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Motivation

Engineering analysis assumes perfect knowledge of the
geometry and mathematical model.

Engineering design assumes we can manufacture exactly
what is designed.

In reality, there is much uncertainty:

manufacturing tolerances

uncertain modelling parameters

Next big trend in engineering analysis is to quantify the
consequences of these.
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Approaches

At one extreme, there are stochastic PDEs, able to cope
with extremely large uncertainties (e.g. variation in rock
porosity in oil reservoir modelling), but very complex and
computationally demanding.

We’re interested in the other extreme:

limited to very small uncertainties

relatively simple and computationally inexpensive

usually only concerned with one or two output
functionals (e.g. lift, drag)

often interested only in first order (variance) and second
order (mean perturbation) effects

sometimes, also interested in confidence limits
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Explicit Uncertainty Propagation

Monte Carlo simulations;

Moment method with first, second and third order Taylor
expansions;

Moment method with adjoint error correction.
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Taylor Expansion

y = f(x) = f(µx) + f ′(µx)(x − µx) +
f ′′(µx)

2!
(x − µx)2

+
f ′′′(µx)

3!
(x − µx)3 + O((x − µx)4)

where the primes denote derivative with respect to x,
and µx is mean of x.

First Order Taylor series approximation:

µy = f(µx)

σ2

y =
(

f ′(µx)
)2

σ2

x

Quantifying Uncertainty – p. 5/18



Taylor Expansion

Second Order Taylor series approximation:

µy = f(µx) +
f ′′(µx)

2!
σ2

x

σ2

y = f ′′(µx)2 σ2

x + f ′(µx) f ′′(µx)S(x)σ3

x

+
f ′′(µx)

2!

2

(K(x)−1)σ4

x

Similarly third order Taylor series approximation can be
derived involving skewness and Kurtosis terms.
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MC for Test Functions
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Mean: Moment Methods
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Figure 1: Prediction of µy with increasing σx
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Variance: Moment Methods
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Implicit Uncertainty Propagation

Let u be the solution of a set of non-linear algebraic
equations

f(u(x), x) = 0,

and an output functional of interest, J(u(x), x).

The adjoint equation corresponding to this functional is

(

∂f

∂u

)T

f +

(

∂J

∂u

)T

= 0.

Given approximate solutions u∗ and f
∗

,

J(u(x), x) ≈ J(u∗, x) + (f
∗

)T f(u∗, x).
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MC using Adjoint Error Correction

To avoid the cost of computing exact u, Monte-Carlo
simulations are performed using adjoint error correction.

The following options are available:

u∗ = uµx
, f

∗

= fµx

u∗ = uµx
+

du

dx
(x−µx), f

∗

= fµx

u∗ = uµx
+

du

dx
(x−µx), f

∗

= fµx

+
df

dx
(x−µx)
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Test Case

N(u(x), x) = u + u3
− x = 0, J(u(x), x) = u2.

nonlinear equation solved by Newton iteration;

adjoints are calculated analytically;

du

dx
and

df

dx
are calculated analytically.
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Results

µx = 5; σ2
x = 1
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Results

µx = 0; σ2
x = 1
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Computational Cost

One nonlinear solution

One adjoint solution

N linear solutions for
du

dx
(N = # of uncertain parameters)

N linear solutions for
df

dx

M inexpensive approximate MC evaluations
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Cheap Hessian Evaluation

Functional and nonlinear equations:

j(x) = J(u, x) =⇒
∂j

∂xi

=
∂J

∂u

∂u

∂xi

+
∂J

∂xi

.

f(x, u) = 0 =⇒
∂f

∂u

∂u

∂xi

+
∂f

∂xi

= 0.

Adjoint equation and gradient:

(

∂f

∂u

)T

f +

(

∂J

∂u

)T

= 0,

∂j

∂xi

= −
∂J

∂u

(

∂f

∂u

)

−1
∂f

∂xi

+
∂J

∂xi

= f
T ∂f

∂xi

+
∂J

∂xi

.
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Cheap Hessian Evaluation

Second derivative of functional and nonlinear equations:

∂2j

∂xi∂xj

=
∂J

∂u

∂2u

∂xi∂xj

+ D2

i,jJ,

∂f

∂u

∂2u

∂xi∂xj

+ D2

i,jf = 0,

D2

i,jJ ≡
∂2J

∂u2

∂u

∂xi

∂u

∂xj
+

∂2J

∂u∂xi

∂u

∂xj
+

∂2J

∂u∂xj

∂u

∂xi
+

∂2J

∂xi∂xj

and D2
i,jf is defined similarly.

=⇒
∂2j

∂xi∂xj
= f

T
D2

i,jf + D2

i,jJ.
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Cheap Hessian Evaluation

Computational cost:

One nonlinear solution;

No adjoint solutions, one for each output;

Ni linear solutions, one for each input;

inexpensive evaluation of D2
i,jf , D2

i,jJ using
forward-on-forward AD.

Not a new idea (Taylor, Green, Newman and Putko, 2003)
but worth pursuing?
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