Developments in the MAD package

Shaun Forth

Cranfield University (Shrivenham Campus)
S.A.Forth@cranfield.ac.uk

1t European Workshop on Automatic Differentiation,
Nice, France, April 14t — 15t 2005

Shaun Forth Developments in the MAD package

Outline

@ MAD's Forward Mode [For04]

© Differentiating Object-Oriented Code
© Integration into TOMLAB

@ Sparse Matrices

© Roadmap & Conclusions

@ References

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]

d vvec class
madutil functions
madrecode functions

Present MAD Release Contains

@ fmad class - forward mode AD by operator overloading

@ derivvec class - for storage and combination of multiple
directional derivatives.

@ madutil - directory of utility functions
@ madrecode - directory of recoded MATLAB functions

@ usefulbits - directory with sample startup.m initialisation
file

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]
fmad class
derivvec class
madutil functions
madrecode functions

fmad class constructor

@ eg. x=fmad([1.1 2 3],[4 5 6]1);
@ Defines fmad object with
e value component - row vector [1.1 2 3]
e deriv component - single directional
derivative [4 5 6]
@ Perform overloaded operations, e.g., element-wise
multiplication via times
Z=X . *X
value =
1.2100 4.0000 9.0000
derivatives =
8.8000 20.0000 36.0000

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]
fmad class
derivv
madutil functions
madrecode functions

fmad class times function for z=x.x*y

function z=times(x,y)
% FUNCTION: TIMES
% SYNOPSIS: elemental multiplication z=x.*y of one or more
if isa(x,’fmad’)&isa(y,’fmad’)
z.value=x.value.*y.value;
z.deriv=y.value.*x.deriv+x.value.*y.deriv;
elseif isa(x,’fmad’)
z.value=x.value. *y;
z.deriv=y.*x.deriv;
else
z.value=x.x*y.value;
z.deriv=x.*y.deriv;
end
z=class(z,’fmad’);

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]
fmad class
derivvec class
madutil functions
madrecode functions

Working with multiple directional derivatives

@ What if we want the Jacobian?

@ Seed derivatives with identity I3
x=fmad([1.1 2 3],eye(3));

@ Overloaded operation with same times function gives

value =
1.2100 4.0000 9.0000
Derivatives
Size =1 3
No. of derivs = 3
derivs(:,:,1) = 2.2000 0 0

|
o
S
o

derivs(:,:,2) =
derivs(:,:,3) = 0 0 6

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]
fmad class
derivvec class
madutil functions
madrecode functions

The fmad and derivvec classes

function xad=fmad(x,dx)
% FUNCTION: FMAD
% SYNOPSIS: Class constructor for forward Matlab AD object:
xad.value=x;
sx=size(xad.value);
sd=size(dx) ;
if prod(sx)==prod(sd)
xad.deriv=reshape (dx,sx) ;
else
xad.deriv=derivvec(dx,size(xad.value));
end

If number of elements of supplied derivatives and value don't
match then pass derivatives and value’s size to derivvec

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]
fmad class
derivvec class
madutil functions
madrecode functions

The derivvec class

@ Store derivatives as a matrix with each directional derivative
"unrolled” into a column.

@ e.g. derivvec(eye(3),[1 3]) derivatives stored as,

direc 1 direc 2 direc 3

1 0 0 1 00

=010
0 1 0 00 1
0 0 1

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]
fmad class
derivvec class
madutil functions
madrecode functions

The times operation of the derivvec class

@ e.g. Need to calculate,

direc 1 direc 2 direc 3

1 0 0
[11 2 3].% 0) 0
0 0 1

with multiplication of each of the 3 directional derivatives.

@ Convert value to column matrix and replicate 3 times

1.1 11 11 1 00 1.1 0 0
2 2 2 |[.x|010]|= 0 20
3 3 3 0 0O 0 0 3

columns give required directional derivatives.

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]
fmad class
derivvec class
madutil functions
madrecode functions

Accessor Functions

o Getting the value

getvalue(z)
ans =
1.2100 4.0000 9.0000
@ Getting "external representation” of derivatives

getderivs(z)

ans(:,:,1) =

2.2000 0 0
:,2)

ans(:

O -
N
o

ans(:,:,3)

o
o

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]
fmad class
derivvec class
madutil functions
madrecode functions

Accessor Functions (ctd)

@ Getting unrolled internal representation

>> getinternalderivs(z)

ans =
2.2000 0 0
0 4.0000 0
0 0 6.0000

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]

derivvec class
madutil functions
mad e functions

madutil functions

e.g.
@ getvalue, getderivs, getinternalderivs for objects of
class double.
@ High-level interface functions for use in stiff ODE and
optimisation solvers [FK04].

@ MADcolor, MADgetseed and MADgetcompressedJac for
colouring (row compression) a sparse Jacobian, generating the
seed matrix and "uncompressing” the compressed Jacobian.

Shaun Forth Developments in the MAD package

MAD's Forward Mode [For04]

madrecode functions

madrecode functions

Used for 2 reasons

@ 1: Builtin MATLAB function is too complicated to manipulate
its value and derivative components e.g. filter function
o Code as MATLAB to let fmad differentiate it directly
e Place in madrecode directory e.g. madrecode/filter mad
o Create fmad class function filter to call filter mad

@ 2: MATLAB supplied function not differentiable by fmad

e Usually due to assignment of fmad object to part of double
array e.g. splncore

e Place copy of MATLAB function in madrecode directory e.g.
madrecode/splncore_mad

o Edit to ensure fmad can differentiate it

o Create fmad class function splncore to call splncore mad

Shaun Forth Developments in the MAD package

Differentiating Object-Oriented Code

Differentiating Object-Oriented Code

@ User's code with classes, objects, overloaded operations?

@ e.g., polynomials p; = x> 4 2x? +3x+4 and p» = 3x + 4 and
p3 = a1 * p1 + az * pp via polynom objects
al=1; a2=2; x=1;
pl=polynom([1 2 3 4]); % class constructor call
p2=polynom([3 4]); 7% class constructor call
p3=al*pl+a2*p2 % overloaded arithmetic
y=polyval(p3,x) % accessor function

@ and gives

p3 = X3 + 2xx72 + 9*x + 12
y = 24

Shaun Forth Developments in the MAD package

Differentiating Object-Oriented Code Jacobian w.r.t. ap, a

Sett bject precedence
Object-oriented code

Jacobian w.r.t. aj, a»

@ Set derivatives of a;, a» to be rows of b
al=fmad(1,[1 0]); a2=fmad(2,[0 1]);

p3=al*pl+al2+*p2;
@ Gives error
7?7 Function ’times’ is not defined for values of class
Error in ==> times at 18
[varargout{l:nargout}] = builtin(’times’, varargin{:]
Error in ==> fmad.mtimes at 38
z.value=xval.*y;

@ In alxp1l since first object is fmad then uses fmad mtimes
operation.

Shaun Forth Developments in the MAD package

Differentiating Object-Oriented Code
nw.rt. ap, ap

ject precedence
nted code

Setting object precedence

@ Must use polynom class operations ahead of fmad ones.
o Modify polynom class constructor
function p = polynom(a)
% some coding removed
p.c = a(:).’;
p = class(p,’polynom’);
superiorto(’fmad’) % added this line
o Now we get
p3=al*pl+a2*p2; y=polyval(p3,x)
value = 24
Derivatives
Size = 1 1 No. of derivs = 2
derivs(:,:,1) = 10
derivs(:,:,2) =7

Shaun Forth Developments in the MAD package

Differentiating Object-Oriented Code

ect precedence
Object-oriented code

Object-oriented code

@ Technique of overloading user’s objects or AD library objects
used by other AD tools e.g. C++ templating in
FADBAD [BS96].

@ Success with fmad in differentiating one industrial application
from chemical industry involving 6 classes.

@ Need graceful exception handling.

Shaun Forth Developments in the MAD package

TOMLAB
Integration into TOMLAB
An Example

Integration into TOMLAB

TOMLAB

e TOMLAB [HEO04, HGEO4] is general purpose development
environment in MATLAB for solution of optimisation
problems.

e TOMLARB supplies:

o MATLAB-coded solver algorithms
o State-of-the-art optimisation software e.g., SNOPT [GMSO05]
o External solvers are distributed as compiled MEX files.

e MAD distributed as package [FE04] - single user academic

license $110 + $22 / year support/upgrade

Shaun Forth Developments in the MAD package

TOMLAB
Integration into TOMLAB
An Example

Integration into TOMLAB

Integration into TOMLAB

Integration performed by Kenneth Holmstrom and Marcus
Edvall of TOMLAB

Always uses fmad's forward mode with sparse storage of
derivatives

e No need for sparsity pattern to be supplied or calculated.
e Good performance over a wide range of problem sizes

If user supplies gradient code then fmad can calculate the
Hessian.

For the user everything is automatic (provided it works!)

Shaun Forth Developments in the MAD package

T AB
Integration into TOMLAB
An Example

Integration into TOMLAB

The Brown Problem

n—1

minimise f(x) = Z [(Xi2)x,-2+1+1 + (Xi2+1)xi2+1] :
i=1

with n =1000 and xp = [-1,1,—1,1,...,1] and supplied Hessian
sparsity pattern.

Shaun Forth Developments in the MAD package

TOMLAB
Integration into TOMLAB
An Example

Integration into TOMLAB

load brownhstr; % Hessian sparsity pattern

n=1000; x_O=-ones(n,1); x_0(2:2:n,1)=1;

% set up TOMLAB Problem specification for FD

Prob = conAssign(’brownf’,[]1,[], Hstr,[1,[],...
’Brown Problem’, x_0);

disp(’Using FD gradient’)

ResultFD=tomRun(’ucsolve’,Prob, [],2);

% now use AD

Prob.ADObj=1; % turns on AD for 1st derivatives

disp(’Using AD gradient’)

ResultAD=tomRun(’ucsolve’,Prob, [],2);

Shaun Forth Developments in the MAD package

TOMLAB
Integration into TOMLAB
An Example

Integration into TOMLAB

Using BFGS algorithm with default convergence conditions on
Pentium IV laptop

Derivative Technique ‘ Nonlinear Iterations ‘ CPU time (s)
FD 7 26.1
fmad(sparse) 7 4.0

Shaun Forth Developments in the MAD package

N e Dro g Proble
Sparse Matrices The Dropping Problem

Sparse Matrices

@ Sparse matrices are intrinsic to MATLAB
o Created by sparse function,
S = sparse([3 234 1],[1 22 3 4],[1 2 3 4 5],4,4)

S =
(3,1) 1
(2,2) 2
(3,2) 3
(4,3) 4
(1,4) 5

e fmad uses sparse objects to store derivatives.

@ Only recently enabled fmad to posses sparse values.

Shaun Forth Developments in the MAD package

Sparse Matrices The Dropping Problem

Dropping Problem

>> x=[3;4]; % create values
>> s=sparse([1;2],[1;2],x,2,2) % diagonal matrix

s =(1,1) 3

(2,2) 4
>> s(1,1)=s(1,1)-3 % subtract 3 from element 1,1
s =

(2,2) 4 % element is dropped

>> [i,j,vall=find(s) % find nonzero elements
i=2 j=2 val=4

The zero value is dropped

Shaun Forth Developments in the MAD package

Sparse Matrices The Dropping Problem

Differentiating the dropping problem

>> x=fmad([3;4],speye(2));
>> g=sparse([1;2],[1;2],%x,2,2);
>> s(1,1)=s(1,1)-3;
>> [i,j,val]l=find(s);
Warning: value and derivatives have different sparsity
> In fmad.find at 54
>> getvalue(i) = [1 2]°
>> getvalue(j) = [1 2]’
>> getvalue(val) = [0 4]’
>> getinternalderivs(val) =
(1,1) 1
(2,2) 1

Return zero values where we have nonzero derivatives

Shaun Forth Developments in the MAD package

The Dropping Problem

Sparse Matrices

@ Similar to branching problem defining y = f(x) = x by
if x==
y=0
else
y=x
end
for which AD gives dy/dx = 0 for x = 0.
@ Dropping problem: for each element x;; of the sparse matrix
if x(i,j)==0
storage for x(i,j) is removed
end

e But fmad does not remove corresponding Vx;; (unless zero).

@ Ramifications for reverse model

Shaun Forth Developments in the MAD package

Roadmap
Conclusions

Roadmap & Conclusions The 2" European AD Workshop

Roadmap

MAD
@ Improve documentation.
e Complex valued functions w.r.t real dependents [PBC95]-
engineering analysis.
@ Reverse mode
MSAD
@ Source transformation extension of MAD
@ Uses optimised derivative operations of fmad/derivvec

@ But with further efficiency advantages of
source-transformation

@ See Rahul Kharche's talk

Shaun Forth Developments in the MAD package

Roadmap
Conclusions

o nNd Shen Y Worksho
Roadmap & Conclusions The 2" European AD Workshop

Conclusions

e fmad/derivvec classes provide easy to use, efficient
implementation of forward mode AD for first derivatives.

@ Can handle coding of some complexity e.g. response surface
fitting [RF04], racing car trajectory optimisation [Bra04],
nonlinear control [CASO03].

o |t appears users’' object oriented code can be easily
differentiated

@ Robust enough to be commercially distributed

Shaun Forth Developments in the MAD package

Roadmap
Conclusjons

nd
Roadmap & Conclusions The 2% European AD Workshop

The 279 European AD Workshop

Thursday November 17" — Friday November 18t"

Whitworth Conference Centre
Royal Military College of Science
Cranfield’s Shrivenham Campus
Shrivenham, Swindon
Oxfordshire, UK

20 miles south of Oxford, 40 miles west of Heathrow

Special sessions: AD in computational engineering, + 7

Enquiries:
o Admin amor@rmcs.cranfield.ac.uk
e Programme S.A.Forth@cranfield.ac.uk

Shaun Forth Developments in the MAD package

References

Damien Bradshaw.

The use of numerical optimisation to determine on-limit handling behaviour of race cars.
PhD thesis, School of Engineering, Department of Automotive, Mechanical and Structural Engineering,
Cranfield University, Bedfordshire, MK43 0AL, UK, 2004

Claus Bendtsen and Ole Stauning.

FADBAD, a flexible C++ package for automatic differentiation.

Technical Report IMM-REP-1996-17, Technical University of Denmark, IMM, Departement of
Mathematical Modeling, Lyngby, 1996

Y. Cao and R. Al-Seyab.

Nonlinear model predictive control using automatic differentiation.
In European Control Conference (ECC 2003), pages CD-ROM, Cambridge, UK, September 2003

Shaun A Forth and Marcus M. Edvall.

User Guide for MAD - MATLAB Automatic Differentiation Toolbox TOMLAB/MAD, Version 1.1 The
Forward Mode.

TOMLAB Optimisation Inc., 855 Beech St 12, San Diego, CA 92101, USA, Jan 2004

See http://tomlab.biz/products/mad

Shaun A. Forth and Robert Ketzscher.

High-level interfaces for the MAD (Matlab Automatic Differentiation) package.

In P. Neittaanmaki, T. Rossi, S. Korotov, E. Ofate, J. Périaux, and D. Knorzer, editors, 4th European
Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), volume 2
University of Jyvaskyld, Department of Mathematical Information Technology, Finland, Jul 24-28 2004.
ISBN 951-39-1869-6

Shaun A. Forth.
An efficient overloaded implementation of forward mode automatic differentiation in MATLAB.

haun For

Developments i e MAD package

http://tomlab.biz/products/mad

References

Submitted ACM TOMS, 2004.

Philip E. Gill, Walter Murray, and Michael A. Saunders.

SNOPT: An SQP algorithm for large-scale constrained optimization.
SIAM Review, 47(1):99-131, March 2005

Kenneth Holmstrém and Marcus M. Edvall.

Chapter 19: The TOMLAB optimization environment.

In Josef Kallrath, editor, Modeling Languages in Mathematical Optimization, APPLIED OPTIMIZATION
88, ISBN 1-4020-7547-2, Boston/Dordrecht/London, January 2004. Kluwer Academic Publishers

Kenneth Holmstrom, Anders O. Goran, and Marcus M. Edvall.

User'’s guide for TOMLAB 4.3.

TOMLAB Optimisation Inc., 855 Beech St 12, San Diego, CA 92101, USA, April 2004
See http://www.tomlab.biz

Gordon D. Pusch, Christian Bischof, and Alan Carle.

On automatic differentiation of codes with COMPLEX arithmetic with respect to real variables.
Technical Memorandum ANL/MCS-TM-188, Argonne National Laboratory, Mathematics and Computer
Science Division, 9700 South Casss Avenue, Argonne, IL 60439, June 1995

Trevor J. Ringrose and Shaun A. Forth.

Simplifying multivariate second order response surfaces by fitting constrained models using automatic
differentiation.

Technometrics, Accepted, 2004

Developments i e MAD package

http://www.tomlab.biz

	MAD's Forward Mode forth04:efficoverlimplemforwarmode
	fmad class
	derivvec class
	madutil functions
	madrecode functions

	Differentiating Object-Oriented Code
	Jacobian w.r.t. a1, a2
	Setting object precedence
	Object-oriented code

	Integration into TOMLAB
	TOMLAB
	Integration into TOMLAB
	An Example

	Sparse Matrices
	The Dropping Problem

	Roadmap & Conclusions
	Roadmap
	Conclusions
	The 2nd European AD Workshop

	References

