
1

Old (1 quart) and recent (1 small pint) things

in mesh adaption

F. Courty1, T. Roy 1,B. Koobus2, M. Vazquez 3, A.
Dervieux1∗

1 INRIA, BP 93, 2004 route des Lucioles, 06902 Sophia-Antipolis,
France, 2 Univ. Montpellier II and INRIA, France, 3 Univ. Girona,

Spain.



2

An example

Embedded reft. mesh 1 mesh 2 mesh 3 mesh 4

# of nodes 800 3114 12284 48792
Numerical order 0.94 1.14
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adaptative reft. mesh 1 mesh 2 mesh 3 mesh 4

# of nodes 800 3114 11938 40965
numerical order 1.75 1.92

|U3 − u|L2 ≤ 1
3|U2 − U3|L2 = 6.00 10−5 . |U3 − U4|L2 = 5.637 10−5 .
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Overview

1. Problem position

2. The optimal metric for interpolation

3. The optimal metric method for an EDP

5. Conclusion
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High order adaptation for a discontinuity

u: bounded, piecewise smooth, with a few discontinuities.

Prototype : the Heavyside function + a smooth function, on [0,1].

Lemma: For a uniform refinement, the order of accuracy in L2 of the P1
interpolation is only 1/2. Conversely, there exist adaptative refinements for
which the order of accuracy of P1 interpolation is 2.

Idea of the proof : Divide the interval around discontinuity into eight intervals of
same size and divide other intervals into two. Total mesh size is only increased by
a factor 2 + 8/N and error is 4 times smaller.

N.B.: For a third-order P2 interpolation, third-order accuracy is obtained by
dividing the singular interval into 16.
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The “continuous metrics” approach, 1D, non smooth

In the case of P1 interpolation, we modelize the error as :

∫ 1

0

|eM(x)|αds =
∫ 1

0

(m2|δ−2(u(x + δ)− 2u(x) + u(x− δ))|)αds.

where δ is smaller than m.

δ−2(u(x + δ)− 2u(x) + u(x− δ)) :

- is close to ∂2u
∂x2 ,

- or to δ−2,

- bounded in L1/2 independantly of δ.
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Continuous metrics adaption for a discontinuity

mopt(x) = Cte.|(|δ−2(u(x + δ)− 2u(x) + u(x− δ))|(x))|
−2
5 .

Further the resulting error in L2 writes:

error = 2
N2

(∫
|δ−2(u(x + δ)− 2u(x) + u(x− δ))|25

)5
2

< K
N2

which gives second-order accuracy.
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Dicontinuity capturing: Numerical illustration:

Two examples : smooth arctangent, discontinuous Heavyside.
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Adaptation on an interval :

Choose a number of nodes N .

Derive the optimal metrics m.

Define x from:

x0 = 0,

∫ xi+1

xi

m−1dx = 1 ,

N.B.: Can also be done by mesh deformation.
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Convergence to the continuous: Heavyside

Convergence towards y = −sign(x− 1
2)

Abscissae : number of nodes; ordinates : interpolation error, Dashes : uniform
refinement, line : adaptive refinement.
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Convergence to the continuous: Arctangent

Uniform refinement: late capturing
Adaptative refinement : early capturing
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Early capturing/late capturing

Uniform refinement needs NS nodes, where Ns is the inverse of the size of the
smallest detail (1D).

A good adaptative refinement needs Nd nodes, where Nd is (1D) the number of
details (for example: the function is monotone on Nd intervals).

Nd << NS.
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Isotropic simplified optimum :

The above calculation can be done with a scalar metrics. It turns like the 1D case.

eM(x,y) = m2(x,y)M(x,y)

where M(x,y), is Max(Sp(H)), the maximum absolute value of eigenvalues of
the local Hessian of u. We obtain the optimum:

mopt(x) =

(
(
∫
Ω

M
−2
3 ds)

N

)1
2

M(x,y)
−1
3 .
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Numerical illustration : 1. Isotropic adaptive refinement

Test case : interpolate a couple of S-shaped arctangent functions
Sensor : scalar field equal to Max(sp(H)).
Controlled Voronoi remeshing.George, Hecht, Saltel, Mohammadi,...
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2. Anisotropic adaptive refinement

. Sensor : 2× 2 metrics field derived from the Hessian

.Controlled Voronoi remeshing George, Hecht, Saltel, Mohammadi,..



16

Lemma (barriers in L2):

The convergence order of uniform refinement is at most 1/2,

The convergence order of 2D isotropic adaptative refinement is at
most 1.

The convergence order of 3D isotropic adaptative uniform
refinement is at most 3/4

Coudière-Dervieux-Leservoisier-Palmerio, 2001

N.B.: This was announced by the continuous metrics model, which produces “the
best mesh”. Analysis of the resulting error lead to the same barriers.
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Illustration of the barrier lemma on a couple of two Heavyside functions

A vertical one and an horizontal one.
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Isotropic : 1st order, anisotropic : 2nd order accuracy
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Anisotropic image compression
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1. EDP: PROBLEM POSITION

We consider the research of an ideal “best mesh”:

- best: for a specified criterion/cost function

- ideal: we are not interested by the mesh we start with. We want

specify the best mesh. This mesh is of perfect quality. We build it

rather independantly of the initial mesh.
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2. THE OPTIMAL METRIC FOR
INTERPOLATION

2.1 Continuous piecewise-P1 interpolation

Local error/Pollution error Babuska.
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2.2 Ideal mesh

We modelize a mesh as a continuous medium, with an anisotropic

property, the local metric (*):

Mx,y = R−1
M

(
(mξ)−2 0

0 (mη)−2

)
RM ,

(*)(George, Hecht,..., Fortin, Habashi,...)

and a number of nodes:

NM =
∫

m−1
ξ m−1

η dxdy.
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Continuous metrics method for P1 interpolation(2D)

For any M, any function u: local P1-interpolation error:

EM =
∫ (

|∂
2u

∂ξ2
|.m2

ξ + |∂
2u

∂η2
|.m2

η

)2

dxdy

where ξ and η are directions of diagonalization of the Hessian of u.

Discontinuous case:

use (u(ξ + δ,η)− 2u(ξ,η) + u(ξ − δ,η))/δ2 , bounded in L
1
2.

Optimal metric problem:

minM EM under the constraint NM = N.
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Solving the optimal problem

Step 1: Pointwise optimization

Given at a point a mesh density d = (mξmη)−1, the optimal

direction and strength of stretching give:

- optimal stretching direction: RM = Ru,

- optimal stretching strength: e = mξ/mη = (|uηη|/|uξξ|)1/2.

Step 2: constrained global optimization

mind Ed =
∫ (

d−1e|∂
2u

∂ξ2 |+ d−1e−1|∂
2u

∂η2 |
)2

dxdy

under the constraint
∫

d dxdy = N.
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2.3 Optimality

Mopt =
C

N
R−1

 |∂
2u

∂η2 |
−5/6

|∂
2u

∂ξ2 |
1/6

0

0 |∂
2u

∂ξ2 |
−5/6

|∂
2u

∂η2 |
1/6

 R .

with:

C =
∫ (

|∂
2u

∂ξ2
|.|∂

2u

∂η2
|
)2

6

dxdy .

Minimal error: Eopt =
4C2

N2

∫ (
|∂

2u

∂ξ2
|
1/3

|∂
2u

∂η2
|
1/3
)

dxdy
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2.4 Convergence properties

Conv. order Isotropic Anisotropic

Theory ≤ 1 (*) ≤ 2

Optimal Metric

Theory 1 2

Optimal Metric

Num. exp.

Heavyside 2D 1 2

(*) Coudière-Dervieux-Leservoisier-Palmerio, 2001
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3. EDP’s

2.1 A short review, type of errors

a priori,.. Babuska pollution ... a posteriori...functionals..

2.1 P1 interpolation and exactness

2.2 Error system

2.3 A minimum problem

2.4 A paradox...

2.5 Truncation error model
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Orientation:

Which kind of accuracy is exactly expected?

- skin quantities,

- accuracy in automated processes: optimal design.

Choice of a functional, introduction of two adjoints, w,wh.

Giles, Pierce, Suli, Becker, Rannacher,Venditi, Darmofal,...
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2.3. PARTIAL DIFFERENTIAL EQUATIONS

j(M,γ) = J(M,γ,W (M,γ)) , ΨState(M,γ,W (M,γ)) = 0 .

Typical example : M: mesh , γ: aircraft shape, “State” system is

Navier-Stokes.

- Minimize the functional with respect to shape γ,

- Minimize the error on functional with respect to metric M.



30

Mesh optimization strategy

with ΨEuler(γ,W ) = 0

M̄ = ArgMin J̄(M,γ,W exact −W )

with ΨERROR(M,γ,W exact −W ) = 0.

J̄(W exact −W (M)) = |Jexacte(W exact)′.(W exact −W (M))|2
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Approximation error splitting

- P1-continuous, vertex-centered approximations,

ΠM : Hk(Ω) → Vh = {v, continue, P1 by element }

W exact−W (M) = W exact−ΠMW exact + ΠMW exact−W (M)

W exact −ΠMW exact is interpolation error

ΠMW exact −W (M) is the implicit error, solution of a discrete

system.
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Implicit error : elliptic case

< ∇(u),∇φ > =
∫

fφ dx .

< ∇(uh),∇Πhφ > =
∫

fφ dx .

< ∇(uh −Πhu),∇Πhφ > = < ∇(u−Πhu),∇Πhφ >



33

Lemma : We assume that the continuous solution u is in C3(Ω̄) and

that the continuous mesh size m is in C2(Ω̄) . Then, for any function

φ of D3(Ω), we have

∫
Ω

∂(u−Πhu)
∂x

∂Πhφ

∂x
dM +

∫
Ω

∂(u−Πhu)
∂y

∂Πhφ

∂y
dM

= h2

∫
Ω

g′(m)φdM + Oφ(h3)

(1)
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g′(m) = g′1(m) + g′2(m) :

(g′1(m),φ) = − 3
48

∫
Ω

φ
∂

∂y

(
m2 ∂3u

∂x∂y2

)
dM

+
1
48

∫
Ω

φ
∂

∂x

(
m2∂

3u

∂x3

)
dM

(g′2(m),φ) = −1
4

∫
Ω

φ
∂

∂y

(
m2

6
∂3u

∂x2∂y

)
+ φ

∂2

∂y2

(
m2∂

2u

∂x2

)
dM

+
3
24

∫
Ω

φ
∂

∂y

(
m2∂

3u

∂y3

)
+ φ

∂2

∂y2

(
m2∂

2u

∂y2

)
dM .

Remark: H2 pivot space for gradient with respect to m.
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Second formulation:

Ẽm ∈ H1
0(Ω), and

(
∇Ẽm,∇φ

)
= (g′(m),φ) ∀φ ∈ H1

0(Ω) .

Since g(m) is smooth. So is Ẽm̄.

∫
Ω

∇uh∇ΠhφdM = ∫
Ω

∇u∇φdM

+ h2

∫
Ω

∇Ẽm∇φdM

+ h2 (g′′(m,u),φ) + Oφ(h3) .

where g′′ a non-discrete smooth term involving Ẽm implicit terms
and local terms.



36

An illustration: Dirichlet problem in a square
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Towards the anisotropic case:

∆x = mξcos(θ) + mηsin(θ) ∆y = −mξsin(θ) + mηcos(θ)

where mξ,mη,θ are functions of (x,y). We have to admit that the

space derivatives of these can be neglected during the pointwise

optimization:

Step 1: Pointwise optimization

Given at a point a mesh density d = (mξmη)−1, find numerically at

each node the:

- optimal stretching direction,

- optimal stretching strength.

Build the modified error model based on these outputs.

Step 2: constrained global optimization

Minimize the modified error model with respect to mesh density.
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CONCLUSIONS

We have specified a mesh adaptation issue as an optimal control

problem, where we can minimize a specified error term.

For this we have analysed and then remodelised in a continuous

context the approximation error of the numerical model.

Post-evaluation of the method can rely on numerical convergence

degree.

This approach has a good potential to propose a rather natural
formulation of isotropic and anisotropic mesh adaption.


