Progress with MATLAB Source transformation AD

MSAD

Rahul Kharche

Cranfield University, Shrivenham

R.V.Kharche@Cranfield.ac.uk

AD Fest 2005, Nice 14^{th} - 15^{th} April 2005

Agenda

- Project Goals
- 9 Previous work on MSAD
- Further developments
- Test results from
 - MATLAB ODE examples
 - MINPACK optimisation problems
 - △ bvp4cAD
- Summary
- Future Directions
- 6 References

Project Goals

- 6 Enhance performance by eliminating overheads introduced by operator overloading in MAD [For04]
- Explore MATLAB^a source analysis and transformation techniques to aid AD
- 6 Create a portable tool that easily integrates with MATLAB based solvers
- Provide control over readability of generated code
- Provide an array of selectable AD specific optimisations

^aMATLAB is a trademark of The MathWorks, Inc.

Previous work on MSAD

- 6 Was shown to successfully compute the gradient/Jacobian of MATLAB programs involving vector valued functions using the forward mode of AD and source transformation [Kha04]
- 6 Augmented code generated by inlining the fmad class operations from MAD
 - the derivec class continued to hold the derivatives and perform derivative combinations
 - resulted in a *hybrid approach* analogous to [Veh01]
- Simple *forward* dependence based *activity analysis*
- 6 Active independent variables and supplementary shape size information can be provided through user directives inserted in the code

Previous work on MSAD (contd.)

- 6 Rudimentary size(shape) and type(constant, real, imaginary) inference
- 6 Thus removed one level of overheads encountered in MAD giving
 - discernible savings over MAD for small problem sizes
 - but these savings grew insignificant as the problem size was increased

Further developments

- 6 Now uses size, type inference to specialise and further inline derivvec class operations
- Optionally generates code for holding and propagating sparse derivatives
- Incorporated sparsity inference (propagating MATLAB sparse types for derivative variables)
 - if S implies a sparse operand and F full, then rules such as

-
$$S + F \to F$$
, $S * F \to F$

- $S. * F \rightarrow S, S\&F \rightarrow S$
- $T = S(i, j) \rightarrow T$ is sparse, if i, j are vectors

- $T(i,j) = S \rightarrow T$ retains its full or sparse storage type are applied

Further developments (contd.)

6 Run-times are obtained using MATLAB 7.0 on a Linux machine with a 2.8GHz Pentium-4 processor and 512MB of RAM.

previous Results - Brusselator ODE

- 5 30% improvement over MAD for small n down to 4% for large n, with compression
- **6** performance matches that of finite-differencing, numjac(vec), only asymptotically

previous Results - Brusselator ODE

- 30% improvement over MAD for small n down to 4% for large n, with compression
- **6** performance matches that of finite-differencing, numjac(vec), only asymptotically
- ⁶ using *sparse* derivatives, performance converges asymptotically to that of MAD
- 6 almost exponentially increasing savings over *full* evaluation with increasing n

Results - Brusselator ODE

 $91\% \rightarrow 30\%$ speedup over MAD with increasing *n* using *compression*

6 outperforms numjac(vec) n=640 onward, with gains upto 25%

Results - Brusselator ODE

BrusselatorODE CPU(JF)/CPU(F) Vs n

 $91\% \rightarrow 30\%$ speedup over MAD with increasing *n* using *compression*

- outperforms numjac(vec) n = 640 onward, with gains upto 25%
- decreasing *relative* speedup, but a small constant saving, over MAD using *sparse* derivatives

Results - Burgersode ODE

- $6 87\% \rightarrow 37\%$ speedup over MAD with increasing *n*, using *compression*
- 6 outperforms numjac n=64 onward, with gains between 28% and 45%

Results - Burgersode ODE

- $6 87\% \rightarrow 37\%$ speedup over MAD with increasing *n*, using *compression*
- 6 outperforms numjac n=64 onward, with gains between 28% and 45%
- decreasing *relative* speedup, but a small constant saving, over MAD using *sparse* derivatives

Results - Data Fitting problem

5 outperforms both MAD and numjac in direct evaluation of the Jacobian by > 60%

Results - Data Fitting problem

- 6 outperforms both MAD and <code>numjac</code> in direct evaluation of the Jacobian by > 60%
- if we take note of the sparsity in the Jacobian of the intermediate Vandermonde matrix [For04] and use sparse derivatives, we get an order of magnitude improvement over numjac, but a decreasing relative improvement over MAD

Observations

- Significantly better performance using Jacobian compression compared to other methods and to numjac, MAD and the previous approach using compression, even for large n
- MSAD using *full* evaluation of the Jacobian performs well compared to MAD and numjac using *full*

Observation Decrease in relative performance with increasing n, when using sparse derivatives.

Observations

- Significantly better performance using Jacobian compression compared to other methods and to numjac, MAD and the previous approach using compression, even for large n
- MSAD using *full* evaluation of the Jacobian performs well compared to MAD and numjac using *full*
 - When using the *full* or the *compressed* mode, the generated code contains only native data-types qualifying it for any *MATLAB JIT-Acceleration*
- Decrease in relative performance with increasing n, when using sparse derivatives.
 - This can be attributed to the larger overheads in manipulating the internal sparse representation of a matrix, making any savings relatively small

Results - MINPACK problems

Results from 2-D Ginzburg-Landau and Steady-state combustion problems

⁶ using *full* derivatives to evaluate the gradient shows $80\% \rightarrow 50\%$ improvement over MAD, and outperforms numjac by a similar margin over medium and large n

Results - MINPACK problems

Results from 2-D Ginzburg-Landau and Steady-state combustion problems

- ⁶ using *full* derivatives to evaluate the gradient shows $80\% \rightarrow 50\%$ improvement over MAD, and outperforms numjac by a similar margin over medium and large n
- 5 using *sparse* derivatives shows a vast improvement over MAD here, $75\% \rightarrow 85\%$

Results - MINPACK problems

Results from 2-D Ginzburg-Landau and Steady-state combustion problems

- using *full* derivatives to evaluate the gradient shows $80\% \rightarrow 50\%$ improvement over MAD, and outperforms numjac by a similar margin over medium and large n
- ⁵ using *sparse* derivatives shows a vast improvement over MAD here, $75\% \rightarrow 85\%$
 - caused by *redundant computations* involving some inactive intermediates treated as active in MAD [For04, 7-8]

Results - Smaller problems

		Ratio CPU(Jf)/CPU(f)		
Problem	n	numjac	MSAD	MAD
Coating Thickness Standardization	134	256.28	49.65	107.87
Pollution ODE	20	10.86 ^a	9.84	113.37
Combustion of Propane - Full	11	22.22	35.03	394.29
Human Heart Dipole	8	23.12	53.08	737.16
Chemical AzkoNobel	6	16.24	17.22	252.71
Combustion of Propane - Reduced	5	20.67	64.94	921.80
Amplifier DAE	5	13.86	15.08	170.11
Enzyme Reaction	4	18.69	9.51	111.89
Robertson ODE	3	11.05	10.48	124.22

Smaller sized problems from MINPACK, Test set for IVPs and MATLAB ODE examples

- 6 almost all cases show an order of magnitude speedup over MAD
- 6 performance is fairly close to that of finite-differencing(numjac), in four cases better

^afunction vectorised to the advantage of numjac

Results - bvp4cAD

- 5 significant speedup over previously adopted hybrid approach in MSAD
- ⁶ performance better than using numjac^a in six of eight cases, and comparable otherwise

anote the improved speed using numjac compared to earlier results (previously MATLAB 6.5 was used)

Summary

- MSAD shows definite improvement in full and compressed Jacobian evaluation over MAD and numjac
 - order of magnitude speedup in small and medium sized test cases
- In problems with sparsity in the derivatives of results or intermediates, using sparse derivatives in MAD and MSAD shows a *large saving* over the *full* evaluation of gradients/Jacobian
- In general, MSAD shows only a constant saving over MAD using sparse derivatives. In certain cases larger gains may be obtained
- 6 Use of only native data types in the output code allows MATLAB JIT to perform some run-time optimisations

Future Directions

- 5 Feature enhancement
 - Support for branching constructs involving active variables
 - Handle cells and structures
 - Incorporate exception handling to trap non-differentiability and syntactic errors
- 6 Improving performance
 - Optimising generated code using dependency analysis (CFG, call-graphs)
 - Use more refined shape inference techniques
 - Apply constant folding
- 6 Testing
 - Include a mechanism for systematic testing
 - Construct a comprehensive test suite

References

- [ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. *Compilers, Principles, Techniques, and Tools*. Computer Science. Addison-Wesley, Reading, Massachusetts, 1986.
- [Eat02] J.W. Eaton. GNU Octave a high-level language for numerical computations. *http://www.octave.org*, 2002.
- [For04] S.A. Forth. An efficient overloaded implementation of forward mode automatic differentiation in MATLAB. Technical report, Cranfield University (RMCS Shrivenham), Swindon, UK, June 2004.
- [Gri00] A. Griewank. *Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation*. Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.
- [Kha04] R. Kharche. Source transformation for AD in MATLAB. Masters thesis, AMOR, Cranfield University, Shrivenham, UK, 2004.
- [SKF03] L.F. Shampine, R. Ketzscher, and S.A. Forth. Using AD to solve BVPs in MATLAB. Technical report, Cranfield University (RMCS Shrivenham), Swindon, UK, 2003.
- [Veh01] A. Vehreschild. Semantic augmentation of MATLAB programs to compute derivatives. Diploma thesis, Institute for Scientific Computing, Aachen University, Germany, 2001.
- [Ver98] A. Verma. *Structured Automatic Differentiation*. PhD thesis, Cornell University, May 1998.