Outline

- object of interest
- programs in algebraic complexity theory
- families of linear mappings
- connections to AD

2

AD viewed from Algebraic Complexity

Sebastian Heinz Institut für Mathematik Humboldt–Universität zu Berlin

Example (1)

Given problem

 $A \cdot y = b$ linear system

- $\begin{array}{c}
 A: \mathscr{U}_{x_0} \longrightarrow \mathbb{R}^{m \times m} \\
 b: \mathscr{U}_{x_0} \longrightarrow \mathbb{R}^m
 \end{array}$ continuously differentiable functions
- $A(\mathscr{U}_{x_0}) \subseteq \mathbb{R}^{m \times m}$ family of invertable matrices

Making F fit to the problem

• for $x \in \mathcal{U}_{x_0}$ set F(x) := y such that $A(x) \cdot y = b(x)$

4

Object of interest

What is given?

 $F: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ continuously differentiable function

• $\mathscr{U}_{x_0} \subseteq \mathbb{R}^n$ open neighborhood of a fixed point $x_0 \in \mathbb{R}^n$

What is to compute?

directional derivatives of $F \simeq$ linearized model \tilde{F} of F

- $\tilde{F}: \mathscr{U}_{x_0} \longrightarrow \mathbb{R}^m$ affine function
- $\tilde{F}(x) = F(x_0) + DF(x_0)(x x_0)$ for $x \in \mathcal{U}_{x_0}$

What are "best" representations of \tilde{F} or $DF(x_0)$, respectively?

3

Example (1)

Using AD (forward mode)

• directional derivatives of F

Ops: $O(m^3) + ???$

Using AD + preaccumulation

• directional derivatives of F

Ops: $O(m \cdot n)$

Cases

- preaccumulation pays off if $n \ll m^2$
- preaccumulation (probably) useless if $n \gg m^2$

What can we do if $n \approx m^2$ or $n \gg m^2$?

6

Example (1)

Evaluation of F at the point x_0

• $A(x_0)$ and $b(x_0)$

Ops: ???

• L-U-factorization of $A(x_0)$

Ops: $O(m^3)$

• solution vector y

Ops: $O(m^2)$

Remarks

- F given by a program of elementary operations/functions (Ops)
- no use of fast algorithms

Example (2)

representation of $F(x_1, x_2, x_3) = (x_1 \cdot x_2, \sin(x_1 \cdot x_2 + x_3))$

8

Programs in Algebraic Complexity Theory

Arithmetic circuit $\stackrel{def}{=}$

(DAG) of input-vertices, inner vertices (+, -, *), output-vertices

Remarks

- no branching
- implementation as a straight-line program
- $\bullet \ \ encoding \ length \approx computation \ time \approx number \ of \ vertices$
- univariate functions (sin, cos, inverse,...) allowed

Example (2) \dot{X}_1 \dot{A}_2 \dot{A}_2

"generalized" representation of DF

10

'Structure-preserving" elimination

Edge-, vertex-, face-elimination

• $J(\mathbb{R}^p) \subseteq_* \tilde{J}(\mathbb{R}^q)$

"Structure-preserving" elimination

• $J(\mathbb{R}^p) =_* \tilde{J}(\mathbb{R}^q)$

Remark

• " \subseteq_* " and " $=_*$ ": outside a hypersurface in $\mathbb{R}^{m \times m}$

A. Griewank (2003); A. Griewank, O. Vogel(2003?)

12

Families of linear mappings

Construction

- new variables a_1, \ldots, a_p for the partial derivatives
- a_1, \ldots, a_p algebraically independent
- $J: \mathbb{R}^p \longrightarrow \mathbb{R}^{m \times n}$ polynomial mapping
- What can we say about the set $J(\mathbb{R}^p) \subseteq \mathbb{R}^{m \times n}$?
- Which properties make a "short" representation of *DF* possible?

A. Griewank, J. Riehme, T. Steihaug, ...

References

- **P. Bürgisser, M. Clausen, M. A. Shokrollahi.** *Algebraic complexity theory*, volume 315 of *Grundlehren der mathematischen Wissenschaften*. Springer-Verlag, 1997. With the Collaboration of Thomas Lickteig.
- **J. von zur Gathen, J. Gerhard.** *Modern computer algebra*. Cambridge University Press, 1999.

14

Connections to AD

Minimal representation of $J(\mathbb{R}^p)$

- ordering of DAGs that represent $J(\mathbb{R}^p)$ nearly everywhere
- How can we compute it?

Dimension of $J(\mathbb{R}^p)$ (in a generic point)

- "scarcity"
- \bullet lower bound of the minimal encoding length of DF
- Can we reach that bound?

Idea

- study the set $J^{-1}(Y)$ for a generic point $Y \in J(\mathbb{R}^p)$
- properties of $J^{-1}(Y) \longleftrightarrow$ minimal encoding length of DF