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Present MAD Release Contains

fmad class - forward mode AD by operator overloading

derivvec class - for storage and combination of multiple
directional derivatives.

madutil - directory of utility functions

madrecode - directory of recoded MATLAB functions

usefulbits - directory with sample startup.m initialisation
file
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fmad class constructor

e.g. x=fmad([1.1 2 3],[4 5 6]);

Defines fmad object with

value component - row vector [1.1 2 3]
deriv component - single directional
derivative [4 5 6]

Perform overloaded operations, e.g., element-wise
multiplication via times

z=x.*x
value =

1.2100 4.0000 9.0000
derivatives =

8.8000 20.0000 36.0000
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fmad class times function for z=x.*y

function z=times(x,y)
% FUNCTION: TIMES
% SYNOPSIS: elemental multiplication z=x.*y of one or more FMAD derivative objects
if isa(x,’fmad’)&isa(y,’fmad’)

z.value=x.value.*y.value;
z.deriv=y.value.*x.deriv+x.value.*y.deriv;

elseif isa(x,’fmad’)
z.value=x.value.*y;
z.deriv=y.*x.deriv;

else
z.value=x.*y.value;
z.deriv=x.*y.deriv;

end
z=class(z,’fmad’);
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Working with multiple directional derivatives

What if we want the Jacobian?

Seed derivatives with identity I3
x=fmad([1.1 2 3],eye(3));

Overloaded operation with same times function gives

value =
1.2100 4.0000 9.0000

Derivatives
Size = 1 3
No. of derivs = 3
derivs(:,:,1) = 2.2000 0 0
derivs(:,:,2) = 0 4 0
derivs(:,:,3) = 0 0 6
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The fmad and derivvec classes

function xad=fmad(x,dx)
% FUNCTION: FMAD
% SYNOPSIS: Class constructor for forward Matlab AD objects
xad.value=x;
sx=size(xad.value);
sd=size(dx);

if prod(sx)==prod(sd)
xad.deriv=reshape(dx,sx);

else
xad.deriv=derivvec(dx,size(xad.value));

end

If number of elements of supplied derivatives and value don’t
match then pass derivatives and value’s size to derivvec
constructor. Shaun Forth Developments in the MAD package
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The derivvec class

Store derivatives as a matrix with each directional derivative
”unrolled” into a column.

e.g. derivvec(eye(3),[1 3]) derivatives stored as,
direc 1 direc 2 direc 3 1

0
0

  0
1
0

  0
0
1


 =

 1 0 0
0 1 0
0 0 1
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The times operation of the derivvec class

e.g. Need to calculate,

[
1.1 2 3

]
. ∗


direc 1 direc 2 direc 3 1

0
0

  0
1
0

  0
0
1




with multiplication of each of the 3 directional derivatives.

Convert value to column matrix and replicate 3 times 1.1 1.1 1.1
2 2 2
3 3 3

 . ∗

 1 0 0
0 1 0
0 0 0

 =

 1.1 0 0
0 2 0
0 0 3


columns give required directional derivatives.
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Accessor Functions

Getting the value

getvalue(z)
ans =

1.2100 4.0000 9.0000

Getting ”external representation” of derivatives

getderivs(z)
ans(:,:,1) =

2.2000 0 0
ans(:,:,2) =

0 4 0
ans(:,:,3) =

0 0 6
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Accessor Functions (ctd)

Getting unrolled internal representation

>> getinternalderivs(z)
ans =

2.2000 0 0
0 4.0000 0
0 0 6.0000
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madutil functions

e.g.

getvalue, getderivs, getinternalderivs for objects of
class double.

High-level interface functions for use in stiff ODE and
optimisation solvers [FK04].

MADcolor, MADgetseed and MADgetcompressedJac for
colouring (row compression) a sparse Jacobian, generating the
seed matrix and ”uncompressing” the compressed Jacobian.
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madrecode functions

Used for 2 reasons

1: Builtin MATLAB function is too complicated to manipulate
its value and derivative components e.g. filter function

Code as MATLAB to let fmad differentiate it directly
Place in madrecode directory e.g. madrecode/filter mad
Create fmad class function filter to call filter mad

2: MATLAB supplied function not differentiable by fmad
Usually due to assignment of fmad object to part of double
array e.g. splncore
Place copy of MATLAB function in madrecode directory e.g.
madrecode/splncore mad
Edit to ensure fmad can differentiate it
Create fmad class function splncore to call splncore mad
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Differentiating Object-Oriented Code

User’s code with classes, objects, overloaded operations?

e.g., polynomials p1 = x3 + 2x2 + 3x + 4 and p2 = 3x + 4 and
p3 = a1 ∗ p1 + a2 ∗ p2 via polynom objects

a1=1; a2=2; x=1;
p1=polynom([1 2 3 4]); % class constructor call
p2=polynom([3 4]); % class constructor call
p3=a1*p1+a2*p2 % overloaded arithmetic
y=polyval(p3,x) % accessor function

and gives

p3 = x^3 + 2*x^2 + 9*x + 12
y = 24

Shaun Forth Developments in the MAD package
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Jacobian w.r.t. a1, a2

Set derivatives of a1, a2 to be rows of I2

a1=fmad(1,[1 0]); a2=fmad(2,[0 1]);
...
p3=a1*p1+a2*p2;

Gives error

??? Function ’times’ is not defined for values of class ’polynom’.
Error in ==> times at 18

[varargout{1:nargout}] = builtin(’times’, varargin{:});
Error in ==> fmad.mtimes at 38

z.value=xval.*y;

In a1*p1 since first object is fmad then uses fmad mtimes
operation.
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Setting object precedence

Must use polynom class operations ahead of fmad ones.
Modify polynom class constructor

function p = polynom(a)
% some coding removed

p.c = a(:).’;
p = class(p,’polynom’);

superiorto(’fmad’) % added this line
Now we get

p3=a1*p1+a2*p2; y=polyval(p3,x)
value = 24
Derivatives
Size = 1 1 No. of derivs = 2
derivs(:,:,1) = 10
derivs(:,:,2) = 7
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Object-oriented code

Technique of overloading user’s objects or AD library objects
used by other AD tools e.g. C++ templating in
FADBAD [BS96].

Success with fmad in differentiating one industrial application
from chemical industry involving 6 classes.

Need graceful exception handling.
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TOMLAB

TOMLAB [HE04, HGE04] is general purpose development
environment in MATLAB for solution of optimisation
problems.

TOMLAB supplies:

MATLAB-coded solver algorithms
State-of-the-art optimisation software e.g., SNOPT [GMS05]
External solvers are distributed as compiled MEX files.

MAD distributed as package [FE04] - single user academic
license $110 + $22 / year support/upgrade
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TOMLAB
Integration into TOMLAB
An Example

Integration into TOMLAB

Integration performed by Kenneth Holmström and Marcus
Edvall of TOMLAB

Always uses fmad’s forward mode with sparse storage of
derivatives

No need for sparsity pattern to be supplied or calculated.
Good performance over a wide range of problem sizes

If user supplies gradient code then fmad can calculate the
Hessian.

For the user everything is automatic (provided it works!)
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Integration into TOMLAB
An Example

The Brown Problem

minimise f (x) =
n−1∑
i=1

[
(x2

i )x
2
i+1+1 + (x2

i+1)
x2
i +1

]
,

with n = 1000 and x0 = [−1, 1,−1, 1, . . . , 1] and supplied Hessian
sparsity pattern.
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Integration into TOMLAB
An Example

Coding

load brownhstr; % Hessian sparsity pattern
n=1000; x_0=-ones(n,1); x_0(2:2:n,1)=1;
% set up TOMLAB Problem specification for FD
Prob = conAssign(’brownf’,[],[], Hstr,[],[],...

’Brown Problem’, x_0);
disp(’Using FD gradient’)
ResultFD=tomRun(’ucsolve’,Prob,[],2);
% now use AD
Prob.ADObj=1; % turns on AD for 1st derivatives
disp(’Using AD gradient’)
ResultAD=tomRun(’ucsolve’,Prob,[],2);

Shaun Forth Developments in the MAD package
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TOMLAB
Integration into TOMLAB
An Example

Results

Using BFGS algorithm with default convergence conditions on
Pentium IV laptop

Derivative Technique Nonlinear Iterations CPU time (s)

FD 7 26.1
fmad(sparse) 7 4.0

Shaun Forth Developments in the MAD package



MAD’s Forward Mode [For04]
Differentiating Object-Oriented Code

Integration into TOMLAB
Sparse Matrices

Roadmap & Conclusions
References

The Dropping Problem

Sparse Matrices

Sparse matrices are intrinsic to MATLAB

Created by sparse function,

S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)
S =

(3,1) 1
(2,2) 2
(3,2) 3
(4,3) 4
(1,4) 5

fmad uses sparse objects to store derivatives.

Only recently enabled fmad to posses sparse values.
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The Dropping Problem

Dropping Problem

>> x=[3;4]; % create values
>> s=sparse([1;2],[1;2],x,2,2) % diagonal matrix
s =(1,1) 3

(2,2) 4
>> s(1,1)=s(1,1)-3 % subtract 3 from element 1,1
s =

(2,2) 4 % element is dropped
>> [i,j,val]=find(s) % find nonzero elements
i = 2 j = 2 val = 4

The zero value is dropped
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The Dropping Problem

Differentiating the dropping problem

>> x=fmad([3;4],speye(2));
>> s=sparse([1;2],[1;2],x,2,2);
>> s(1,1)=s(1,1)-3;
>> [i,j,val]=find(s);
Warning: value and derivatives have different sparsity
> In fmad.find at 54
>> getvalue(i) = [1 2]’
>> getvalue(j) = [1 2]’
>> getvalue(val) = [0 4]’
>> getinternalderivs(val) =

(1,1) 1
(2,2) 1

Return zero values where we have nonzero derivatives.
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The Dropping Problem

Similar to branching problem defining y = f (x) = x by

if x==0
y=0

else
y=x

end

for which AD gives dy/dx = 0 for x = 0.

Dropping problem: for each element xij of the sparse matrix

if x(i,j)==0
storage for x(i,j) is removed

end

But fmad does not remove corresponding ∇xij (unless zero).

Ramifications for reverse mode!

Shaun Forth Developments in the MAD package
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Roadmap

MAD

Improve documentation.

Complex valued functions w.r.t real dependents [PBC95]-
engineering analysis.

Reverse mode

MSAD

Source transformation extension of MAD

Uses optimised derivative operations of fmad/derivvec

But with further efficiency advantages of
source-transformation

See Rahul Kharche’s talk
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Conclusions

fmad/derivvec classes provide easy to use, efficient
implementation of forward mode AD for first derivatives.

Can handle coding of some complexity e.g. response surface
fitting [RF04], racing car trajectory optimisation [Bra04],
nonlinear control [CAS03].

It appears users’ object oriented code can be easily
differentiated

Robust enough to be commercially distributed
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The 2nd European AD Workshop

Thursday November 17th – Friday November 18th

Whitworth Conference Centre
Royal Military College of Science
Cranfield’s Shrivenham Campus
Shrivenham, Swindon
Oxfordshire, UK

20 miles south of Oxford, 40 miles west of Heathrow

Special sessions: AD in computational engineering, + ?

Enquiries:

Admin amor@rmcs.cranfield.ac.uk
Programme S.A.Forth@cranfield.ac.uk
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User’s guide for TOMLAB 4.3.
TOMLAB Optimisation Inc., 855 Beech St 12, San Diego, CA 92101, USA, April 2004.
See http://www.tomlab.biz.

Gordon D. Pusch, Christian Bischof, and Alan Carle.

On automatic differentiation of codes with COMPLEX arithmetic with respect to real variables.
Technical Memorandum ANL/MCS-TM-188, Argonne National Laboratory, Mathematics and Computer
Science Division, 9700 South Casss Avenue, Argonne, IL 60439, June 1995.

Trevor J. Ringrose and Shaun A. Forth.

Simplifying multivariate second order response surfaces by fitting constrained models using automatic
differentiation.
Technometrics, Accepted, 2004.

Shaun Forth Developments in the MAD package

http://www.tomlab.biz

	MAD's Forward Mode forth04:efficoverlimplemforwarmode
	fmad class
	derivvec class
	madutil functions
	madrecode functions

	Differentiating Object-Oriented Code
	Jacobian w.r.t. a1, a2
	Setting object precedence
	Object-oriented code

	Integration into TOMLAB
	TOMLAB
	Integration into TOMLAB
	An Example

	Sparse Matrices
	The Dropping Problem

	Roadmap & Conclusions
	Roadmap
	Conclusions
	The 2nd European AD Workshop

	References

