobian / Hessian too
Sparse Jacobian/Hessian-Vector products
Enforce accumulation / elimination
Self verifying mode: Derivatives completely accumulated ?

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 38
/ 40

Conclusions

We have seen (Pros)

A new view to AD, strongly based Life-DAG

Easy to implement
Convenient to use (at least C++ implementation)
Throws away/changes/mix up some of the good old AD-terms:

Independent / Dependent
Forward and Reverse mode
Seeding, Compression of Jacobians

Elimination rules for Hessians keeping symmetry

We have also seen (Cons)

Dynamic sparsity handling (Overhead)
STL map: Handling dynamic data structures all the time
(Overhead)

We have not seen (so far)

Performance tests/Comparisons
Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 39
/ 40

Thank you!

Additionally:
Many thanks to Till Tantau, author of BEAMER and PGF

(Portable Graphics Format, used to draw the graphs):

http://sourceforge.net/projects/latex-beamer/

Griewank, Riehme (HU Berlin) Second Order Derivatives with ADTAGEO

15th April 2005 Automatic Differentiation Workshop Nice, France 40
/ 40

	ADTAGEO Gradient-Mode
	Example
	Elemination

	ADTAGEO at a glance
	The idea behind
	Requirements

	Implementation
	Prototype
	DAGLAD
	Usage (prototype)
	Example
	Example Output (reformatted)
	Highlights
	Memory consumption
	Storing edges locally
	Cache behavior (n=250.000)
	Mixing Forward and Reverse

	Hessian Elimination
	Simplest Case
	Becoming more general
	Even more general
	Even more general
	Summary
	What's about Hessian Symmetry?
	Symmetric Elimination
	Hessian Example
	Hessian Example Output (reformatted)

	Hessian implementation
	Easy part
	Not so easy part

	Outlook
	Todo
	Future research
	ADTAGEO ALLEGRO

	Conclusions

