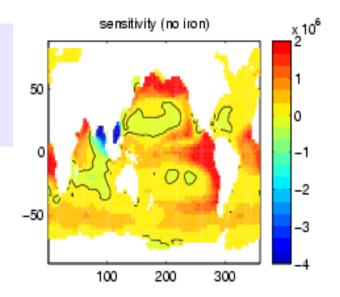
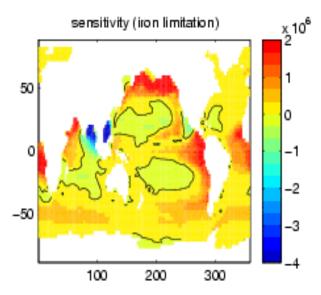
Fortran codes recently differentiated by means of TAF

Ralf Giering and Thomas Kaminski

FastOpt

Copy of presentation at http://FastOpt.com

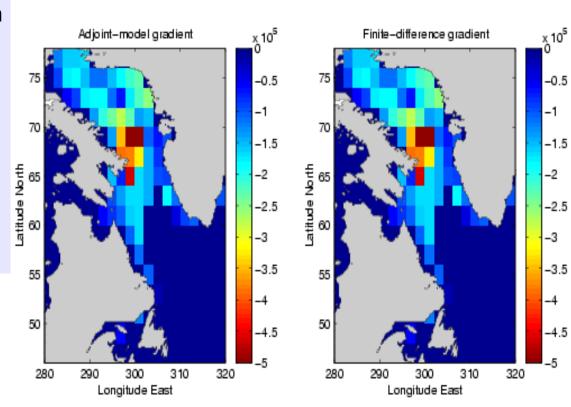

Outline


- Applications
 - ocean/atm. model : MITgcm +biogeochemistry +seaice
 - atmosphere transport model : NIRE-CTM
 - CFD: FLOWer
 - atmosphere model : fvGCM
- Parallelisation (MPI, OpenMP)
- TAF a Fortran-95 source-to-source tool
- Performance
- Summary

AD of biogeochemistry in MITgcm with MIT (Dutkiewicz, Follows, Heimbach, Marshall)

- AD for tracer code and carbonate chemistry (Dutkiewicz and Follows)
- ~4000 lines of Fortran 77 (without comments) in addition to MITgcm
- Parallelisation: MPI + OpenMP
- Tangent Linear and adjoint generated by TAF
- To be used by MIT for sensitivity studies, parameter estimation, data assimilation ...

dJ/dα Sensitivity of data fit (phosphate) to max. export rate (Courtesy P. Heimbach)



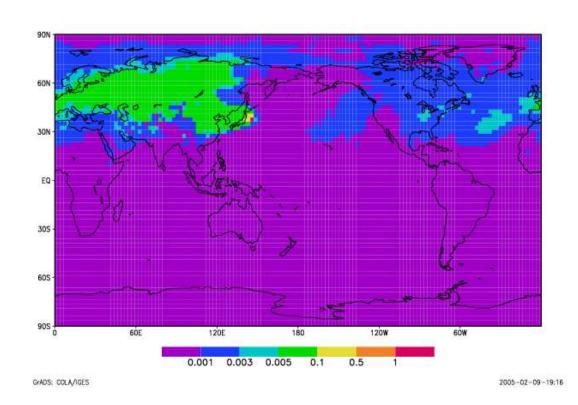
AD of sea-ice in MITgcm

with NASA-JPL-ECCO (Heimbach, Menemenlis, Zhang)

- Sea-ice model based on Hibler (1979 and 1980) and Zhang (1998 and 2000)
- ~3000 lines of Fortran 77 (without comments) in addition to MITgcm
- Parallelisation: MPI + OpenMP
- Tangent Linear and adjoint generated by TAF
- Applications in progress...
- To be used by JPL (ECCO) and Johns Hopkins for
 - Sensitivity studies,
 - Parameter estimation,
 - Data Assimilation ...

first gradient tests (Courtesy D. Menemenlis)

NIRE-CTM


joint project with S. Taguchi (AIST)

NIRE CTM (Taguchi, 1996, JGR):

- atmospheric transport model for passive tracers
- solves continuity equation
- simulates space-time distribution of passive tracers
 from prescribed initial- and boundary (sources and sinks) conditions
- 860 lines of Fortran 77 code
- adjoint needed
 - to provide sensitivity of tracer concentration with respect to sources and sinks
 - for assimilation of observed concentration
- adjoint for short integration periods (up to one month, no checkpointing)
- relative performance (multiples of function evaluation):
 - TLM: 1.0
 - ADM 1.5

NIRE-CTM

joint project with S. Taguchi (AIST)

Sensitivity of concentration at Sendai (Japan) to surface sources over seven day period

FLOWer

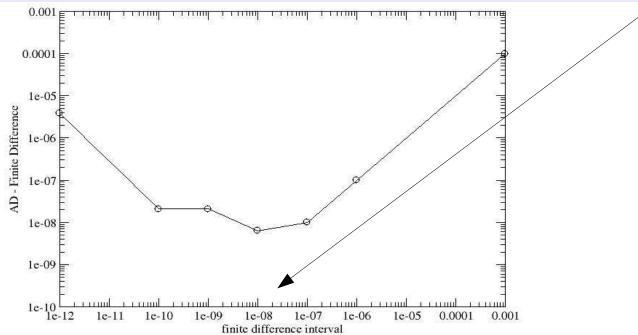
MEGADESIGN

joint work with B. Eisfeld, N. Gauger, N. Kroll (DLR)

Simple test configuration:

- 2d NACA12
- k-omega (Wilcox) Turbulence
- cell-centred metric
- 2 time steps on fine grid
- d lift/ d alpha

Steps:

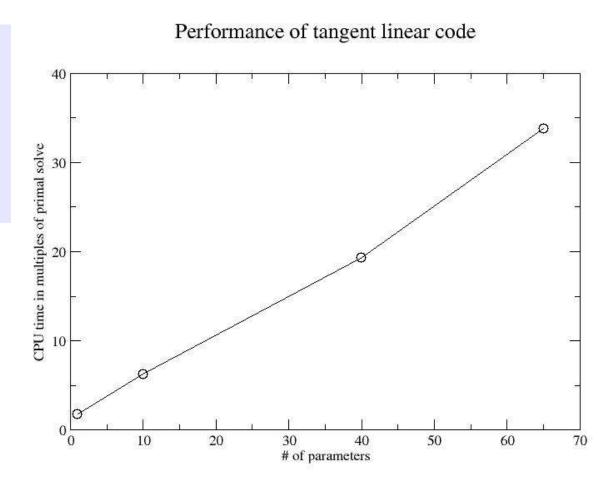

- Modificationen of FLOWer code (TAF-directives, small changes etc.)
- tangent-linearer Code (for verification and as intermediate result)
- adjoint code -> fast adjoint code

main challenges:

- many goto-statements (error exits)
 - -> most goto statements are replaced automatically by sed in preprocess
- dynamic memory management (all fields are stored in one big array)

FLOWer

Verifiction adjoint/tangent linear



FLOWer

Performance tangent linear

Verhalten einer
Konfiguration mit
mehreren Paramtern
(Designvariablen) simuliert
durch gleichzeitige
mehrfache Berechnung
der Sensitivität bzgl. alpha

Mit Optimierung durch Fortran-Compiler

Status ADFLOWer

done:

- ✓ TLM generated automatically (378 k lines of Fortran)
- ✓ TLM verified in test configuration
- ✓ ADM generated automatically (352 k lines of Fortran)
- ✓ ADM verified in test configuration

in progress:

- Increase performance of ADM
- Reduction of TAF resources to prozess code status: TLM ~30 min / ~1.3 GB, ADM ~16 min / ~ 0.7 GB

more:

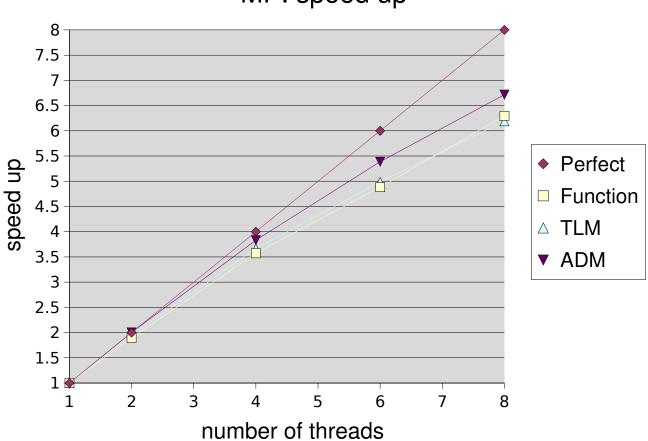
- multigrid
- parallelisation
- more turbulence models
- sensitivities to design variables

AD of finite volume GCM

with NASA-GMAO: Todling, Errico, Gelaro, Winslow

- AD for fvGCM dynamical core (Lin and Rood, 1996; Lin, 1997)
- ~ 87'000 lines of Fortran 90 (without comments)
- Parallelisation: Message Passing Interface (MPI) + OpenMP
- Tangent Linear and adjoint generated by TAF only hand written code for adjoint MPI wrappers OpenMP handled by TAF
- Adjoint can use 2 level checkpointing
- uses features such as free source form, direved types, allocatable arrays
- good performance TLM and ADM crucial for applications
- To be used by GMAO for
 - Data assimilation,
 - Sensitivity studies,
 - Singular vector detection ...

AD of fvGCM Exploiting TAF flow directives

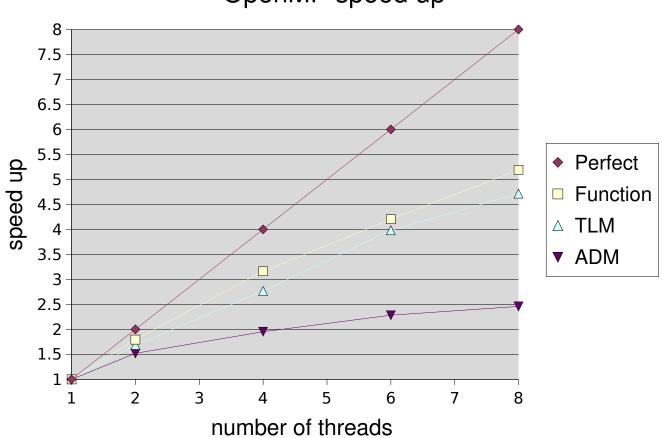

- TLM and ADM need to linearise around external trajectory
 - Function code overwrites state
 - data flow from initial to final state interrupted
 - straight forward use of AD results in erroneous derivatives
 - Exploit TAF's flexibility in generation of store/read scheme: trigger generation of desired behaviour by combination of TAF init and store directives
 - •Generated code is, however, not derivative of function code
- Code uses FFT and its inverse
 - •Reusing FFT in TLM and inverse FFT for ADM is more efficient than differentiating FFT (Giering et al, 2002)
 - Reuse triggered by TAF flow directives

AD of fvGCM Handling MPI

- Model has wrapper routines (e.g. mp_send3d_ns)
 that call the respective MPI library routines (e.g. mpi_isend)
- · Wrappers are encapsulated in one module
- Decision between MPI-1/2 happens in wrappers
- In forward mode, TAF handles (most) MPI calls.
 We need, however, TLM and ADM
 - -> Construction of MPI in TLM and ADM at level of wrappers
 - Inserting of TAF flow directives for wrappers
 - •TLM and ADM wrapper routines hand written
 - •TLM and ADM wrappers reuse model wrappers (easy to maintain)
 - •Handling of MPI-1 and MPI-2 at once
- Encapsulation helped a lot!

MPI

MPI speed up



AD of fvGCM Handling of OpenMP

- Model uses only a single directive:
 !\$omp parallel do
- TAF analyses the loop-carried dependencies
- For ADM loop, according to the dependencies, TAF generates the proper !\$omp directive for the adjoint loop and (if necessary) additional statements to preserve parallelism
- Can generate code for OpenMP-1 or OpenMP-2
- OpenMP-1 adjoint of fvGCM need many critical sections, because OpenMP-1 does not support array reductions.
- OpenMP-2 does and thus yields faster code.
- For TLM loop, TAF uses the similar directive

OpenMP-1

OpenMP speed up

TAF Transformation of Algorithms in Fortran

- Source-to-source translator for Fortran-77/90/95
- forward and reverse mode
- scalar and vector mode
- full and pure mode
- efficient Hessian code by applying TAF twice (e.g. forward over reverse)
- command line program with many options
- TAF-Directives are Fortran comments
- extensive and complex code analyses (similar to optimising compilers)
- generated code is structured and well readable

TAF More features

- Generation of flexible store/read scheme for required values triggered by TAF init and store directives
- Generation of simple checkpointing scheme (Griewank, 1992)
 triggered by combination of TAF init and store directives
- Generation of efficient adjoint (Christianson, 1996, 1998) for converging iterations triggered by TAF loop directive
- TAF flow directives for black-box routines, or to include user provided derivative code (exploit linarity or self-adjointness, MPI wrappers, etc...)
- Automatic Sparsity Detection
- Basic support for MPI and OpenMP
- supports interrupting and restarting adjoint ('divided adjoint')

TAFsupport of Fortran-95

supported:

- all intrinsic functions (SUM,CSHIFT,TRANSPOSE,NULL,etc.)
- WHERE, SELECT
- derived types
- generic functions
- recursive, pure, elemental functions
- private variables, interfaces

with restrictions:

- pointers
- allocation, deallocation
- FORALL

not yet supported:

operator overloading

some larger TAF Derivatives

Model (Who)	Lines	Lang	TLM	ADM	Ckp	HES
NASA/GMAO (w. Todling et al.)	87'000	F90	1.5	7.0	2 lev	-
MOM3 (Galanti & Tziperman)	50'000	F77	Yes	4.6	2 lev	-
MITGCM (ECCO Consortium)	100'000	F77	1.8	5.5	3 lev	11.0/1
BETHY (w. Knorr, Rayner, Scholze)	5'400	F90	1.5	3.6	2 lev	12.5/5
NavStokes-Solver (Hinze, Slawig)	450	F77	-	2.0	steady	-
NSC2KE (w. Slawig)	2'500	F77	2.4	3.4	steady	9.8/1
HB_AIRFOIL (Thomas & Hall)	8'000	F90	-	3.0		-
ARPS (Yang, Xue, Martin) in progress	40'000	F90	2.0	11.0	2 lev	-
NIRE-CTM	860	F77	1.0	1.5		-

- · Lines: total number of Fortran lines without comments
- Numbers for TLM and ADM give CPU time for (function + gradient) relative to forward model
- HES format: CPU time for Hessian * n vectors rel. t. forw. model/ n
- 2 (3) level checkpointing costs 1 (2) additional model run(s)

Summary

- TLM and ADM of large Fortran 77/90 codes
- TAF handles almost full Fortran-95 standard
- retain parallelisation in derivative code (OpenMP and MPI)
- TAF can update derivative code in one-click procedure
- performance of tangent, adjoint and Hessian codes is good
- AD helps to reduce the delay from model development to data assimilation and related applications
- Concepts are being transferred from Fortran to C (see next talk)