Fortran codes recently
differentiated by means of
TAF

Ralf Giering and Thomas Kaminski

Opt

Copy of presentation at http://FastOpt.com

Workshop on Automatic Differentiation, Nice, 2005

Outline

Applications

- ocean/atm. model : MITgcm +biogeochemistry +seaice
- atmosphere transport model : NIRE-CTM
- CFD: FLOWer

- atmosphere model : f'vGCM

Parallelisation (MPl, OpenMP)
TAF a Fortran-95 source-to-source tool
Performance

Summary

AD of biogeochemistry in MITgcm

with MIT (Dutkiewicz, Follows, Heimbach, Marshall)

AD for tracer code and carbonate chemistry (Dutkiewicz and Follows)
~4000 lines of Fortran 77 (without comments) in addition to MITgcm
Parallelisation: MPI + OpenMP

Tangent Linear and adjoint generated by TAF

To be used by MIT for sensitivity studies, parameter estimation,
data assimilation ...

dJ/dx

Sensitivity of data fit
(phosphate)

to max. export rate
(Courtesy P. Heimbach)

sansitivity [no inan) «10¢
I .E
50 P Y
@ el 0
~*|1_ff- IS !

|:| |1

-5 |

-MJ_J:' ;

1 -1

I{:IG 'I _E
AR |“3
-4

100 200 300

sansitivity [ion limitatian) ::21!:!5
|]
50 r'M 1
DL 0
L -"HCj{’fui':' |
0 gy ' -1
9 {x .
bt T | Ly 1 _3
[A ;

AD of sea-ice in MITgcm
with NASA-JPL-ECCO (Heimbach, Menemenlis, Zhang)

Sea-ice model based on

Hibler (1979 and 1980) and first gradient tests

Zhang (1998 and 2000) (Courtesy D. Menemenlis)
~3000 lines of Fortran 77 (without

comments) in addition to MITgcm

Parallelisation: MPI + OpenMP

Tangent Linear and adjoint
generated by TAF

Applications in progress...
To be used by JPL (ECCO)
and Johns Hopkins for

- Sensitivity studies,

- Parameter estimation,

- Data Assimilation ...

Latituda FMarth
Latitudea MNarth

280 310
Longitude East Longituda East

210

NIRE-CTM

joint project with S. Taguchi (AIST)

NIRE CTM (Taguchi, 1996, JGR):

atmospheric transport model for passive tracers
solves continuity equation
simulates space-time distribution of passive tracers
from prescribed initial- and boundary (sources and sinks) conditions
860 lines of Fortran 77 code
adjoint needed
* to provide sensitivity of tracer concentration

with respect to sources and sinks
* for assimilation of observed concentration
adjoint for short integration periods (up to one month, no checkpointing)

relative performance (multiples of function evaluation):

e TLM:1.0
e ADM1.5

NIRE-CTM

joint project with S. Taguchi (AIST)

oW

Sensitivity of
concentration at Sendai
(Japan) to surface
sources

over seven day period

a0s

E0S

e 120E 180 S0

0.001 0.003 0005 041 0.5 1

Grals: COLAJIGES 200802091916

FLOWer

joint work with B. Eisfeld, N. Gauger, N. Kroll (DLR)

Simple test configuration:

e 2d NACA12

 k-omega (Wilcox) Turbulence

* cell-centred metric

* 2 time steps on fine grid

 dlift/ d alpha

Steps:

* Modificationen of FLOWer code (TAF-directives, small changes etc.)
* tangent-linearer Code (for verification and as intermediate result)
* adjoint code -> fast adjoint code

main challenges:

* many goto-statements (error exits)
-> most goto statements are replaced automatically by sed in preprocess

* dynamic memory management (all fields are stored in one big array)

FLOWer

Verifiction adjoint/tangent linear

R R I b b I b b I b b b b S b b B b b i b b S b b e b b e i b S b b b b S i b b e b b S Y

CHECK OF TLM USI NG eps = 0. 100E- 07
kkhkkhkkhkdhkhhkdhkhhkdkhhkdhkhhdkhhkdhhhdhhkdhhkdhhdhhdhhdhhdikhkhikkhkikix*k
I x(i) delta f/eps grad f RELATI VE ERR
1 0. 734000E+00 -.304623E+00 -.304623E+00 0. 641981E-08

R A b b S b b I b b b b b S S b b I b b b b S b b S b b e i b e b b b b b i b b e b b S Y

0.001

0.0001

le-05

P

T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T III|T| T IIII|'|T| T T TTTT]

le-06

le-07

AD - Finite Difference

le-08

le-09

LIt 1 1 |
le-09

(NN 1|
le-08

IIIIII| 11 IIIIII| | | IIIIII| 1 1 IIIIII| | NI
le-07 le-06 le-05 0.0001 0.001
finite difference interval

le-10 cl vl
le-12 le-11 le-10

FLOWer

Performance tangent linear

Verhalten einer Performance of tangent linear code

Konfiguration mit i
mehreren Paramtern
(Designvariablen) simuliert i
durch gleichzeitige
mehrfache Berechnung
der Sensitivitat bzgl. alpha

L
=

20

fa—
_—
-

CPU time in multiples of primal solve

Mit Optimierung
durch Fortran-Compiler 0

0 10 20 30 40 50 60 70
of parameters

Status ADFLOWer

done:
v TLM generated automatically (378 k lines of Fortran)
v TLM verified in test configuration
v ADM generated automatically (352 k lines of Fortran)
v ADM verified in test configuration
in progress:
* Increase performance of ADM
* Reduction of TAF resources to prozess code
status: TLM ~30 min/~1.3 GB, ADM ~16 min/~ 0.7 GB
more:
* multigrid
* parallelisation
* more turbulence models
* sensitivities to design variables

AD of finite volume GCM

with NASA-GMAO: Todling, Errico, Gelaro, Winslow

AD for fvGCM dynamical core (Lin and Rood, 1996; Lin, 1997)
~ 87'000 lines of Fortran 90 (without comments)
Parallelisation: Message Passing Interface (MPI) + OpenMP
Tangent Linear and adjoint generated by TAF

only hand written code for adjoint MPI wrappers

OpenMP handled by TAF
Adjoint can use 2 level checkpointing

uses features such as
free source form, direved types, allocatable arrays

good performance TLM and ADM crucial for applications
To be used by GMAO for

— Data assimilation,

— Sensitivity studies,

— Singular vector detection ...

AD of fvGCM

Exploiting TAF flow directives

« TLM and ADM need to linearise around external trajectory
*Function code overwrites state
data flow from initial to final state interrupted
straight forward use of AD results in erroneous derivatives

‘Exploit TAF's flexibility in generation of store/read scheme:
trigger generation of desired behaviour
by combination of TAF init and store directives

‘Generated code is, however, not derivative of function code
e Code uses FFT and its inverse

‘Reusing FFT in TLM and inverse FFT for ADM is more

efficient than differentiating FFT (Giering et al, 2002)

‘Reuse triggered by TAF flow directives

AD of fvGCM
Handling MPI

Model has wrapper routines (e.g. mp_send3d_ns)
that call the respective MPI library routines (e.g. mpi_isend)

Wrappers are encapsulated in one module
Decision between MPI-1/2 happens in wrappers

In forward mode, TAF handles (most) MPI calls.
We need, however, TLM and ADM
-> Construction of MPI in TLM and ADM at level of wrappers

‘Inserting of TAF flow directives for wrappers
*TLM and ADM wrapper routines hand written

*TLM and ADM wrappers reuse model wrappers
(easy to maintain)

*Handling of MPI-1 and MPI-2 at once
Encapsulation helped a lot!

MPI

MPI speed up

¢ Perfect
7 Function
A TLM

v ADM

4 5 6
number of threads

AD of fvGCM
Handling of OpenMP

e Model uses only a single directive:
1$omp parallel do

« TAF analyses the loop-carried dependencies
« For ADM loop, according to the dependencies, TAF

generates the proper !'$omp directive for the adjoint loop and
(if necessary) additional statements to preserve parallelism

« Can generate code for OpenMP-1 or OpenMP-2

« OpenMP-1 adjoint of fvGCM need many critical sections,
because OpenMP-1 does not support array reductions.

« OpenMP-2 does and thus yields faster code.
e For TLM loop, TAF uses the similar directive

OpenMP-1

OpenMP speed up

¢ Perfect
O Function
A TLM

v ADM

number of threads

TAF

Transformation of Algorithms in Fortran

Source-to-source translator for Fortran-77/90/95
forward and reverse mode

scalar and vector mode

full and pure mode

efficient Hessian code by applying TAF twice (e.g. forward over
reverse)

command line program with many options
TAF-Directives are Fortran comments

extensive and complex code analyses (similar to optimising
compilers)

generated code is structured and well readable

TAF

More features

Generation of flexible store/read scheme for required values
triggered by TAF init and store directives

Generation of simple checkpointing scheme (Griewank, 1992)
triggered by combination of TAF init and store directives

Generation of efficient adjoint (Christianson, 1996, 1998) for
converging iterations triggered by TAF loop directive

TAF flow directives for black-box routines,
or to include user provided derivative code
(exploit linarity or self-adjointness, MPI wrappers, etc...)

Automatic Sparsity Detection
Basic support for MPI and OpenMP

supports interrupting and restarting adjoint (‘divided adjoint’)

TAF

support of Fortran-95

supported:

all intrinsic functions (SUM,CSHIFT,TRANSPOSE,NULL,etc.)
WHERE, SELECT

derived types

generic functions

recursive, pure, elemental functions

private variables, interfaces

with restrictions:

pointers
allocation, deallocation
FORALL

not yet supported:

operator overloading

some larger TAF Derivatives

Model (Who) Lines Lang] TLM| ADM Ckp| HES
NASA/GMAO (w. Todling et al.) 87'000 F90 1.5 7.0 2lev -
MOM3 (Galanti & Tziperman) 50'000 F77| Yes 46 2lev -
MITGCM (ECCO Consortium) 100'000 F77 1.8 55 3lev| 11.0/1
BETHY (w. Knorr, Rayner, Scholze) 5'400 F90 1.5 3.6 2lev| 12.5/5
Nav.-Stokes-Solver (Hinze, Slawig) 450 F77 - 2.0 steady -
NSC2KE (w. Slawig) 2'500 F77 2.4 3.4 steady| 9.8/1
HB_AIRFOIL (Thomas & Hall) 8'000 F90 - 3.0 -
ARPS (Yang, Xue, Martin) in progress | 40'000 F90 200 11.0 2lev -
NIRE-CTM 860 F77 1.0 1.5 -

* Lines: total number of Fortran lines without comments

* Numbers for TLM and ADM give CPU time for (function + gradient)

relative to forward model

* HES format: CPU time for Hessian * n vectors rel. t. forw. model/ n
+ 2 (3) level checkpointing costs 1 (2) additional model run(s)

Summary

TLM and ADM of large Fortran 77/90 codes

TAF handles almost full Fortran-95 standard

retain parallelisation in derivative code (OpenMP and MPI)
TAF can update derivative code in one-click procedure
performance of tangent, adjoint and Hessian codes is good

AD helps to reduce the delay from model development
to data assimilation and related applications

Concepts are being transferred from Fortran to C
(see next talk)

