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Abstract

We present a novel formulation for the mesh adaptation of the approximation of a PDE. The dis-
cussion is restricted to a Poisson problem. The proposed formulation extends the goal-oriented
formulation, since it is equation-based and uses an adjoint. At the same time, it supersedes it as
a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the error in
evaluating a chosen scalar output with the consequence that as mesh size is increased (more degrees
of freedom) only this output is proven to tend to its continuous analog, while the solution field
itself may not converge. A remarkable throughput of goal-oriented metric-based adaptation is the
mathematical formulation of the mesh adaptation problem under the form of the optimization, in
the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we
amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm
of the approximation error. The norm is prescribed by the user and the method allows addressing the
case of multi-objective adaptation, like, for example in aerodynamics, adapting the mesh for drag,
lift, moment in one shot. In this work we consider the basic linear finite-element approximation and
restrict our study to L2 norm in order to enjoy second-order convergence. Numerical examples for
the Poisson problem are computed.

Key words: Compressible flow, goal-oriented mesh adaptation, anisotropic mesh adaptation,
adjoint, metric

1. Introduction

This paper addresses anisotropic mesh adaptation. We focus on methods which prescribe a
somewhat optimal mesh defined through a parametrization of it by a Riemannian metric. A typical
family of optimal metric-based method for CFD is the Interpolation-based/Hessian-based methods.
An attractive property of these methods is that they rely on a mathematical optimization principle.

Iso-distribution /equi-repartition Hessian-based methods tend to minimize a Sup or L∞ norm of
the (main term of) interpolation error, with respect to a metric considered in a subset of metrics with
a prescribed number of vertices. We refer to the two pioneering works [10, 12]. Multiscale methods
tend to minimize the Lp norm (p <∞) of the interpolation error of one or several sensors depending
on the CFD solution. Cf. [1, 25, 26, 17, 11, 2]. Sensors are field chosen by the user according to
their ability to take into account mesh-resolution difficulties of the flow to compute.

The Hessian-based methods appeared as particularly well adapted to the finite-element approx-
imation of elliptic PDEs. It is true, by the projection theorem, that a norm of the approximation
error is bounded by the analog norm of the interpolation error, but this concerns the H1 norm while
Hessian-based method concentrate on L∞ or Lp norms. More generally, while taking into account
the features of the PDE solution, these methods do not take into account the features of the PDE
itself. This is penalizing in the case of systems where sensors need be chosen and weighted by user.
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However, if sensors are cleverly chosen, a good convergence of the whole approximate solution field
to the exact solution field is usually observed.

Taking into account the influence of the PDE on the error through an equation-based estimate
has been also an important research topic.

An important step for a more justified error evaluation, the formulation of goal-oriented methods
has first been proposed independently of metrics [4]. It relies on an a posteriori estimate. A good
synthesis concerning a posteriori estimates is [28], see also [13] An interest of a posteriori estimate is
that it is expressed in terms of the approximate solution, assumed to be available in a mesh adaptation
loop. A second interest is that it does not require the use of higher-order (approximate) derivatives, in
contrast to truncation analyses. These estimates show accurately where the mesh should be refined.
A method for deducing a better anisotropic mesh from an a posteriori estimate such as the one from
[4] is proposed in [14]. These methods cannot focus on any user-specified error norm, but relies on a
particular one, specified by the variational formulation of the EDP. A more popular option is to chose
as accuracy target a particular scalar output depending on the PDE solution. Any scalar output
can be considered, except that difficulties can arise for the so-called non-admissible ones, according
to [3]. An a posteriori estimate allows also for building correctors for goal-oriented analyses [15]. In
[27] the goal-oriented approach is cleverly combined with the correction strategy of [24] and with the
Hessian-based metric approach, still minimizing the interpolation error of a user-prescribed sensor.

A priori estimates rely quasi systematically on Taylor series, either through divided differences, or
through polynomial approximation of functions. Then approximations of higher-order derivatives of
solution need be built from the approximate solution. This is a delicate job since nothing ensures that
a higher-order derivative of the approximate solution is a good approximation of the corresponding
higher-order derivative of the exact solution. However, since the first recovery methods (for example
[30]), many hints in this direction are available.

A remarkable throughput of the goal-oriented metric-based adaptation of [18, 6], is the complete
and coherent mathematical formulation of the mesh adaptation problem. Indeed, it takes the form of
the optimization with respect to a parameter, the metric, belonging to a well-identified and compact
set, of a well-defined functional, namely the error for a prescribed scalar output. This strategy is
applied to the discrete case in [29]. In [18, 6], in order to analytically solve the optimum, an a priori
analysis is developed. It restricts to the main asymptotic term of the local error in order to exhibit
more easily dependance with respect to metric.

Goal-oriented methods have strongly impacted the applications. But due to its formulation, a
goal-oriented method shows two limitations. First, it does not naturally extend to several scalar
outputs. This “multi-target” issue is well-known and a proposition for addressing it is made in [16].
Second, because they are specialised to a given scalar output, features of the solution field which are
not influencing this output may be neglected by the automatic mesh improvement. When a goal-
oriented method is used for producing a mesh-converging sequence, the convergence to continuous
analog holds for the prescribed scalar output but generally does not hold for the whole flow field
itself. To clarify this point, let us consider the mesh adaptive computation of a sonic boom footprint
at ground. The functional depends only on pressure at ground. Now, many details of the flow on
upper part of the aircraft do not influence the pressure at ground. This is taken into account by the
adjoint state which vanishes on these upper regions. Then, in these regions, the adapted mesh is not
refined, and the approximation of the flow field does not converge. See an illustration in [21].

In the new norm-oriented formulation proposed in this paper, the user can prescribe a norm or
a semi-norm |u − uh| of the error, in order to minimise it with respect to the mesh. As a typical
example of semi-norm, this can be the sum of square deviations on particular outputs. Let us take
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again an example in aerodynamics. The semi-norm |u−uh| ≡ |Cl(u)−Cl(uh)|2 + |Cd(u)−Cd(uh)|2 +
|Cm(u)− Cm(uh)|2 will account for minimising the errors on lift, drag, moment measured from flow
solution uh with respect to mesh. The proposed method will ultimately address this kind of semi-
norm, assuming that, as for the goal-oriented method, the issue of a non-admisssible norm is solved.
As for the goal-oriented method, the proposed method takes into account the PDE features, and in
case where a norm is prescribed it produces an approximate solution field which does converge to the
exact one in this norm. In this paper, the method is demonstrated with the usual linear finite-element
method in 2D. This approximation is first-order accurate for H1 norm, but second-order accurate for
L2 norm, which we shall consider here. The method relies on the use of a corrector field, and on an
a priori error estimate from which is extracted the asymptotically largest terms of the local error.

After a formulation of the problem, the derivation of two correctors is proposed in Sec. 2. Next
three sections are devoted to the three identified mesh adaptation formulations: Hessian-based,
minimizing an interpolation error in Sec. 3, goal-oriented formulation in Sec. 4, and our proposal
for a norm-oriented in Sec. 5. Sec. 6 is devoted to a numerical comparison between the two field-
convergent formulations, viz. Hessian-based and norm-oriented and the paper is completed by a
discussion of methods and numerical examples.

2. Two correctors for the Poisson problem

2.1. Notations

Let V = H1
0 (Ω), Ω being a sufficiently smooth computational domain of R2. The continuous PDE

system is written in short:

u ∈ V Au = f or u ∈ V ∀ φ ∈ V a(u, φ) = (f, φ) (1)

where

A = −div(
1

ρ
∇) ; a(u, ϕ) =

∫
1

ρ
∇u · ∇ϕ dxdy

and where 1
ρ

is a positive, possibly discontinuous, scalar field on Ω. Further, we assume that the
bilinear form a is coercive in space V , i.e. there exists a positive α such that:

a(v, v) ≥ α|v|2V .

Let Ωh = Ω for simplicity, τh a triangulation of Ωh, and Vh be the usual P1-continuous finite-element
approximation space related to τh:

Vh = φh ∈ C0(Ω̄) ∩ V, φh|T is affine ∀T ∈ τh.

The finite-element discretisation of (1) is written in variational and operational form::

uh ∈ Vh and ∀ φh ∈ Vh a(uh, φh) = (f, φh) (2)

in such a way that uh is a linear function of f which we denote:

uh = A−1
h f.

We denote by Πh the usual interpolation operator:

∀v ∈ C0(Ω̄) ∩ V, Πhv ∈ Vh, and ∀ xi vertex of Ωh, Πhv(xi) = v(xi).

Scalar correctors, i.e. correctors for scalar outputs j(uh) depending on the solution, e.g. j(uh) =
(g, uh), g prescribed have been defined by Giles and co-workers, [15]. Our interest concerns the
correction of the unknown field itself.
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2.2. A priori corrector for the PDE solution
We observe that:

a(u− uh, φh) = (f − fh, φh) ∀φh ∈ Vh.
Assuming that the solution u is continuous, we get:

a(Πhu− uh, φh) = a(Πhu− u, φh) + (f − fh, φh) ∀φh ∈ Vh. (3)

We call Πhu− uh the implicit error. By implicit we mean that it can be obtained through solving a
discrete system. It differs from the approximation error by an interpolation error:

u− uh = Πhu− uh + u− Πhu. (4)

In order to find an approximate of the implicit error, we need to evaluate the RHS of (3) for any test
function φ. The second term of RHS is easy to evaluate (we know f and fh). The first term of RHS
can be transformed as follows:

a(Πhu− u, φh) =
∑
T

∫
T

1

ρ
∇φh∇(Πhu− u) dxdy + (f − fh, φh)

=
∑
T

∫
∂T

(Πhu− u)
1

ρ
∇φh · n dσ + (f − fh, φh).

Then we get:

a(Πhu− u, φh) = K(φ, uh) with

K(φ, uh) =
∑
∂Tij

1

ρ
∇(φh|Ti − φh|Tj) · nij

∫
∂Tij

(Πhu− u) dσ + (f − fh, φh) (5)

where the last sum is taken for all edges ∂Tij separating triangles Ti and Tj of the triangulation. The
unit vector nij normal to ∂Tij is pointing outward Ti.

Now we do not know u but uh. In order to evaluate the interpolation error, we first approxi-
mate the Hessian of u by an approximation Hh(uh) in Vh of the Hessian of uh. This is done with a
Zienkiewicz-Zhu-type ([30]) recovery method defined in the seventh chapter of [23]. Then the eval-
uation of Πhu − u is built on the edge eij as a quadratic function vanishing at both extremities of
eij, and of second-derivative in direction eij defined from Hh(uh). We replace Πhu− u by πhuh − uh
where πhuh − uh is defined on edge ij as follows:

∀ x ∈ eij, (πhuh − uh)(x) =
1

2
(Hh(uh)(xi) +Hh(uh)(xj))(x− xi)(x− xj)

which allow a mid-edge integration on every triangle of Ωh. We shall see in the sequel that it is useful
to apply a similar estimate for the f − fh term, f − fh ≈ πhfh − fh .

We define our a priori implicit corrector by:

a(ū′prio, φh) = K(φh, uh) with

K(φh, uh) =
∑
∂Tij

(
1

ρ
∇φh|Ti −∇φh|Tj) · nij

∫
∂Tij

(πhuh − uh) dσ − (φh, πhfh − fh). (6)

Then, we define our a priori corrector by:

u′prio = ū′prio − (πhuh − uh) (7)

built in such a way that:
u′prio ≈ u− uh.

This corrector is easy to compute but of a priori low accuracy.
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2.3. Finer-grid defect correction corrector for the PDE solution

When the approximation is far from mesh convergence, probably we have no chance for evaluating
the accuracy of a corrector. Let us assume, at the contrary, that the approximation is in its asymptotic
mesh convergence phase for the mesh Ωh under study, of size h. Then this will be also true for a
strictly two-times finer embedding mesh Ωh/2, and for our second-order accurate scheme applied to
a smooth enough problem, we would have:

uh = A−1
h fh , uh/2 = A−1

h/2fh/2 ⇒ u− uh/2 ≈
1

4
(u− uh) (8)

where uh and uh/2 are respectively the solutions on Ωh and Ωh/2. We have also:

Πhu− Πhuh/2 ≈
1

4
(Πhu− uh).

This motivates the definition of a finer-grid Defect-Correction (DC) corrector as follows:

Ahū
′
DC =

4

3
Rh/2→h(Ah/2Ph→h/2uh − fh/2) (9)

where the residual transfer Rh/2→h accumulates on coarse grid vertices the values at fine vertices
in neighboring coarse elements multiplied with barycentric weights, and Ph→h/2 linearly interpolates
coarse values on fine mesh. In the case of local singularities, statement (8) is not true for uniform
meshes, but we have some hints that it holds almost everywhere for a sequence of adapted meshes,
according to [22]. The DC corrector ū′DC approximates Πhu − uh instead of u − uh and can be
corrected as the previous one:

u′DC = ū′DC − (πhuh − uh). (10)

Remark: There exists a second option for this corrector. We start from:

a(uh/2 − uh, φh) = (fh/2 − fh, φh).

This equation does not define uh/2 − uh. In contrast, decomposing uh/2 − uh = Πh/2→huh/2 − uh +
uh/2 − Πh/2→huh/2 − uh/2 where Πh/2→h ≡ Πh transfers by interpolation onto Vh, then

a(Πh/2→huh/2 − uh, φh) = a(Πh/2→huh/2 − uh/2, φh) + (fh/2 − fh, φh).

The first term of RHS involves an interpolation error between grids which can be approximated just
as in the a priori corrector. The above discrete equation can be solved in Vh. Its unique solution
ū′DC2 is an approximation of Πh/2→huh/2 − uh. Then we define:

u′DC2 = ū′DC2 − (πhuh − uh).� (11)

We have not tested this improvement after we remarked that accurate correctors and rather non-
accurate ones work with similar efficiency.
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3. Interpolation error optimization

3.1. Mesh parametrization

We propose to work in the continuous mesh framework, introduced in [19, 20]. The main idea
of this framework is to model discrete meshes by continuous Riemannian metric fields. It allows
us to define the adaptation problem as a differentiable optimization problem , i.e., to apply on the
class continuous metrics a calculus of variations which cannot be applied on the class of discrete
meshes. This framework lies in the class of metric-based methods. A continuous mesh M of the
computational domain Ω is identified to a Riemannian metric field [8]M = (M(x))x∈Ω whereM(x)
is a symmetric 3× 3 matrix. We define the total number of vertices of M as:

C(M) =

∫
Ω

√
det(M(x)) dx.

Given a continuous meshM, we shall say that a discrete mesh H of the same domain Ω is a unit
mesh with respect to M, if each triangle K ∈ H, defined by its list of edges (aibi)i=1...3, verifies:

∀i ∈ [1, 3],

∫ 1

0

√
taibiM(ai + t aibi) aibi dt ∈

[
1√
2
,
√

2

]
.

The rest of the paper will try to find the best metric M from an error analysis which is asymptotic
with respect to mesh size.

3.2. Interpolation-based optimal metric

Let u be any smooth enough function defined on Ω. LetM be a mesh/metric of Ω. We consider
only meshes M involving enough nodes for justifying the replacement of the complete error by its
main asymptotic part. The P 1 interpolation error |ΠMu−u| can be approximated in terms of second
derivatives of u and of the metric M by the continuous interpolation error:

|ΠMu− u| ≈ |u− πMu|

with:

|u− πMu|(x) =
1

10
trace(M− 1

2 (x) |Hu(x)|M− 1
2 (x)) (12)

where |Hu| is deduced from Hu by taking the absolute values of its eigenvalues. Starting from:

‖u− πMu‖Lp(Ωh) =

(∫
Ω

(
trace

(
M− 1

2 (x)|Hu(x)|M− 1
2 (x)

))p
dx

) 1
p

(13)

we define as optimal metric the one which minimizes the right hand side under the constraint of
a total number of vertices equal to a parameter N . After solving analytically this optimization
problem, we get the unique optimal (MLp(x))x∈Ω as:

MLp = Kp(Hu) with Kp(Hu) = DLp (det |Hu|)
−1

2p+2 |Hu| and DLp = N
2
2

(∫
Ω

(det |Hu|)
p

2p+2

)− 2
2

,

(14)
where DLp is a global normalization term set to obtain a continuous mesh with complexity N and

(det |Hu|)
−1

2p+2 is a local normalization term accounting for the sensitivity of the Lp norm. In the
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case of an adaptation loop for solving a Partial Differential Equation, a continuous function u is not
available, but an approximate solution uM. In that case, the continuous interpolation error (12) is
replaced by:

|uM − πMuM|(x) =
1

10
trace(M− 1

2 (x) |HuM(x)|M− 1
2 (x)) (15)

where HuM is an approximate Hessian evaluated with the recovery method.

According to the continuous mesh framework, statement (14) defines directly a continuous optimal
metric. In practice, solving (14) is done by approximation, i.e. in a discrete context with a couple
(mesh, solution) denoted (HM, uM) and iteratively through the following fixed point:
Step 1: compute the discrete state uM on mesh HM,
Step 2: compute sensor sM = s(uM) and optimal metric Mopt

inter = Kp(HM(sM)),
Step 3: put M =Mopt

inter, generate a new mesh HM = HMopt
inter

and go to 1, until convergence.
In the above algorithm, the continuous Hessian of s is replaced by an approximate Hessian

HM(sM), evaluated by the patch-recovery approximation defined in [23]. In our Hessian-based
numerical examples, the L2 case, p = 2, has been considered. The above notation Kp will also be
used in the next sections for p = 1.

4. Implicit a priori error estimate

In contrast to a corrector as defined in Section 2, an asymptotic upper bound of the approximation
error should allow an easier error reduction by minimisation of its norm with respect to the metric.
In our PDE discretisation notations, we henceforward replace in the discretization index h by the
index M which holds for any unit mesh of the metric M. The implicit a priori estimate (5) then
writes:

a(πMuM − uM, φ) = K(φ, uM) ∀ φ ∈ VM with

K(M, φ, u) =
∑
∂Tij

1

ρ
(∇φ|Ti −∇φ|Tj) · nij

∫
∂Tij

(πMu− u) dσ − (φ, πMf − f) (16)

where Tij are the triangles of a unit mesh for M, and the proposed corrector is expressed with the
discrete solution:

a(ū′prio, φ) = K(φ, uM) ∀ φ ∈ VM with

K(M, φ, uM) =
∑
∂Tij

1

ρ
(∇φ|Ti −∇φ|Tj) · nij

∫
∂Tij

(πMuM − uM) dσ − (φ, πMf − f),

u′prio = ū′prio − (πMuM − uM). (17)

We now restart from (5). The following result is proven in [5]:

Lemma 4.1. We assume that the metric anisotropy is bounded by a positive number. For any smooth
couple of functions (u, φ), where u is not necessarily a solution of (1), we have the following bound:

|
∫

Ω

1

ρ
∇(u− ΠMu)∇ΠMϕdx| � K

∫
Ω

(
1

ρ
ρ̄(H(ϕ) |u− ΠMu| + |φ| |ΠMf − f |

)
dx (18)

where A � B holds for a majoration asymptotically valid, i.e. A ≤ B + o(A). Expression ρ̄(H(ϕ))
holds for the largest (in absolute value) eigenvalue of the Hessian H(ϕ) of ϕ. �

The next section shows two ways in using this estimate.
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5. Equation-based adaptation

5.1. Scalar output “goal-oriented” analysis

The goal-oriented analysis relies on the minimization of the error δjgoal(M) committed on a scalar
output j = (g, u) , error which we simplify as follows:

δjgoal(M) = |(g, u− uM)| = |(g,ΠMu− uM + u− ΠMu)|. (19)

The term u−ΠMu, similar to the main term of the Hessian-based adaptation in Section 3.2, can be
explicitly approached in the same way. The term ΠMu − uM will be transformed via an equation,
i.e. and adjoint state. Let us define the discrete adjoint state u∗g,M:

∀ψ ∈ VM, a(ψM, u
∗
g,M) = (ψM, g). (20)

Then:

δjgoal(M) ≈ |a(u∗g,M,ΠMu− uM) + (g, u− ΠMu)|

And introducing the continuous interpolation error (15):

δjgoal(M) � |a(u∗g,M,ΠMu− uM)|+ |g||πMuM − uM|

Now we integrate by parts, and apply Lemma 4.1, introducing the discrete extension of the interpo-
lation error. We get

δjgoal(M) �
∫

Ω

( [1
ρ
ρ̄(H(u∗g,M)) + |g|

]
|πMuM − uM| + |u∗g,M| |πMf − f |

)
dΩ.

It is then reasonable to try to minimize the RHS of this inequality instead of the LHS. But this
involves still some difficulty due to the dependancy of adjoint state u∗g,M with respect to M. We
shall further simplify our functional by freezing, during a part of the algorithm, the adjoint state.
The idea is that, when we change the parameter M, u∗g,M is close to its (non-zero) continuous limit
and is not much affected, in contrast to the interpolation errors |πMuM − uM| and |πMf − f |. We
then consider, for a given M0, the following optimum problem:

min
M

∫
Ω

( [1
ρ
ρ̄(H(u∗g,M0

)) + |g|
]
|πMuM − uM| + |u∗g,M0

| |πMf − f |
)

dΩ.

This will produce an optimum:

Mopt,M0 = arg min
M

|tr(M−1/2

([1
ρ
ρ̄H(u∗g,M0

) + |g|
]
|Hu|+ |u∗g,M0

||Hf |
)
M−1/2)|.

Observing that in the integrand

Hgoal,0 = [
1

ρ
ρ̄(H(u∗g,M0

)) + |g|] |Hu| + |u∗g,M0
| |Hf |

is a positive symmetric matrix, we can apply the above calculus of variation and get:

Mopt,M0 = K1( [
1

ρ
ρ̄(H(u∗g,M0

)) + |g|] |Hu| + |u∗g,M0
| |Hf |).
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This solution can then be introduced in a fixed-point loop and will produce the solution of:

Mopt,goal = K1( [
1

ρ
ρ̄(H(u∗g,Mopt,goal

)) + |g|] |Hu| + |u∗g,Mopt,goal
| |Hf |).

Let us precise how the discrete algorithm is organised:
Step 1: compute the discrete state uM on mesh HM,
Step 2: compute the discrete adjoint state W ∗

M,
Step 3: compute optimal metric Mopt

goal(WM),

Step 4: put M =Mopt
goal(WM), generate a new mesh HM = HMopt

goal(WM) and go to 1, until conver-
gence.

The adaptation of this process to the Euler model of Gas Dynamics is studied in [21] for the
steady case and in [7] for the unsteady case.

5.2. Norm-based functional

We are now interested by the minimization of the following expression with respect to the mesh
M:

δj(M) = ||u− uM||2L2(Ω). (21)

We observe that:

δj(M) = (gM, u− uM). (22)

Let us define the discrete adjoint state u∗M:

∀ψ ∈ VM, a(ψM, u
∗
M) = (ψM, gM). (23)

Then, similarly to Section 5.1, we have to solve the following optimum problem.

min
M

∫
Ω

( [1
ρ
ρ̄(H(u∗M)) + |g|

]
|πMuM − uM| + |u∗M| |πMf − f |

)
dΩ.

Exactly as for Section 5.1, we freeze the dependancy of the adjoint state.

min
M

∫
Ω

( [1
ρ
ρ̄(H(u∗M0

)) + |g|
]
|πMuM − uM| + |u∗M0

| |πMf − f |
)

dΩ.

Mopt,M0 = K1( [
1

ρ
ρ̄(H(u∗M0

)) + |g|] |Hu| + |u∗M0
| |Hf |).

In order to get the final norm-oriented optimum Mopt,norm we shall:

Step 1: first solve the linearised corrector system:

a(ū′prio,M, φ) =
∑
∂Tij

(∇φ|Ti −∇φ|Tj) · nij
∫
∂Tij

(πMuM − uM) dσ − (φ, πMfM − fM). (24)

where mesh is unit for M, and πMuM − uM is expressed in terms of metric and Hessian, as in (6).
Put u′prio,M = ū′prio,M − (πMuM − uM).
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Step 2: then solve the adjoint system:

a(ψ, u∗prio,M) = (u′prio,M, ψ) (25)

Step 3: finally put:

M(α+1) = K1([|u′prio|+
1

ρ
ρ̄H(u∗prio)] |HuM|+ |u∗prio||Hf |) (26)

the three-step process being re-iterated until we get a fixed point Mopt,norm =M(∞). Note that the
fields ū′prio,M and u∗prio,M are correction fields and can be re-used on a finer mesh after multiplication
by the inverse ratio of the number of nodes.

6. Numerical examples

We restrict our study to a benchmark of two-dimensional Poisson problems. We conjecture
that the two following mesh adaptation methods produce L2 convergent solutions to continuous.
The first method, the Hessian-based method (with p = 2), is just heuristically relying on usual
finite-element estimates. The second method, our novel norm-oriented method, is directly built on
the minimisation of the L2 error norm. We do not consider goal-oriented applications, for which
examples of computations can be found in [21] and [7]. As already remarked, the convergence of
goal-oriented solutions to continuous is definitively questionable.

6.1. Numerical features

In [9], a mesh-adaptative full-multigrid (FMG) algorithm relying on the Hessian-based adaptation
criterion is designed. We first describe in short this algorithm for the Hessian-based option. A
sequence of numbers Nk of vertices is specified, from a coarse mesh to finer one N0 = N,N1 =
4N,N2 = 16N,N3 = 64N, .... For each mesh size Nk, a sequence of adapted meshes of size Nk is
build by iterating the following loop:
(1) computing a solution,
(2) computing the optimal metric,
(3) building the adapted mesh,
In (1), a multi-grid V-cycle is applied to a sufficient convergence. In (2), approximations of the
Hessians are performed as in [21]. When changing of mesh, an interpolation is applied in order to
enjoy a good initial condition. About 4 adaptations iterations are applied at each mesh fineness Nk.

The extension of the above loop to norm-oriented adaptation consists of replacing the single
Hessian evaluation by:
- the computation of the corrector, using MG and the best available (interpolated to current mesh)
previous evaluation,
- the computation of the adjoint, using MG and also the best available (interpolated to current mesh)
previous evaluation,
- the evaluation of (26).

Let us discuss computer efficiency. In the demonstrator of [9], a particular feature is the stopping
criterion of FMG, which applies to the convergence of the solution of the unique system solved, i.e.
the system under study, u = A−1f . It is then possible to enjoy a better and better initial condition
and control the iterative and approximation errors convergence. Consequently, it was possible in [9]
to show that mesh adaptation carries large improvement not only in terms of accuracy for a given
number of vertices, but also in terms of accuracy for a given computational time.
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In contrast, the method proposed in this paper involves three systems to solve: (1) the system
under study, u = A−1f , (2) the corrector system, (3) the adjoint system. Now the correctors for
different mesh sizes are not approximations of a unique continuous field (and same for the adjoints
which have the correctors as RHS). For obtaining a computational efficiency similar to [9], we need
to go deeper in the choice and analysis of the corrector. The idea would be manage in such a way
that N u′ is converging to a continuous field which does not depend on the number of vertices N . In
our opinion a study like this goes a little further than the object of the present paper. The numerical
study proposed now restricts to mesh convergence, i.e. error as functions of number of vertices.

6.2. 2D Boundary layer

This test case is taken from [14]. We solve the Poisson problem −∆u = f dans ]0, 1[×]0, 1[ with
Dirichlet boundary conditions and a right-hand side f chosen for having:

u(x, y) = [1− e−αx − (1− e−α)x]4y(1− y).

The coefficient α is chosen equal to 100. The graph of the solution is depicted in Figure 1. Before
applying our mesh adaptive algorithm, it is interesting to evaluate the accuracy of our correctors.
We choose a 161× 161 uniform mesh and show in Figure 2 and Figure 3 the cut of u− uh compared
with the cut of u′. We observe that the a priori corrector does its job in a correct but inaccurate
manner while the DC one is rather accurate. We have also observed that the DC corrector does not
consume notably more CPU than the a priori one. Therefore we keep this option for the rest of
the test case. In Figure 4, we show a set of FMG calculations for the considered test case. The

Figure 1: Fully 2D Boundary layer test case : sketch of the solution.

number of vertices of the successive meshes are supported by the horizontal axis, from 120 vertices to
30,000 vertices. The vertical axis gives the L2-norm of the approximation error |u− uh|L2 obtained

11



Figure 2: Fully 2D Boundary layer test case : comparison of error cuts for y = 0.5: plus signs (+) depict the
approximation error u− uh and crosses (×) depict the a priori corrector u′prio. The corrector is able to correct about
60% of the approximation error.

Figure 3: Fully 2D Boundary layer test case : comparison of error cuts for y = 0.5: plus signs (+) depict the
approximation error u − uh and crosses (×) depict the Defect-Correction corrector u′DC . The corrector is able to
correct about 95% of the approximation error.

on the mesh. Its variation with respect to number of vertices is compared in Figure 4 for the three
following algorithms: (a) the uniform-mesh FMG, and (b) the Hessian-based adaptative FMG, and
(c) the norm-oriented adaptive FMG. We observe that both adaptation methods carry an important
improvement with respect to uniform-grid FMG (25921 vertices on finest mesh). For essentially the
same number of vertices (32318), the Hessian option gives an error divided by 47. The norm-oriented
option appears as better, with an error divided by 208 with 29485 vertices.
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Figure 4: Fully 2D Boundary layer test case: convergence of the error norm |u − uh|L2 as a function of number of
vertices in the mesh for (+) non-adaptive FMG, (×) Hessian-based adaptive FMG, (∗) norm-oriented adaptive FMG.

We also propose an a posteriori measure of the correctors efficiency by comparing the convergence
of our norm-oriented adaptation equipped with either corrector with the same method in which the
corrector is replaced by u − uh. Of course that latter algorithm is not a mesh adaptation method
since we assume that we already know the exact solution. In Figure 5, we observe that the error
convergence for the three computations are very close to each other. This confirms the interest of
the two proposed correctors.

Figure 5: Fully 2D Boundary layer test case: efficiency of the norm-oriented adaptive FMG based on (×) the a priori
corrector or on the (∗) Defect-Correction one, compared with (�) a virtual adaptation controlled by u− uh.
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6.3. Bubble-like test case with thick interface

We are interested by a Poisson problem the solution of which is a function u equal to 1 on
a disk and to 0 in the rest of the domain. This function is the prototype of the pressure in a
multi-fluid flow involving capillary forces. The source term is a Dirac derivative. We smoothen this
computation by defining a thickness ε of an annular region separing the two subdomains (outside the
disk, inside the disk) and in which u is smoothly varying from 0 to 1 as shown in figure 6. If (x, y)

Figure 6: Circular-test-case-domain: sketch of the solution u.

is located inside the annular region, u(x, y) is given by the formula: u(x, y) = 1
2

+ 1
2
sin(πψ

ε
) with

ψ = 0.25 −
√

(xC − x)2 + (yC − y)2. From this solution, a right-hand side f is computed. Given a
mesh, vertex values of fh are interlopated from the analytic f . As a result, for rather coarse meshes,
the zone where f is not zero can be simply missed and fh can be zero even in the neighborhood of the
high values of f . We consider first a quite large thickness of ε = 0.1. An approximate solution uh is
shown in Figure 7. As for the previous test case, we first evaluate the accuracy of the corrector. We

Figure 7: Circular layer test case: an adapted mesh and the corresponding numerical solution uh

choose a uniform mesh 161×161 and show in Figure 8 and Figure 9 the cut of u−uh compared with
the cut after correction, that is u − uh − u′h. We observe that both a priori and Defect-Correction
correctors do an accurate job.
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Figure 8: Thick bubble case: comparison of (+) error u− uh and (×) a priori corrector.

Figure 9: Thick bubble case: comparison of (+) error u− uh and (×) Defect-Correction corrector.

The three methods are again compared in Figure 10: standard FMG, Hessian-based adaptive
FMG, norm-oriented adaptative. For the Hessian-based calculation, we observe a tendancy for a
slower convergence for finer meshes, finishing with an error which is worst than the uniform refine-
ment. The proposed norm-oriented adaptive method behaves in a better way, with a five times
smaller error than for the uniform refinement.

6.4. Bubble-like test case with thin interface

In order to evaluate the robustness of the methods with respect to steeper gradients, we consider
the same test case, with a thinner transition: ε = 0.02. The convergence of the three methods is
shown in Figure 12. Due to the very thin support of the right-hand side f , the three methods start
with a zero fh. Then, either with adaptation or refinement, the error increases to several units. The
convergence of the uniform FMG shows an acceptable slope, but the error values are relatively huge.
By comparison with the thick-bubble convergence, we may infer that the slope of uniform FMG
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Figure 10: Thick bubble test case: convergence of the error norm |u− uh|L2 as a function of number of vertices in the
mesh for (+) non-adaptive FMG, (×) Hessian-based adaptive FMG, (∗) norm-oriented adaptive FMG.

Figure 11: Thin bubble case: an adapted mesh and the corresponding numerical solution uh

will be second-order with even higher number of vertices and a 0.1 % error may be not attained for
meshes of less than 10 millions nodes. The Hessian-based final result is a little better, but globally
disappointing. The norm-oriented convergence starts chaoticly before being monotone and second-
order for meshes finer than 2000 vertices. The final L2 errors produced by the three methods are
0.17589 with 25921 vertices for the uniform FMG, 0.03773 with 32127 vertices for the Hessian-based
adaptation, and 0.000585 for 29742 vertices for the norm-oriented calculation, 300 times smaller than
the first result.

6.5. Poisson problem with discontinuous coefficient

This test case addresses a non-regular case due to a discontinuous coefficient. The conditions
are sketched in Figure 13a. The operator coefficient 1/ρ is 1000 times smaller in a vertical band of
the computational domain, while the source term is 1000 times larger. The solution is nearly zero
outside the central band and presents a smooth peak with maximum 1.26666 for x = 0.5, Figure
13b. Since no analytic solution is available, we take as reference solution the arithmetic mean:

uref =
1

2
(uHess100000 + uNorm100000)
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Figure 12: Thin bubble test case: convergence of the error norm |u− uh|L2 as a function of number of vertices in the
mesh for (+) non-adaptive FMG, (×) Hessian-based adaptive FMG, (∗) norm-oriented adaptive FMG.

Figure 13: Discontinuity test case: (a) sketch of the inverse coefficient ρ and of the right-hand side rhs. (b) An
accurate numerical solution.

of the two adapted solutions (Hessian-based, norm-oriented) for 100000 vertices. The convergence is
measured for the global integral

∫
(uh − uref )dxdy.

Our computations are applied in the severe conditions of no a priori adaptation to the above
discontinuities, as happens when the computation is internal to an identification loop. Then the
comparison is again done with respect to a uniform mesh. The exact solution presents a discontinuous
gradient and convergence on uniform meshes is only first-order. This strongly impacts the final error
level of the uniform FMG which produces a convergence slope of order 1 and an error as large as 0.03
for 100000 vertices. The mesh-adaptive computations have also some trouble. They show a rather
chaotic convergence. But, in the mean, we can say that convergence presents a slope around second-
order. Errors for 30000 vertices can be estimated as around 10−4. These results are particularly
favourable to the two mesh-adaptation methods. The Hessian-based methods works very well and
is also as already remarked, faster than the norm-oriented one which needs to solve three systems
instead of one. The norm-oriented option is not CPU optimised. However, in the present case, it
is interesting to see how the CPU cost behaves. In Figure 15, in 5000 seconds (workstation), the
non-adaptative error is 0.03, the two mesh adaptative errors are of order 0.001.

6.6. A 1D Boundary layer
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Figure 14: Discontinuity test case: convergences of
∫

(uh − uref )dxdy as a function of number of vertices in the mesh
for (+) non-adaptive FMG, (×) Hessian-based adaptive FMG, (∗) norm-oriented adaptive FMG.

Figure 15: Discontinuity test case: convergences of
∫

(uh − uref )dxdy as a function of CPU time in seconds for (+)
non-adaptive FMG, (×) Hessian-based adaptive FMG, (∗) norm-oriented adaptive FMG.

The new method has shown a good behavior for all test cases we tried except one, which we
describe now. It is a boundary layer case with a 1D solution: u(x, y) = u(x) of a Dirichlet-Neumann
problem −∆u = rhs with

rhs(x, y) = (α2(exp(1/α)− 1))−1exp(x/α) ; α = 0.03.

We check first the correctors. Both seem adequate on a uniform grid, as shown with a horizontal cut
depicted on Figure 16 and Figure 17.

In Figure 18, the non-adaptive FMG produces an approximation error of 0.003 (30000 vertices).
This convergence is relatively satisfactory, being a second order convergence. However, in order
to reach a 10−7 error level, several hundred millions vertices will be necessary with this sequence
of uniform meshes. A second curve is obtained with the adaptative FMG with the Hessian-based
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Figure 16: 1D Boundary Layer: comparison of error cuts for y = 0.5: plus signs (+) depict the approximation
error u − uh and crosses (×) depict the a priori corrector u′prio. The corrector is able to correct about 55% of the
approximation error

Figure 17: 1D Boundary Layer: comparison of error cuts for y = 0.5: plus signs (+) depict the approximation error
u− uh and crosses (×) depict the Defect-Correction corrector u′DC . The corrector is able to correct about 80% of the
approximation error.

criterion. Final convergence is disappointing since the slope is first-order. The same problem appears
with our new algorithm. A deeper examination of adaptation criteria has shown that the high
derivatives of the right-hand side f are very close to boundary x = 1. It could not be seen by the
algorithm, because of the weighting by the adjoint u∗, which is zero at this boundary. We have
replaced the norm-oriented optimum metric by its intersection with the metric based on the Hessian
of f . Then the convergence improved a lot. In contrast, introducing the same metric intersection in
the other cases did not produce second order convergence.
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Figure 18: 1D Boundary Layer: convergence of the error norm |u − uh|L2 as a function of number of vertices in
the mesh for (+) non-adaptive FMG, (×) Hessian-based adaptive FMG, (∗) norm-oriented adaptive FMG, and (o)
norm-oriented adaptive FMG with intersection with RHS Hessian.

7. Conclusion

The norm-oriented mesh adaptation method is an answer to a well formulated problem : consid-
ering a numerical scheme, here the most used FEM, and prescribing an error norm, how to get the
smaller approximation error in that norm, for a given number of vertices. The norm-oriented mesh
adaptation method transforms the problem into an optimization problem which is mathematically
well-posed. It relies on the following other features:

A corrector represents the approximation error. We give two examples of correctors. An a priori is
built from the variational discrete statement. A Defect-Correction corrector is built from a finer-mesh
defect correction principle. These correctors appear as not very accurate, but sufficiently accurate
for our purpose. According to the type of approximation, at least the second one, Defect-Cooreection
is extendable to many models and schemes.

The norm-oriented method is presented as a natural extension of the goal-oriented method, which,
in our formulation, is itself a natural extension of the Hessian-based method. More precisely, while
the Hessian-based method solves only the EDP under study, the goal-oriented method also solves
an adjoint system (with linearised operator, transposed). The norm oriented solves three systems,
a corrector (linearised system with an adhoc RHS), an adjoint (linearised and transposed, with the
corrector as RHS), and the EDP itself. The three algorithms have in common an anisotropic a priori
error analysis and a metric-based mesh parameterisation.

The Hessian-based method produces convergent solution fields but does not take into account
the precise equation and discretization. The goal-oriented method takes into account equation and
discretization, but is too focused on a particular output and does not produce convergent solution
fields. The norm-oriented method has the advantages of both.

In order to show the improvement obtained with respect to previous methods, we compare in
our experiments the two field-convergent options, Hessian-based and norm-oriented. Our benchmark
examines convergence to continuous thanks to the application of a Full-Multigrid (FMG) process.
Approximation errors can then be compared as functions of the number of degrees of freesom.

We have presented an example of comparison of computational effort. But our algorithm is not
optimised. It does not enjoy the FMG effect neither for the corrector nor for the adjoint. It can
be therefore much less efficient than Hessian-based adaptive FMG. We have indicated an idea to
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improve this issue. It is not of most interest to test this idea with a Poisson problem. The case of a
compressible flow is being addressed now and will hopefully produce informations useful for practical
computations in CFD.

For elliptic problems, the Hessian-based approach is nearly optimal as suggested by finite-element
estimates. However the presented comparisons seem to indicate that the novel method carries a good
improvement, especially for singular or stiff contexts. The method is rather general and we are now
applying it to more complex PDE models from CFD (Euler, Navier-Stokes), involving dominant
advection effects, for which a Hessian-based approach is much less efficient.
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