
Adifor90 Under Construction

Mike Fagan
Rice University

Outline

• Overview of Adifor90
• Pointer Problem

What is Adifor90?

• Adifor 3 is showing it’s age
• Using Adifor 3 on ‘mostly’ F77 with a ‘little’

F90 is about to collapse under the weight
of the constant perl hacks I have been
developing for various users.

• So, Adifor90 will be the next generation in
the Adifor family.
It will support Fortran 90 + k

New Features in Adifor90

• It will support both by-name and
by-address

• There will be a native routine level joint
reversal mode

• Improved derivative algorithms
– Distributive law preaccumulation
– OpenAD booster optimal preaccumulation

– Other ?

Internals in Adifor90

• Internal representation is sexprs.
(enhanced from the Adifor3 sexpr
representation)

• Refactored Adifor 3 architecture:
all differentiation, canonicalization done by
the AD engine

• Added python to post processing (replace
perl?)

A Word About Distribution
Mechanisms

• Adifor uses a lot of components, so
distributing working systems is
problematic.

• The Adifor delivery system needs work.
– Autoconf, libtool, etc

• Also, requiring that users set all of those
environment variables is tedious. (Almost
fixed now)

One more word about Distribution

• I plan on requiring that users have:
– Perl >= 5.6
– Python >= 2.4
– Libc++ = lib.so.5

• Platforms I can support:
– Intel 32- and 64-bit Linux
– WinXP (likely using cygwin)
– Suns
– Macs (soon)
– No more IBM AIX, SGI IRIX

Part 2: A vexing technical problem

• Last year, at the AD 2004 conference,
many of us discussed the pointer problem.

• Of course, pointers per se are no problem,
it is pointers in combination with dynamic
memory.

• In essence, the problem is that in reverse
mode, logging and then restoring a
dynamic pointer value is unclean.

Do we have to save pointer
values?

• Log partials instead of LHS reduces the
need for pointer logging, but does not
eliminate it.

• Like integer indices, need to log pointer
values for storage of adjoints:

Pointer :: x

Z = x * y

Pointer :: x

A_x += y * A_z
Î

Saving pointers, cont.

• Always allocate adjoint quantities from a heap?
– Storage management of help quantities

• some checkpointed quantities may be pointers

So, like to be able to log pointers
1. Adjoint storage
2. Checkpoints

In addition, pointer logging would be useful for enabling LHS
value logging

Approaches I’ve Tried

• Ignore the free, log/restore the pointer
value

• Surprisingly, this works on many Unix
systems
– Due to the way sbrk is implemented, and no

multithreads

• Rejected, though because it depends on
properties of code we can’t control

Approaches I’ve Tried, cont.

• Roll your own memory allocator
– Replace users call to memory allocator with calls to

special one.
– Manage your own free list so that allocation requests

that are repeated during the reverse sweep will yield
the same pointer.

• Now log/restore actual pointer values
• This eliminates objections to ‘ignore’ approach,

as we control the behavior of the memory
allocator

• This is not so easy to get right / efficient.

Approaches I’ve Tried, cont.

• Limit user programs
– No ‘unstacklike’ deallocation during active

region

Allocate(A)
Allocate(B)
Allocate(C)
….

Deallocate(C)
Deallocate(B)
Deallocate(A)

This is ok

This covers a fair
percentage of
programs I’ve seen.

Correctness Theorem:
Observational Equivalence

• How do we determine if a pointer reversal
scheme is correct?
ANSWER: Observational equivalence

• A pointer is ‘correctly’ restored if:
– Any sequence of derefs that results in a primitive

value yields the same primitive value from the
restored pointer

– Any 2 pointers that were the equal are still equal
• Make sure that sharing still works

• In essence, pointer values do not matter, their
effects do.

Dynamic Recompute: A Germ of an
Idea

• Instead of logging a pointer (= address)
value, consider logging code as well.

• Then, when restoring a pointer, execute
the code instead of reassigning.

Motivating Example

Allocate(x,10)
Log(des(x),alloc,10)
…
x(3) = sin(z)
y => x(2)
Log(des(y),asgn,x(2))
Y(4) = 2 * z
…
Allocate(y,100)
Y(6) = z ** 2
…
Dealloc(x)
Log(des(x),dealloc)
…
Dealloc(y)
Log(des(y),dealloc)

Restore(y) ! Execs last code block = alloc ..

Restore(x) ! Execs last code block = alloc …

…

az += 2 * z *ay(6)

Dealloc(y)

Restore(y) ! Exec ptr assgn now (x restored)

…

az = 2 * ay

…

Az = cos(z) * ax(3)

What I think the rules are (so far)

• Associate with each pointer var a descriptor for
keeping up with dynamic recompute

• When logging (or ckp) each pointer value
changing operation gets a code block

• When restoring, first use of a pointer (including
dealloc) triggers recompute

• When restoring, (fwd) alloc triggers dealloc, plus
moves restore-instruction to next code block and
restore

• When restoring, mark when code block has
already been executed once (call by need)

Well, How is it working?

• Just started working with a user example
[Actually uses F77 with malloc & cray
pointers]

• Pointer stuff by hand
• Limited example works (pointer

descriptors are global variables)
• I need to ‘do the math’ …

(not really a) Conclusion

• Adifor90 alpha probably middle/late may
• Adifor90 beta probably mid sept
• Adifor90 prelease end of year

pointer stuff is ongoing, and will be
automated when ideas have crystallized

