
Adjoint Data-Flow analyses applied to checkpointing -
Tradeoff between snapshots and TBR

Benjamin Dauvergne

Tropics Project, INRIA Sophia-Antipolis

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.1/9



Why checkpoints?

� Instead of recording the tape of the execution, you want to
reexecute some part of your code.

� To do this you need to restore the variables used by this part
to the value they carried at the time of the first execution.

� Used here means read before written, it is a classical data
flow analysis notation, like Def.

Use(I1, ..., In) = Use(I1)∪ (Use(I2, ..., In)\Def(I1))

.

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.2/9



Usual way of doing checkpoints

� By hand :
we know the code, we know that there is something called
the state and it is read and written between checkpoints.
We create a procedure which saves it on the tape and we
provide it to the AD tool.

� Automatically:
when you write a source to source AD tool you don’t know
what the input code is doing, so you need data flow analysis
to find out those used variables and if they will be
overwritten.

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.3/9



What should we save?

Data flow notation from a previous paper of L. Hascoet and
M. Araya.

X = [I1, ..., In]a sequence of instructions

adjoint program of X = /0 ` X where
TBR ` I;D = PUSH(Def(I)∩ (TBR∪Use(I ′)))

I

(TBR∪Use(I′))\Def(I) ` D

POP(Def(I)∩ (TBR∪Use(I ′)))

I′

� I′ is the adjoint code associated with a single intruction.
When you differentiate you have a context: save set TBR.

My goal is to extend this description to checkpoints and their
snapshots, and to show the trade off between TBR and
snapshots.

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.4/9



The TBR - Snapshot trade off

Bigger TBR Bigger Snapshot

TBR `C;D = PUSH(Def(C)∩TBR)

PUSH
(

Def(C)∩Use
(

C
)

)
)

C
(

TBR∪Use
(

C
))

\Def(C) ` D

POP
(

Def(C)∩Use
(

C
)

)
)

/0 `C

POP(Def(C)∩TBR))

TBR `C;D = PUSH(Def(C)∩TBR)

PUSH
(

Def(C;D)∩Use
(

C
))

C

TBR\(Def(C)∪Snap) ` D

POP
(

Def(C;D)∩Use
(

C
))

/0 `C

POP(Def(C)∩TBR)

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.5/9



A code where «big snapshots» are bad

Loop proc1(Use state,Def A)

proc2(Use state,Def B)

proc3(Use state,Def C)

proc4(Use ABC,Def state)

In Tapenade we checkpoint all calls so this example is
interesting.

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.6/9



A code where «big snapshots» are bad

The forward sweep of preceding code using «big snapshots».

Loop PUSH(state)

proc1(Use state,Def A)

PUSH(state)

proc2(Use state,Def B)

PUSH(state)

proc3(Use state,Def C)

PUSH(A,B,C)

proc4(Use ABC,Def state)

It’s not really good, each time we save state, we save the same

values.
Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.6/9



A code where «big snapshots» are bad

The forward sweep of preceding code using «big TBR».

Loop PUSH(A)

proc1(Use state,Def A)

PUSH(B)

proc2(Use state,Def B)

PUSH(C)

proc3(Use state,Def C)

PUSH(state)

proc4(Use ABC,Def state)

Now we are able to remove redundant PUSH.

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.6/9



A code where « big TBR » is bad

proc1(use = arrayA)

a gather/scatter loop on A

� The forward sweep of preceding code using «big TBR»:

proc1(use = arrayA)

a gather/scatter loop on A full of PUSH(A(i))
#PUSH > sizeof(A).

� The forward sweep of preceding code using «big
snapshots»:

PUSH(A)

proc1(use = arrayA)

a gather/scatter loop on A with less PUSH

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.7/9



Numerical results

On one of our test code using the « big snapshots » scheme:

Time of original function: 2.269999962300062

Time of tangent AD function: 7.000000000000000

Time of reverse AD function: 25.48999786376953

Max Stack size: 15876 blocks of 16384 bytes

with a always « big TBR » scheme :

Time of original function: 2.289999943226576

Time of tangent AD function: 7.090000152587891

Time of reverse AD function: 22.73000049591064

Max Stack size: 11815 blocks of 16384 bytes

It’s a 26% gain in terms of memory and a 11% gain on cpu, with-

out even knowing the code.
Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.8/9



Conclusion

� It is important to look at how you compute your snapshots.

� «big TBR» is the scheme which gives the better result in
general.

� If a static analysis can infer that an array is going to be
completely written once or more just after, «big snapshots»
seems to be appropriate.

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.9/9



Further work

� Find more, easily detectable code patterns, where one or
the other scheme is better.

� How could flow dependant data flow informations help us ?
i.e specialization at run-time or using profiling.

� Array region analysis.

� The placement of checkpoints in big callgraphs/flowgraphs.

Adjoint Data-Flow analyses applied to checkpointing -Tradeoff between snapshots and TBR – p.10/9


	Why checkpoints?
	Usual way of doing checkpoints
	What should we save?
	The TBR - Snapshot trade off
	A code where <<big snapshots>> are bad
	A code where << big TBR >> is bad
	Numerical results
	Conclusion
	Further work

