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Project Goals

Enhance performance by eliminating overheads introduced
by operator overloading in MAD [For04]

Explore MATLABa source analysis and transformation
techniques to aid AD

Create a portable tool that easily integrates with MATLAB
based solvers

Provide control over readability of generated code

Provide an array of selectable AD specific optimisations

a
MATLAB is a trademark of The MathWorks, Inc.

MSAD – p. 3/18



Previous work on MSAD

Was shown to successfully compute the gradient/Jacobian
of MATLAB programs involving vector valued functions
using the forward mode of AD and source
transformation [Kha04]

Augmented code generated by inlining the fmad class
operations from MAD

the derivvec class continued to hold the derivatives
and perform derivative combinations
resulted in a hybrid approach analogous to [Veh01]

Simple forward dependence based activity analysis

Active independent variables and supplementary shape size
information can be provided through user directives inserted
in the code
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Previous work on MSAD (contd.)

Rudimentary size(shape) and type(constant, real,
imaginary) inference

Thus removed one level of overheads encountered in MAD
giving

discernible savings over MAD for small problem sizes
but these savings grew insignificant as the problem size
was increased
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Further developments

Now uses size, type inference to specialise and further
inline derivvec class operations

Optionally generates code for holding and propagating
sparse derivatives

Incorporated sparsity inference (propagating MATLAB
sparse types for derivative variables)

if S implies a sparse operand and F full, then rules such
as

S + F → F , S ∗ F → F

S. ∗ F → S, S&F → S

T = S(i, j) → T is sparse, if i, j are vectors
T (i, j) = S → T retains its full or sparse storage type

are applied

MSAD – p. 6/18



Further developments (contd.)

Run-times are obtained using MATLAB 7.0 on a Linux
machine with a 2.8GHz Pentium-4 processor and 512MB of
RAM.
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previous Results - Brusselator ODE

40 80 160 320 640 1280 2560 5120
3

6

13

30

65

130

253

600

1200

2500

5000

15000

n (log scale)

C
P

U
(J

F
)/

C
P

U
(F

) 
(lo

g 
sc

al
e)

BrusselatorODE CPU(JF)/CPU(F) Vs n

NUMJAC (full)
MSAD (full)
MAD (full)
NUMJAC (comp)
MSAD (comp)
MAD (comp)
MSAD (sparse)
MAD (sparse)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 124

Jacobian Sparsity − Brussode (n = 32)

30% improvement over MAD for small n down to 4% for large n, with compression

performance matches that of finite-differencing, numjac(vec), only asymptotically
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performance matches that of finite-differencing, numjac(vec), only asymptotically

using sparse derivatives, performance converges asymptotically to that of MAD

almost exponentially increasing savings over full evaluation with increasing n
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Results - Brusselator ODE
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Results - Brusselator ODE
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Results - Burgersode ODE
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Results - Burgersode ODE
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Results - Data Fitting problem
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outperforms both MAD and numjac in direct evaluation of the Jacobian by > 60%

if we take note of the sparsity in the Jacobian of the intermediate Vandermonde matrix
[For04] and use sparse derivatives, we get an order of magnitude improvement over
numjac, but a decreasing relative improvement over MAD
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Observations

Significantly better performance using Jacobian
compression compared to other methods and to numjac,
MAD and the previous approach using compression, even
for large n

MSAD using full evaluation of the Jacobian performs well
compared to MAD and numjac using full

Decrease in relative performance with increasing n, when
using sparse derivatives.
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Observations

Significantly better performance using Jacobian
compression compared to other methods and to numjac,
MAD and the previous approach using compression, even
for large n

MSAD using full evaluation of the Jacobian performs well
compared to MAD and numjac using full

When using the full or the compressed mode, the
generated code contains only native data-types
qualifying it for any MATLAB JIT-Acceleration

Decrease in relative performance with increasing n, when
using sparse derivatives.

This can be attributed to the larger overheads in
manipulating the internal sparse representation of a
matrix, making any savings relatively small
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Results - MINPACK problems
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Results from 2-D Ginzburg-Landau and Steady-state combustion problems

using full derivatives to evaluate the gradient shows 80%→ 50% improvement over
MAD, and outperforms numjac by a similar margin over medium and large n
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Results from 2-D Ginzburg-Landau and Steady-state combustion problems

using full derivatives to evaluate the gradient shows 80%→ 50% improvement over
MAD, and outperforms numjac by a similar margin over medium and large n

using sparse derivatives shows a vast improvement over MAD here, 75%→ 85%
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Results - MINPACK problems
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Results from 2-D Ginzburg-Landau and Steady-state combustion problems

using full derivatives to evaluate the gradient shows 80%→ 50% improvement over
MAD, and outperforms numjac by a similar margin over medium and large n

using sparse derivatives shows a vast improvement over MAD here, 75%→ 85%

caused by redundant computations involving some inactive intermediates treated
as active in MAD [For04, 7-8]
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Results - Smaller problems

Ratio CPU(Jf )/CPU(f )

Problem n numjac MSAD MAD

Coating Thickness Standardization 134 256.28 49.65 107.87

Pollution ODE 20 10.86a 9.84 113.37

Combustion of Propane - Full 11 22.22 35.03 394.29

Human Heart Dipole 8 23.12 53.08 737.16

Chemical AzkoNobel 6 16.24 17.22 252.71

Combustion of Propane - Reduced 5 20.67 64.94 921.80

Amplifier DAE 5 13.86 15.08 170.11

Enzyme Reaction 4 18.69 9.51 111.89

Robertson ODE 3 11.05 10.48 124.22

Smaller sized problems from MINPACK, Test set for IVPs and MATLAB ODE examples

almost all cases show an order of magnitude speedup over MAD

performance is fairly close to that of finite-differencing(numjac), in four cases better

a
function vectorised to the advantage of numjac
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Results - bvp4cAD
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Results from bvp4c using MSAD (previous results on the right)

significant speedup over previously adopted hybrid approach in MSAD

performance better than using numjaca in six of eight cases, and comparable otherwise

a
note the improved speed using numjac compared to earlier results (previously MATLAB 6.5 was used)
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Summary

MSAD shows definite improvement in full and compressed
Jacobian evaluation over MAD and numjac

order of magnitude speedup in small and medium sized
test cases

In problems with sparsity in the derivatives of results or
intermediates, using sparse derivatives in MAD and MSAD
shows a large saving over the full evaluation of
gradients/Jacobian

In general, MSAD shows only a constant saving over MAD
using sparse derivatives. In certain cases larger gains may
be obtained

Use of only native data types in the output code allows
MATLAB JIT to perform some run-time optimisations
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Future Directions

Feature enhancement
Support for branching constructs involving active
variables
Handle cells and structures
Incorporate exception handling to trap
non-differentiability and syntactic errors

Improving performance
Optimising generated code using dependency analysis
(CFG, call-graphs)
Use more refined shape inference techniques
Apply constant folding

Testing
Include a mechanism for systematic testing
Construct a comprehensive test suite
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