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Abstract. A methodology for convergence speed-up of a fully implicit solver for the Ran-
dom Averaged Navier-Stokes (RANS) equations for incompressible flows using multigrid
(MG) techniques is here presented. The RANS set, comprising the mean flow Navier-
Stokes equations and a 2-equation k-ε turbulence model, is discretized in space by applying
the finite element method onto a hierarchy of meshes of different element sizes. To solve
the system in the finest discretization, a non-linear multigrid scheme is applied to the hi-
erarchy. A second objective of this work is to make more robust multigrids, trying to keep
good speed-up rates. Considering this paper as a first part of a larger work, we leave aside
momentarily the quest for the best possible speed-up rates, to develop some ideas that can
make our multigrid more reliable, less dependent to the kind of problem we deal with or
to the way the grid hierarchies are constructed: no particular grid-coarsening strategy is
studied here. Among these ideas are a new residual transfer operator, boundary conditions
treatment and different ways of implementing cascadic start-ups. This last point is very
important because we have observed that somewhat contrary to intuition, the so called Full
Multigrid scheme (a cascadic start-up stage followed by a traditional multigrid cycle) is
not always the best option.
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1 INTRODUCTION

Convergence acceleration is a must when dealing with problems with high Reynolds
numbers. This is particularly important in turbulent problems, when the number of de-
grees of freedom is dramatically increased. Finer meshes are needed to solve the broader
scales range, and additionally, the flow equations set is enriched to include turbulence ef-
fects. We present here a methodology for convergence speedup of a fully implicit solver us-
ing multigrid techniques. The Random Averaged Navier-Stokes equations are discretized
in space using the finite element method. This produces a non-linear system of equations,
to be solved implicitly. The unknowns are the mean velocity and mean pressure and, in
the cases studied, the turbulent kinetic energy k and the turbulent dissipation ε.

The flow equations are solved using the techniques presented in a M. Ravachol’s pre-
vious work [15]. Stationary solutions are studied by linearizing the convective non-linear
term and iterating until the steady state is reach. At each iteration, a preconditioned
GMRES algorithm is used to solve both the mean and turbulent unknowns linearized
systems. Pressure equation is stabilized by means of the GLS method [7], which when
applied to the mean flow equations, allows equal interpolation spaces for both velocity
and pressure. Besides, the same spaces are used for the turbulent variables k and ε.
The numerical scheme for the turbulent part is based in that proposed by R. Strujis and
co-workers in [16].

Due to the non-linearity of the target equations, non-linear multigrid (NLMG) ideas
are used to tackle the convergence acceleration issue. One of the first schemes of this
kind is introduced in 1977 by A. Brandt [2]: the Full Approximation Storage (FAS).
Besides, the space discretization inherent to the FE method is particularly well-suited for
constructing both the grids hierarchy and its transfer operators. These properties also
allow deeper studies on convergence for some simple non-linear problems formulated in
nested subspaces (viz. [22]). Based on these ideas, we build a NLMG scheme for solving
the discretized RANS set.

A critical issue is the hierarchy construction. While in “Algebraic” MGs this is done
using stencils, in “Geometric” MGs (like the one described here), a good coarsening
procedure is needed. By coarsening it is usually understood a way of generating a coarse
mesh from a given finer one keeping locally the relation coarse-to-fine. Agglomeration
techniques (viz. [12]) are quite popular in the finite volume methods context. In FEM
schemes, while structured grids offer no problem, the coarsening procedure can be rather
complex for unstructured ones. We believe that this is a necessary point to be developed,
but only when a robust multigrid is at hand. Therefore, in this paper we focus on ideas
to make the NLMG proposed as robust as possible.

Following this line, among the ideas we propose, a conservative residual transfer op-
erator is studied. It goes from fine to coarse grids, and allows the use of hierarchies
constructed with lax criteria. In this way, meshes can be generated independently of
each other, using the same mesh generator acting on the same geometry. Only different
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generating parameters, like mean element size assigned to parts of the geometry, should
be given. This operator was introduced in [19], applied to domain decomposition. For
faster convergence, the operator construction is slightly modified, adapting it to multri-
grid methods. In this way, this operator endows the scheme with both robustness and
good speedup performance.

The paper is organized as follows. Section 2 introduces the physical problem. Section
3 described its discretization following the finite element method. The multigrid method
is briefly introduced in Section 4. Section 5 presents the non-linear multigrid scheme
applied to solve the system arised by the FEM discretization of the incompressible RANS
set. An assessment of the proposed ideas is shown through some numerical examples in
Section 6. Conclusions and future lines to follow close the article in Section 7.

2 THE PHYSICAL PROBLEM: THE RANS EQUATIONS FOR INCOM-
PRESSIBLE FLOWS

The physical problem under study in this work is the incompressible turbulent flow. As
said before, turbulent flow can be modelled as a mean component and a fluctuation added.
There are many models according to the kind of “mean” operator used and the way the
fluctuation is both produced and destroyed. Models based on Reynolds Averaged Navier-
Stokes (RANS) are among the most widespread, particularly in engineering applications.
The basic concept in all of these models is that turbulent behavior is described also by
the Navier-Stokes equations and that the continuum hypothesis holds. See for intance
[21].

Let us picture a fluid contained in a given domain Ω and suppose density is constant
in time and space. Its dynamics is then described through the vectorial field velocity
ui = ui(xi, t) and the scalar field pressure p = p(xi, t), where xi ∈ Ω, and time t ∈ [0,∞).
Here, vectors are noted as subindexed quantities, where the subindex conts the space
dimension. If we suppose that these fields can be decomposed in mean component and
fluctuation, i.e. ui = ūi +u′i and p = p̄+p′, then if fj is a given source term, the Reynolds
Averaged Navier-Stokes equations are

ρ
∂ūj

∂t
+ ρūi

∂ūj

∂xi

+
∂

∂xi

(δij p̄− τ̄ij −Rij) = fj (1)

∂ūi

∂xi

= 0, (2)

where

τ̄ij = µ

(
∂ūi

∂xj

+
∂ūj

∂xi

)
, (3)
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Rij = −ρu′iu
′
j, (4)

being Rij the Reynolds stress tensor. The solution of this set is (ūi, p̄), the mean flow
field. In order to obtain it, the problem should be closed by modelling Rij.

2.1 The k-ε model

The k − ε model belongs to the kind known as 2-equation models. It was introduced
in early works like [6, 9]. In all of these models, Rij is modelled following the Boussinesq
approximation:

Rij = 2µT

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− 2

3
ρkδij, (5)

where, according to the k − ε model, the turbulent viscosity is defined as

µT = Cµfµρ
k2

ε
. (6)

The quantities k and ε are the turbulent kinetic energy and turbulent dissipation respec-
tively. Two more transport equations describe their dynamics and, added to the RANS
set, close the model.

Following the usual approximations and hypotheses assumed, the RANS / k-ε set is:

∂ūi

∂xi

= 0 (7)

ρ
∂ūj

∂t
+ ρūi

∂ūj

∂xi

+
∂

∂xi

(δij p̄− τ̄ij −Rij) = fj (8)

ρ
∂k

∂t
+ ρ

∂

∂xi

(
ūik − (µ +

µT

σk

)
∂k

∂xi

)
= ωk(k, ε) (9)

ρ
∂ε

∂t
+ ρ

∂

∂xi

(
ūiε− (µ +

µT

σε

)
∂ε

∂xi

)
= ωε(k, ε) (10)

The turbulence sources ωk(k, ε) and ωε(k, ε) depend on the k - ε model used. According
to the standard Jones and Launder model (e.g. see [9]),
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ωk = Pk − ρε, (11)

ωε = Cε1
ε

k
Pk − Cε2

ρε2

k
, (12)

Pk = Rij
∂ũi

∂xi

, (13)

where fµ is either 1.0 or a damping function which depends on the model used, and

Cµ = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92.

The first and second term in (11) are respectively called the turbulent kinetic energy
Production and Destruction.

Boundary conditions
In this work we test two different k− ε models: a two-layer one, introduced in [13] and

a law-of-the-wall model, viz. [21].

1. Two-layer model
In this case, turbulent transport equations are integrated down to the very physical

wall. Due to the divergent value of ε there, turbulence near-wall behavior should be
considered carefully. On one hand, an ad-hoc damping function fµ = fµ(y), multiplying
the turbulent viscosity, eliminates its effect in the vicinity of the wall, where y is the
distance to the wall. On the other hand, a special treatment is given to ε in the near-
wall region, evaluating it from k instead of using its transport equation. The turbulent
Reynolds Number Rey defines the interface between these regions. Being

Rey =

√
ky

µ
, (14)

it is considered that this interface occurs at Rey = 150. Beyond this value, fµ = 1.0,
and the complete RANS set is used. Below it, the equation for ε is replaced by a direct
algebraic relation and µT depends only on k:
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ε =
k3/2

fε

(15)

µT = Cµfµ

√
k. (16)

where the damping functions are

fµ = Cy(1− exp(−Rey

A
)) (17)

fε = Cy(1− exp(−Rey

A2

)), (18)

and C = χC−3/4
µ , A = 70, A2 = 2C. The von Karman’s constant is χ = 0.41.

In this model, wall boundary conditions for k, ε and velocity are (ni and gi are the
normal and tangent versors respectively)

kwall = 0,

εwall = 0,

uigi = 0,

uini = 0.

In inflows, k, ε and ūi are prescribed to given variables, while left free in outflows.

2. The law-of-the-wall model
In the second case, the computational wall is slightly off the physical one, leaving out-

side, i.e. unsolved, the conflictive region. There, in this off-wall boundary, the tangential
velocity is freed and a traction is imposed. To evaluate the traction, a hypothesis on
the velocity dependency with the distance y in the excluded (normally very thin) region
is assumed: the law of the wall. This law relates mean velocity with distance to the
wall through friction velocity u∗, and is independent of inner and outer length scales. Its
expression is

ū

u∗
=

1

χ
log

(
y+

)
+ C, (19)
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where ∆ is the approximate length of the viscous sub layer, or the distance from the
“numerical” wall to the physical one, χ = 0.41 is again the von Karman’s constant and
C is around 5.5. Also

y+ =
u∗∆
ν

, (20)

where ∆ is the turbulent length scale, which depends on the problem. This law is valid for
30 < y+ < 100. An alternative is an extended range law of the wall, like the Reichard law,
which includes also the buffer zone and the log layer, cited in [21]. This is used specially
in problems with low Re zones (for intance, near stagnation points)

ū

u∗
=

1

χ
ln(1 + 0.4y+) + 7.8

[
1− exp

(−y+

11

)
− −y+

11
exp(−0.33y+)

]
. (21)

Assuming the hypothesis above, a tangential traction twall = niσijgj can be imposed.
It depends on the friction velocity u∗ evaluated from (19).

Then, boundary conditions for k, ε and velocity in the “wall” (now slightly off the real
solid wall) are

kwall =
u2
∗√
Cµ

εwall =
u3
∗

χ∆

niσijgj = −ρ̄u2
∗

uini = 0

In inflows and outflows, again turbulent variables and velocities are given.

3 FINITE ELEMENT METHOD DISCRETIZATION OF THE RANS SET

The RANS set is discretized in space using the finite element method, as carefully
described in [15]. In brief, to allow equal interpolation spaces, the classical SUPG method,
introduced in [3], is used for the Navier-Stokes set. The convective term is linearized
using the Picard method. At each iteration, the linearized system is solved using a
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preconditioned GMRES algorithm. On the other hand, the turbulence equations are again
discretized in space following the finite element method, but with the scheme introduced
in [16], linearizing the source terms in (11) and (12) according to

ωk = P n
k − ρ

εn

kn kn+1, (22)

ωε = Cε1
εn

kn P n
k − Cε2

ρεn

k
εn+1 (23)

and solving the linearzided resulting system also with the GMRES method.
The discretized problem can be written as: with the appropriate boundary conditions,

find x = (ūi, p̄) and y = (k, ε), solution of

{
A(x,µT(y)) x = b
C(y, x) y = f

(24)

where the coupling through µT = µT(y) is explicitly mentioned. The solving strategy
adopted is a “staggered” smoother: at each Navier - Stokes iteration, one k − ε iteration
is done.

Staggered Smoother: (xm,ym) = ΦSS(m, b, f)

Do m times




1. Solve An xn+1 = b, where An = A(xn, µn
T)

2. Solve Cn+1/2 yi+1 = f , where Cn+1/2 = C(yn,xn+1)
3. Update xn = xn+1

4. Update yn = yp

5. Update µn
T = µT(yp) and go back to 1.

We have observed that the use of a “nested” smoother, where some k− ε iterations are
done at each Navier - Stokes step does not lead to a faster marching process. In order to
avoid some possible lack of robustness in the staggered smoother, the turbulent variables
update can be done with a relaxation factor of 0.5.

4 MULTIGRID. BASIC CONCEPTS

Multigrid is a very popular and widespread technique for convergence speed-up. This
idea was first applied to solve practical problems by A. Brandt as described in pioneering
works [1, 2]. The concept behind these methods is based on two facts. First, different
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spatial frequencies errors are damped at different rates according to the following: the
higher the frequency, the higher the rates. Second, higher frequencies are resolved only
by finer grids. For that reason, alternative advance of the iterative procedure in grids of
different element sizes, comprising a hierarchy, damps the errors acting selectively over the
whole frequency spectrum. After some iterative steps in the finest grid, which smooth the
error, the solution can be well approximated in the next coarser mesh. There, some more
iterative steps are performed, the error is smoothed again and the solution is transferred
to the following coarser mesh. This process continues until the coarsest mesh is reached
and the coarse grid correction is transferred back to the finest grid. The whole process
is repeated until some convergence criterium is accomplished. In references like [20] and
[12], complete overviews on the subject can be studied.

Loosely speaking, MG can be classified in algebraic and geometrical multigrid. In the
first case, the hierarchy is constructed by means of “stencils” which progressively reduce
the rank of the original matrix (viz. [11]). On the other hand, the geometrical approach
reformulate the original continuum problem in different grain discretizations. In the
present work, we follow this line, like in most of the finite element or volume algorithms.

The discretization of the RANS set lead us to the following problem: find x, which is
the solution of

A(x) x = b (25)

being A(x) the non-linear system matrix and b a source term. To solve it, a given iterative
procedure is proposed, consisting basically of a series of linearization steps and at each
step i a certain xi is obtained. At a given step n, the outcome of the iterations is

xn = Φ(n,x0, b) = Φn(x0, b), (26)

where Φ is a non-linear smoother (i.e. iterative solution procedure), which does n steps
starting from x0.

Re-writing (25),

Ax−A0x0 = b−A0x0

:= r0, (27)
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where A0 = A(x0), gives a good insight of the the NLMG principle. To solve the system
on x, instead of on ∆x is central in the non - linear case. The idea is to apply Φ to get
xn in the finest element of the hierarchy and then to tranfer it, together with rn, to the
next coarser element, applying there Φ m times to get xn+m. Finally, this is transfered
back as a correction ∆x to the first, finest mesh. The scheme in Fig. 1 shows a 2-grid
NLMG cycle, easily extensible to n-grid ones. We call smoothing stage the “downwards”
stage, namely, when variables and residuals are transferred from finer to coarser grids.
The coarse grid correction stage is the “upwards” stage: corrections are transferred back
to finer grids from coarser ones. Downwards and upwards transfer operators are noted as
F and B, we come back to them below.

A  x  =   b F

A  x  =  A  x   +   do

x  =  S (    ,    )G
m

=  b G

  b Gxo

Coarse Grid

Transfer 
Operations

x o=

G
m

G
mx   −   x

   =  S (    ,    )F
n

  b Fxo
n
F

x

d   b F A −= n
F

xn

Update    usingxo x

x x= T

d  =  T

x  =  To
n
F

x

d

Assign   b G

Fine Grid

Figure 1: Multigrid’s basic scheme.

To build both the spaces and the operators relating them, two points are to be consid-
ered:

• The hierarchy of systems. The original continuum problem is discretized in a series
of grids, having different (mean) cell sizes, thus allowing an ordering according to
the sizes.

• The transfer operators. (F and B in Fig. 1) Data transfer between two given ele-
ments of the hierarchy H is done through two kinds of basic operators: a restriction
r, which does it from fine to coarse grid and a prolongation p , which does the oppo-
site. Transferring between the elements is done both ways, through the preceding
operators and their adjoints r∗ and p∗, all of them operating over discrete functions
defined on the partitions. For that reason, F and B are not necessarily r and p
respectively, but derived from them. Besides, its construction also depends on what
is transferred: residuals, variables or coarse grid corrections.
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Let us briefly explain how the operators work. Through restriction, “information” is
lost in the sense that not all the fine grid elements contain one node of the coarse grid.
When unknowns are transferred from fine to coarse, this is not relevant: we only need
a starting value which follows as close as possible the fine grid. On the other hand,
residuals are transferred in a different way, taking profit of the information carried in the
prolongation operator [20, 14, 11] using its adjoint p∗.

We consider several definitions of the adjoint prolongation operator, all of them func-
tions of the transpose pt. The first one, and more used, is to take directly

p∗tra = pt. (28)

After observing a bunch of cases, we can conclude that this operator provides the fastest
speed-up convergence... when it converges. Anything transfered by this operator is in-
creased proportionally as Al−1/Al, where the ratio of the areas A is locally evaluated.
When p∗tra is used to transfer the residuals to coarser grids the MG has proven to be less
robust because the hierarchy needs to be constructed keeping Al−1/Al < L everywhere (L
given, depends on the problem. A reasonable value is 10.0). If this is not accomplished,
the convergence and solution of the problem is not guaranteed.

In [19] and in the context of Chymera-type domain decomposition methods, the authors
propose an operator that can be used in MG as p∗. It is formed by pt, but column-wise
normalized:

p∗cwn = [ p diag (1/α1 , 1/α2 , . . . , 1/αNC
) ]t , (29)

where NF and NC are the number of nodes of the fine and coarse grids respectively and

αi =
NF∑

i=1

pi,1 (30)

is the norm of each column i of p. According to the definition of p, each of these norms is
approximately (exactly in nested regular grids) the ratio between the areas of the elements
connected by the operator. In this way, the use of p∗cwn yields more “coarsening indepent”
strategies than when p∗tra is used, i.e. more robust.

However, if for a given hierarchy the algorithm using p∗tra converges, then the use of p∗cwn

in the same case will yield worse convergence rates. In order to attain the same speed-up
with both operators, we propose a third one, p∗sel:
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p∗sel = [ p diag (1/β1 , 1/β2 , . . . , 1/βNC
) ]t . (31)

where

βi =

{
αi/Lc if αi > Lc

1 otherwise.

In the case of p∗sel, normalization is not done for all the columns, but selectively. Lc is a
threshold (say, 10): where the ratio is smaller than that, don’t normalize, otherwise, keep
normalization factor just under the threshold.

Briefly, at each stage, variables x, residuals d and coarse grid corrections ∆x are
transferred according to the following:

• Smoothing Stage, after n steps:

dC = p∗ dF, where dF = bF −An
Fxn

F

x0
C = r xn

F (32)

• Coarse Grid Correction Stage, after m steps:

∆xF = p ∆xC, where ∆xC = xm
C − x0

C (33)

where p∗ is chosen out of p∗tra, p∗cwn and p∗sel.
In general, MG processes follow different cycling strategies, V-cycle or W-cycle (Fig.

2). V- means that coarse grid correction and smoothing stages are done in a straight way,
from l to 1 and from 1 to l meshes respectively. W- stands for the presence of “u-turns”
in intermediate grids. Additionally, the coarse grid correction stage can also be done with
internal post-smoothing steps.

A startup MG phase can be of great importance. Sometimes, a coarse mesh left alone
can produce a good initial condition for a finer one, when transferred up. In this way, the
whole MG process starts in the coarsest l discretization, where a certain number of steps
are done. Then, the unknowns just obtained are prolonged to the second coarsest l − 1
mesh. After a given number of MG cycles between l and l− 1, the result is prolonged up
to l − 2, where MG cycles between l, l − 1 and l − 2 are done. This is process is done
until reaching the finest mesh, where a V- or W-cycle MG begins until final convergence
is reached. This strategy is usually known as Full MG or F-cycle [12].
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GRID 3

GRID 2

GRID 1

GRID 3

GRID 2

GRID 1

TIME ADVANCE

Figure 2: V and W-cycling.

5 NON-LINEAR MULTIGRID APPLIED TO THE DISCRETIZED RANS
SET

As was said before, the discretization in space of the Reynolds Averaged Navier -
Stokes set by the Finite Element Method produces a non - linear system of equations.
Also, being the problem non-linear, its solution is achieved through linearization steps
and at each step the system is solved implicitly. The solver’s choice bias the multigrid
strategy to follow. In this case, the FEM induces the use of a geometric approach. As
described in the previous section, it allows an easier construction of the transfer operators
between each element of the hierarchy, taking profit of the its interpolation functions. On
the other hand, the problem’s non-linearity leads to a MG method that can cope with it:
a NLMG scheme.

To apply multigrid to accelerate the convergence rate of solvers for non-linear systems
is not a new idea. In [20], the FAS (full approximation storage) algorithm of Brandt [2] is
cited as the first NLMG to appear. The present work follows the same line. Basically, the
smoother Φ is non-linear and the system is not solved on increments of the unknown, but
on the unknown itself. The MG cycling is embedded in the whole solver, from outside the
linearization cycle. Recent works using NLMG techniques for solving these problems using
the same kind of smoother are those of [4] or [10]. Of course, it can be different, like in
[18], where a fractional step procedure, the CBS method (previously proposed in [24], [25]
and so on) leads to explicit or semi-implicit iterative smoothers Φ. A completely different
alternative strategy would be to use linear multigrids to speed-up only the solution process
of the interior linear system.

The NLMG process described in Section 4 and sketched in Fig. 1 is applied to the
problem (24). Now the smoother is either ΦNS or ΦSS and x, b, and matrix A are replaced
by (x,y), (b,f) and a matrix formed by two blocks with (A,C) respectively. In this way,
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multigrid is acting on the whole problem. We call this the the complete approach. On the
other hand, the NLMG ideas can be applied only to the laminar problem, leaving aside
the turbulent part. This will be the laminar approach. In this case, the complete problem
is solved only in the finest discretization: while the laminar part is solved in the whole
hierarchy following the multigrid scheme, the turbulent part is only solved in the finest
grid and the laminar unknowns, their residuals and the turbulent viscosity transferred to
the rest of the hierarchy. In doing this work we have compared both strategies, observing
the superior performance of the complete approach, namely when multigrid’s tranferring
of unknowns, residuals and corrections is applied to the whole problem, laminar and
turbulent. Therefore, following this line, the NLMG under the complete approach can be
summarized as follows.

• Smoothing Stage. After n steps of the chosen smoother, the laminar and turbulent
residuals dlam,F and dtur,F, the variables xn

F and yn
F and the turbulent viscosity µT

n
F

are transferred from the fine grid to the coarse one according to

dlam,C = p∗ dlam,F, where dlam,F = bF −An
Fxn

F

dtur,C = p∗ dtur,F, where dtur,F = fF −Cn
Fyn

F

x0
C = r xn

F

y0
C = r yn

F

µTC = r µT
n
F (34)

• Coarse Grid Correction Stage. After m steps applied with the chosen smoother,
the laminar and turbulent coarse grid corrections ∆xC and ∆yC are tranferred back
from the coarse grid to the fine one according to

∆xF = p ∆xC, where ∆xC = xm
C − x0

C

∆yF = p ∆yC, where ∆yC = ym
C − y0

C (35)

This is our default scheme. However, some problems with large turbulent production
and dissipation (like in the third numerical example below) can present difficulties. This
terms are highly non-linear and can produce large numerical oscillations in the coarser
grids. To avoid this kind of problems, some solutions where studied, which are proposed
below as implementation issues.
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5.1 Implementation issues

Several implementation problems can arise when multigrid is plainly applied, caused
by the non-linearity of the original solver, the use of unstructured meshes, hierarchy
construction, three-dimensionality, the turbulent coupling and so on. Some points are
critical to improve the convergence, some others the robustness and reliability of the
scheme and some others to keep both under control. We sum up below some of the
difficulties we have faced and the implementation solutions we adopted, including those
discussed above.

• Boundary conditions updates. Based on our own experience, boundary con-
ditions should not be updated in the lower grids of the hierarchy, but only in the
upper one. This is particularly important in the case of curved boundaries. For
instance, when a no slipping boundary is present, the velocity interpolation from
the upper grid to a lower one will (very likely) result in non-zero velocity in the cor-
responding wall nodes. This interpolated value is the proper velocity prescription
for wall nodes in the coarse grid embedded in a multigrid process, as opposed to
the zero velocity prescription for the single grid process. The same rule applies to
turbulence unknowns, but in this case, checking the positivity of the interpolated
values, because wall values for k and ε cannot be negative numbers.

• Transfer operators construction. As said before, we are looking for a robust
MG strategy, which keeps positive speed-up rates even for very lax hierarchy con-
struction. On these grounds, the problem of designing an efficient and reasonably
automatized hierarchy construction algorithm can then be faced. We see through
the examples the importance of the transfer operator construction. The CWN and
SEL operators here studied are very easy to build, and all together with TRA they
range from a “conservative” strategy (CWN) to an “aggressive” one (TRA), with
SEL operator between them, which in turns can be tunned by the choice of Lc.

• Transfer relaxation. Residual or coarse grid correction relaxations are also inter-
esting solutions for improve robustness. Due to the fact that operators like CWN
and SEL act on residual transference, we have observed that any kind of resid-
ual relaxation is unnecessary combined with any of these operators. On the other
hand, coarse grid relaxation is indeed very useful, specially when high gradients
are present. It is implemented as a coarse grid correction reduction by a factor
0.0 ≤ θCGC ≤ 1.0:

xn+1
F = xn

F + θn
CGC∆xF. (36)

A reasonable value is θCGC = 0.5.
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• V/W-cyclings, Full MG and Cascadic MG. As said at the end of Section 4, all
along this work, by V- or W-cycle multigrid we understand the classical cycling (viz.
[20]), which starts the whole solution process in the upper grid. And by F-cycle, full
multigrid (viz. [12]), which on the other hand begins in the lower grid. In this sense
the F-cycle comprises two major stages: the first goes upwards, transferring only
variables. The initial condition at each of the upper grids is eventually closer to the
solution there, yielding a faster convergence rate. When this grid sequencing stage
is the sole solution process, it is known as cascadic multigrid (like in [17] or [23]).
But once the upper grid is reached, a second cycling stage can be carried out, either
using a V- or a W-cycle, resulting in an F-cycle. We will call these major stages as
the cascadic stage and the cyclic stage respectively (Fig. 3). As a refinement of the
F-cycle strategy, the lowest grids can be discarded after the cascadic stage, keeping
the upper ones for the cyclic stage. Moreover, the upwards stage can be done with
some sort of cycling (V- or W- ) (Fig. 4).

cyclic stage

cascadic stage

upper

medium

lower

Figure 3: Cascadic and cyclic stages.

Figure 4: Discarding lower grid after cascadic stage (left) and cascadic stage with cycling.

All these possibilities open a wide range of strategies. In order to clearly set the
basis of the algorithm, we concentrate only in those most representative. Firstly,
pure V-cycle. Then, pure F-cycle (as in Fig. 3). And finally, discarding lower grid
after the cascadic stage (left of Fig. 4). We have observed that opposing to what
can be expected, F-cycle is eventually, not always, the best option. The cascadic
sequencing aims to provide a better initial condition for the upper grids. But being
the problem (highly) non-linear, the coarse grids could be too coarse to provide a
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good one. This is what happen to the “Step-function-inflow tube” and to the “Three
element airfoil” examples shown here. In the former case, no cascadic stage is the
best option. In the latter one, a slight change in the boundary condition (slipping
condition instead of law-of-the-wall one) of the lower grid provides its convergence,
guaranteeing a good performance of the F-cycle.

• Freezing turbulent sources. Turbulent source terms, namely Production and
Destruction terms (P +D), can be wrongly computed in the coarse grids, producing
strong instabilities that can slow down the scheme’s speed-up properties or even spoil
the convergence. We have seen that this can be avoided by “freezing” the source
terms during the smoothing stage. By freezing we understand that source terms are
calculated only in the upper grid and transferred naturally as part of the residual
to the rest of the hierarchy.

6 NUMERICAL EXAMPLES

6.1 Boundary layer

A very simple example, a turbulent boundary layer, is the first one shown. Although
its simplicity, it provides a good insight of the method proposed here. The numerical
domain is shown in Fig. 5. The inflows (top boundary included) prescriptions are:

uinf = (1, 0)

kinf = βu2
inf

εinf = k
3/2
inf/∆. (37)

In this problem, the turbulent length scale is ∆ = 0.05 and the input turbulent kinetic
energy factor is β = 0.0001. The law of the wall is applied in the bottom boundary
to impose a tangent traction. It is calculated from to the Reichard extended law (21),
yielding to the boundary conditions defined in (22). Both velocity and turbulent variables
are left free in the outflow. The Re per unit length is 103.
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inflow condition

inflow

wall law

Figure 5: Turbulent boundary layer. Problem and boundary conditions.
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The domain is discretized with a structured grid, refined towards the boundary layer
and uniformly spaced horizontally. It has 2145 nodes and 4096 P1 elements (64x32).
The constant velocity inflow prescription produces a strong velocity gradient at the left
bottom corner, which propagates downstream.

The hierarchy is nested, constructed by multiplying 2 or 4 times either the horizontal
spacing or the vertical spacing or both. The test is done with 2-grid sets: always the same
upper (fine) grid plus a lower (coarse) one, selected out of several options. We use the
following notation: “ixjy” means a 2-grid multigrid scheme using as lower grid a coarse
one formed by multiplying i times horizontal spacing and j times vertical spacing of the
finest one. TRA, CWN, SEL and SG mean transpose, column-wise normalized transpose
and selective column-wise normalized transpose projection adjoint transfer operators used,
and single-grid, respectively. No P + D freezing is needed in this example.

Convergence results are shown in Fig. 6 and Fig. 7. In Fig. 6 (left) convergence
curves range from the SG’s to “TRA 2x2y”’s, with a 3.5 global speed-up, i.e. the ratio of
total CPU time the residual needs to reach say 10−6 in both cases. The curves between
represent other different combinations. Out of them, it is remarkable the “CWN 1x4y”
performance. It gives a reasonable 2.5 speed-up allowing the use of a very coarse lower
grid, which blows when used in the plain “TRA 1x4y” (of course, not shown in the graph:
it blows).
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Figure 6: Turbulent boundary layer. Convergence graphs (1) and (2).

To check the real performance of the methods proposed, we ran both upper and lower
problems using exactly the same set of numerical parameters, like CFL number, Krylov
GMRES space dimension, GMRES iterations and toleration, precondition strategy, and
so on. However, several studies on convergence of multilevel methods applied to mildly
or semilinear methods (viz. [17] or [8]) suggests that providing the solution of the linear
problem for a given linearization step exists, the transferred coarse grid correction (in the
case of multigrid) or the extrapolated solution (in simple multilevel methods) is smooth
enough to allow the use of very lax numerical parameters sets in the fine grid. For
instance, low Krylov GMRES dimension in the upper grid can reduce considerably the
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total computing time. And indeed it could be so low than it cannot be used to compute
the SG problem for it diverges. For this case we could go down to dimension 3. This
fact is shown in Fig. 6 (right) and Fig. 7. By “(b)” we note low Krilov dimension (only
in the upper grid) problems: we consider dimension 5, while in the lower grid it is kept
dimension 15, like in the SG problem. In Fig. 7 the SG performance, “TRA 2x2y” and
“CWN 1x4y” are shown again to be compared with “TRA 2x2y(b)” and “CWN 1x4y(b)”.

Selective column-wise transpose (SEL) performance is compared to CWN and TRA
in Fig. 6 (right). In this graph SG convergence is again plotted as a reference. While
“CWN 4x4y(b)” speeds up the convergence by 2.5 (like, “CWN 1x4y”), “SEL 4x4y(b)”
gives almost the same convergence improvement than “TRA 2x2y(b)”, around 7.

From the first example, we can conclude the following. When compared to TRA,
the use of CWN operator produces a more robust scheme, less dependent on coarsening
strategies: in this particular case, 4x4y means that the lower grid is locally 16 times
coarser. However, its performance is not so impressive as TRA. But SEL scheme improves
the CWN speed-up rates up to TRA level, keeping its robustness properties. In this case,
the threshold in (4) is Lc = 3.
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Figure 7: Turbulent boundary layer. Convergence graphs (3).

6.2 Step-function-inflow tube

In this example, the flow structure is more complex. The computational domain is a
rectangle with height:length ratio of 2 : 30 (Fig. 8). We have called this example “step-
function-inflow tube” because of the step distribution of the inflow velocity prescription.
The left side upper half (length L) is the inflow, where a constant horizontal velocity
is prescribed. The left side lower half (length L too) and the bottom are non-slipping
boundaries. This produces a large vortex just downstream of the inflow. Finally, the right
side is the outflow and the top is a slipping boundary. The Reynolds number computed
using L is Re = 105. The inflow prescriptions are
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uinf = (1, 0)

kinf = βu2
inf

µT inf = αµ

εinf = Cµk
2
inf/µT inf . (38)

where ∆ = 10−4, β = 0.001 and the input turbulent viscosity factor α = 100, obtained
now by fixing k and µT, and deriving ε from them. The two-layer model described above
[13] is used in this example. Therefore, ui, k and ε are set to zero at the non-slipping
boundaries. The domain is discretized with a mixed structured and non-structured grid.
The upper grid is made of 13221 nodes and 25894 P1 elements. Pressure, velocity and
turbulent kinetic energy are shown in Fig. 9.
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Figure 8: Step-function-inflow tube. Problem and boundary conditions.

Figure 9: Step-function-inflow tube. Velocity and turbulent kinetic energy contours.

In Fig. 10 the convergence for single and multigrid is shown. The hierarchy comprises
3 grids constructed by doubling the local element lengths of the prececent grid. This
doubling is done approximately, except in the structured and homogeneous zones. The
strategy used in this case is a V-cycle, with source-freezing for the turbulent variables,
SEL operator with Lc = 10 and CGC relaxation with θCGC = 0.5. The same GMRES
parameters are used in all the cases. One smoothing iteration is done in each grid, with
no post-smoothing. FMG was discarded here because the lower grid is too coarse to yield
a steady solution.
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Figure 10: Step-function-inflow tube. Convergence graph.

In this example, a 3-grid hierarchy produces a speed-up of around 5. As we focus in
the robustness of the algorithm, our objective was not to push the multigrid performance
to the limit, but to construct the hierarchy as fast and simple as possible. As said before,
we do not apply any coarsening algorithm but use the same input geometry in the mesh
generator, only changing the generating local parameters.

6.3 Three-element airfoil

This is a classical example of complex 2D flow. This high lift device consists of an
airfoil with a frontal slat and a flap (Fig. 11). A large vortex is produced under the slat,
wich interacts with the boundary layer in the airfoil. A smaller elongated vortex is also
in the camber of the airfoil. In the gaps between the elements, the flow accelerates and a
long wake appears downstream the device.

L

20L

4L

inflow

symetry

symetry

outflow

Figure 11: Three element airfoil. Problem set and upper grid detail.

In this case, the attack angle is 0◦, resulting in a take-off configuration. The Reynolds
number is computed using L, which is the length of the main component (Fig. 11). It is
Re = 3.6×106. The upper hierarchy grid consists of 38856 nodes and 75887 P1 elements.
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The Reichard’s law of the wall (21) is used on the foils, being (22) the boundary conditions
there. Therefore, no elongated elements are present, as opposed to the previous example
(Fig. 11). A slipping boundary condition is in the top and bottom boundaries. The
inflow conditions are the same as in (38), with ∆ = 3.6× 10−4, β = 0.001 and the input
turbulent viscosity factor α = 360. Pressure and turbulent viscosity are shown in Fig. 12.

Figure 12: Three element airfoil. Pressure (left) and turbulent viscosity contours.

Following the ideas described above, the multigrid hierarchy is again constructed some-
what loosely. By simply doubling the local element size and increasing steepness factor of
the mesh generator, two coarser meshes are constructed independently. Therefore while
the resulting speed-up is not so large (around 2), the hierarchy construction is very simple.
Assuming that the most significative part of the flow is around the device, to assess the
multigrid performance, its CL convergence is used, which we define as

DCLn =

√(
Cn+1

L − Cn
L

)2

Cn+1
L

, (39)

it is plotted in Fig. 13. The pressure lift coefficient is defined as

CL =
Fy

1

2
ρU2

∞

(40)

where Fy is the vertical component of the pressure force exerted on the complete device,
computed as the boundary integral of the pressure on the airfoils. The converged value
thus obtained is CL = 2.44.
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Figure 13: Three element airfoil. DCL convergence graphs.

In this case, we observe that the F-cycle is the best option. Due to the fact that
the coarse grid is too coarse, to achieve a good initial condition to be transferred to
the medium grid the wall boundary condition must be modified. Instead of imposing
a tangent traction obtained from the law of the wall, a slipping condition, (i.e. freeing
tangent traction) does it very well. The strategy used is that of Fig. 4, left: after doing
some iterations in the lower and medium grids being the upper one reached, a multigrid
V-cycle starts discarding the lower one. In the V-cycle, one smoothing iteration is done
in each grid, with no post-smoothing. The convergence rate curve is labelled as “MG3”
in Fig. 13. No freezing of the turbulent sources was needed and the SEL operator is used
with Lc = 5. The same GMRES parameters are used in all the cases.

7 Conclusions. Future Lines

In this paper we have presented a non-linear multigrid scheme for solving a FEM algo-
rithm for the Reynolds Averaged Navier-Stokes set of equations, using a k-ε turbulence
model. Also, several ideas for improving the robustness of the multigrid scheme are pro-
posed. This work has been conducted having in mind one central idea: a robust multigrid.
From the beginning we have noticed the importance of this point, which has not a unique
pair cause and cure. The lack of reliability is due to several factors and many solutions
can be proposed to improve the performance. Additionally, these factors and solutions are
not exclusive to a given algorithm, in particular this one, but to all kind of multigrids. On
these grounds, almost all of the ideas proposed here, concerning this weakness (like op-
erator construction, cascadic start-up stages, boundary condition treatment, corrections
relaxation and so on), can be applied to many multigrid schemes.

The NLMG proposed, together with the other ideas, is tested through three 2-D exam-
ples. The first one is very simple and introduces the scheme in its many different flavors.
The second and third ones show more complex flow behaviour. In the step-function-inflow
tube, a down-to-the-wall integration model is used, resulting in an upper grid with highly
elongated elements. In this kind of problems, multigrid should perform really well, taking
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into account that a cascadic start-up stage is a very bad option here. On the other hand,
in the last example, the use of a cascadic start-up leads to a better speed-up, providing a
minor, although decisive, change in the wall boundary conditions.

We believe that the speed-up rates for these kind of problems can be surely improved.
We need to remark that the problems are not too large (around 25.000 and 75.000 elements
respectively) and the hierarchies are small (3 grids at most, being 2 for the multigrid
cycling in the airfoils). On the other hand, the grids are constructed independently of
each other, simply by changing the parameters of the mesh generator program (which, in
turn, is not a good one). Hitherto our work was to set the NLMG scheme for the target
problem, to identify sources of convergence problems and to propose solutions to tackle
them.

From now on, once that what we propose is tested, we can follow different lines. First,
we move to compressible RANS problems. Second, to attain larger speed-ups, the hi-
erarchies should be constructed by coarsening. Additionally, this will lead to a more
automatic process. And last but not least, at the moment we are writting this paper,
we are carrying out some tests on an original multigrid construction which performs the
cycling in disjoint domains, placing the lower grids in the regions of the original domain
where the largest error sources are, like patches. The first results are encouraging us to
continue this line.
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