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Abstract

A review on multirate methods is proposed. This starts from Rice's pioneering work on
�rst order di�erential equations [1] to recent works dealing with hyperbolic conservation laws
[16, 17, 18, 20].
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1 Introduction

For the solution of EDOs or EDPs, explicit integration schemes are still often used because
of the accuracy they can provide and their simplicity of implementation. Nevertheless, these
schemes can prove to be very expensive in some situations, for example sti� EDOs whose
solution components exhibit di�erent time scales, system of non-sti� EDOs characterized
by di�erent activity levels (fast/slow), or EDPs discretized on computational grids with
very small elements. In order to overcome this e�ciency problem, di�erent strategies were
developped, �rst in the �eld of EDOs, in order to propose an interesting alternative:

• Multi-method shemes: for systems of EDOs containing both non-sti� and sti� parts,
an explicit scheme is used for the non-sti� subsystem and an implicit method for the
sti� one [2, 3, 4].

• Multi-order schemes: for non-sti� system of ODEs, the same explicit method and step
size are used, but the order of the method is selected according to the activity level
(fast/slow) of the considered subsystem of EDOs [12].

• Multirate schemes: for sti� and non-sti� problems, the same explicit or implicit method
with the same order is applied to all subsystems, but the step size is chosen according
to the activity level. The �rst multirate time integration algorithm goes back to the
work of Rice [1].

In this work we focus on the multirate approach. The application of such shemes was
�rst limited to ODEs [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and restricted to a low number
of industrial problems. In the last �fteen years, the developpment and application of such
methods to the time integration of PDEs was also performed. In particular, a few works were
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conducted on the system of ODEs that arise after semidiscretization of hyperbolic conser-
vation laws [16, 17, 18, 19, 20, 21], and rare applications were performed in Computational
Fluid Dynamics (CFD) [20, 21] for which we are interested.

The remainder of this document is organized as follows.
In Section 2, some base integration methods to solve �rst order di�erential equations are

recalled . A survey of some important works performed in the domain of multirate approaches
is given in Section 3. It starts from Rice's pioneering work on �rst order di�erential equations
[1] to recent works dealing with hyperlic conservation laws [16, 17, 18, 20].

2 Base integration methods to solve ẏ = f(t, y)

For the purpose of this survey, some base integration methods for the solution of ODE
ẏ = f(t, y) are recalled in this section. We focus on two large families of methods: (i) linear
multistep methods and (ii) Runge Kutta methods. The Butcher representation of Runge
Kutta methods is also given.

• (i) Linear multistep methods (including one-step methods as degenerate cases)
which are written :

yn =
K1∑
i=1

αiyn−i + h

K2∑
i=0

βiẏn−i

where yn approximates y(tn), h = tn − tn−1 and ẏj = f(tj , yj).
The simplest examples of linear multistep methods are the Euler (forward Euler)
method,

yn = yn−1 + hẏn−1

and the backward Euler method,

yn = yn−1 + hẏn.

Two classes of linear multistep methods are often used for the solution of EDOs:

� Backward Di�erentiation Formulas (BDF) methods (K2 = 0,K1 = q):

yn =
q∑
i=1

αiyn−i + hβ0ẏn

� Adams methods:
- explicit of order q (K1 = 1, α1 = 1,K2 = q, β0 = 0):

yn = yn−1 + h

q∑
i=1

βiẏn−i

- implicit of order q (K1 = 1, α1 = 1,K2 = q − 1):

yn = yn−1 + h

q−1∑
i=0

βiẏn−i

• (ii) Runge Kutta (RK) methods which concern :
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� r-stage explicit RK methods:

yn = yn−1 +
r∑
i=1

biki

with k1 = hf(tn−1, yn−1) , ki = hf(tn−1 + cih, yn−1 +
i−1∑
j=1

aijkj)

and ci =
i−1∑
j=1

aij (i = 2 . . . r)

� r-stage implicit RK methods:

yn = yn−1 +
r∑
i=1

biki

with ki = hf(tn−1 + cih, yn−1 +
r∑
j=1

aijkj) (i = 1 . . . r)

� r-stage Rosenbrock and Rosenbrock-Wanner (ROW) methods:

yn = yn−1 +
r∑
i=1

biki

with

ki = hf(tn−1+cih, yn−1+
i−1∑
j=1

aijkj)+dih2 ∂f

∂t
(tn−1, yn−1)+h

∂f

∂y
(tn−1, yn−1)

i∑
j=1

dijkj

where the coe�cients dij are chosen to optimize order and stability properties.

Hereafter, we give the representation in Butcher tableau of explicit and implicit RK meth-
ods :

• Representation in Butcher tableau of r-stage explicit RK methods:

yn+1 = yn + h

r∑
i=1

biki with ki = f(tn + cih, yn + h

i−1∑
j=1

aijkj)

c1 = 0 0
c2 a21

c3 a31 a32

...
...

...
. . .

cr ar1 ar2 · · · ar,r−1

b1 b2 · · · br−1 br

or shorter
c A

bT
or [A, b, c]

• Representation in Butcher tableau of r-stage implicit RK methods,:

yn+1 = yn + h

r∑
i=1

biki with ki = f(tn + cih, yn + h

r∑
j=1

aijkj)
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c1 a11 · · · a1r

...
...

...
cr ar1 · · · arr

b1 · · · br

or shorter
c A

bT
or [A, b, c]

3 A review on multirate schemes

3.1 The pioneering work of Rice, 1960 [1]

This work, which is the �rst one in the �eld of multirate methods, considers the solution of
the following system of EDOs

ẋ = F (t, x, y), x(t0) = x0

ẏ = G(t, x, y), y(t0) = y0

where x(t) represents the latent component and y(t) the active one (meaning y(t) varies
much more rapidly than x(t)).

The proposed time discretization of this system is schematically given in Figure 1.

Figure 1: Time discretization of the latent and active component of the solution

In the work of Rice, the evaluation of the latent part of the solution x(m+1)K , x(m+2)K , . . .
is performed with a time step Kh as follows:

x(m+1)K = xmK +
3∑
i=1

biki

with ki = hF (tmK + ciKh, xmK +
i−1∑
j=1

aijkj , ymK +
i−1∑
j=1

aijhj) (i = 1 . . . 3)

and hi = hG(tmK + ciKh, xmK +
i−1∑
j=1

aijkj , ymK +
i−1∑
j=1

aijhj) (i = 1 . . . 2)

Coe�cients bi, ci, aij are given by any RK3 method (work also done with RK4).

The evaluation of the active part of the solution ymK+j+1, ymK+j+2, . . . is performed
with a time step h as follows:

ymK+j+1 = ymK+j +
3∑
i=1

αidi(j) for 0 ≤ j ≤ K − 1.

with
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d1(j) = hG(tmK+j ,xmK+j, ymK+j)

d2(j) = hG(tmK+j + µ2h,xmK+j +
6∑
i=4

λi(j)ki−3, ymK+j + γ21d1(j))

d3(j) = hG(tmK+j + µ3h,xmK+j +
9∑
i=7

λi(j)ki−6, ymK+j + γ31d1(j) + γ32d2(j))

in which the following extrapolation, based on the previous ki, is used :

xmK+j = xmK +
3∑

i=1

λi(j)ki 1 ≤ j ≤ K − 1,

and where the several sets of parameters �αi, µi, γik, λi(j)� are determined so that:
option 1: the local truncation error of integration formula for y(t) is in O(h4)
or
option 2: extrapolation parameters λi(j) lead to an extrapolation truncation error in O(h4)
and the integration parameters are determined independantly.

Several numerical experiments were performed by applying the previous multirate ap-
proach on di�erential equations in order to investigate the integration errors as a function of
K and h. A typical example is given by the 2 degrees of freedom problem:

dx

dt
= x/2, x(0) = 1

dy

dt
= x cos(25t), y(0) = 1/1250.5

for which the good features of the proposed multirate approach is shown.

With the objective to illustrate the saving in computation with the multirate option, the
number of operations and function evaluations were given for several Runge-Kutta methods
and their multirate counterparts. For example, for the third-order version (RK3), we obtain:

Additions Multiplications F evaluations G evaluations
RK3 22K 28K 3K 3K
Multirate RK3 14(K+1) 17(K+1) 3 3K+2

3.2 The work of Skelboe on multirate BDF methods, 1989 [7].

In this work, the following system of EDOs is considered:

ẏ = f(t, y, z), y(t0) = y0, fast subsystem

ż = g(t, y, z), z(t0) = y0, slow subsystem

In the proposed multirate strategy, the fast subsystem is integrated by a k-step BDF formula

(BDF-k) with step length h (Figure 2):

ym =
k∑
i=1

αiym−i + hβ0f(tm, ym, zm)

and the slow subsystem is integrated by the same BDF-k formula but with step length
H = qh(Figure 2):

zn =
k∑
i=1

αizn−qi + qhβ0f(tn, yn, zn)
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Figure 2: Time discretization of the fast and slow component of the solution

Di�erent strategies for the sequence of computation are proposed:

• Fastest �rst algorithm
step 1) Integration of the fast subsystem from tn−q to tn (q steps) with extrapolated
values z̃m (n− q < m ≤ n) based on zn−kq, . . . , zn−q (following a Newton type formula,

z̃m =

kX
r=1

α̃r,m−(n−q)zn−rq).

step 2) Integration of the slow subsystem from tn−q to tn (one step).

• Slowest �rst algorithm
step 1) Integration of the slow subsystem from tn−q to tn (one step) with extrapolated
value ỹn based on yn−q−k+1, . . . , yn−q (following a Newton type formula).
step 2) Integration of the fast subsystem from tn−q to tn (q steps) with interpolated
values z̃m (n − q < m < n) based on zn−(k−1)q, . . . , zn (following a Newton type for-

mula, z̃m =

k−1X
r=0

α̃r,m−(n−q)zn−rq).

As for the application part, a 2×2 test problem is considered for investigating the stability
properties of the previous multirate algorithms (BDF-1 and BDF-2, interpolation of order
0 and 1). From this application, it appears that the proposed multirate algorithms are not
necessarily A-stable, limiting the use of such methods.

3.3 The work of Günther and Rentrop on multirate ROW methods,
1993 [10].

In this work, the following autonomous initial value problem is considered

ẏ(t) = f(y), y(t0) = y0, y ∈ Rn

which can be split into active and latent components:

ẏS = fS(yS , yL), yS(t0) = yS0, yS ∈ RnS , active subsystem

ẏL = fL(yS , yL), yL(t0) = yL0, yL ∈ RnL , latent subsystem.

The proposed multirate strategy is the following:
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• yL is integrated with a ROW method on one large time step H :

yHL (t0 +H) = yL0 +
s∑
i=1

ciki

ki = hfL(ŷS(t0 + αiH), yL0 +
i−1∑
j=1

αijkj) +HJL

i∑
j=1

γijkj , JL =
∂fL
∂yL

(yS0, yL0)

where αi =
i−1∑
j=1

αij and ŷS(t) is an extrapolated value for yS(t).

• yS is integrated with a ROW method and m time steps h = H/m :

yHS (t0 + (λ+ 1)h) = yS0(t0 + λh) +
s∑
i=1

cili

li = hfS(yS(t0 + λh) +
i−1∑
j=1

αij lj , ỹL(t0 + λh + αi)) + hJS

i∑
j=1

γij lj ,

JS =
∂fS
∂yS

(yS(t0 + λh), ỹL(t0 + λh)), for λ = 0, 1, . . . ,m− 1

where ỹL(t) is an extrapolated value for yL(t).

The extrapolation formulas (Padé approximation of order (1,1)) are given by:

ŷSi(t0+h̄) = ySi(t0)+
2h̄ fSi(t0)2

2fSi(t0)− h̄
nS∑
j=1

∂fSi
∂ySj

(y(t0))fSj(y(t0))− h̄
n∑

j=nS+1

∂fSi
∂yLj

(y(t0))fLj(y(t0))

ỹLi(t0+h̄) = yLi(t0)+
2h̄ fLi(t0)2

2fLi(t0)− h̄
nS∑
j=1

∂fLi
∂ySj

(y(t0))fSj(y(t0))− h̄
n∑

j=nS+1

∂fLi
∂yLj

(y(t0))fLj(y(t0))

The application part concerns the simulation of electric circuits (inverter chain) leading
to the solution of sti� EDOs (system of 250-4000 di�erential equations). A multirate 4-steps
ROW method was implemented, leading to a A-stable algorithm, and a speedup up to 2.8
compared to the classical RK4 method.

3.4 The work of Löhner-Morgan-Zienkiewicz on explicit multirate
schemes for hyperbolic problems, 1984 [21].

To our knowledge, this work is the �rst one on multirate methods which deals with applica-
tions in CFD.
In this study, the problem of interest is given by

∂U

∂t
+∇ · F (U) = 0 in Ω = Ω1 ∪ Ω2,

where Ω1 and Ω2 are two subregions with di�erent grid resolution (see Figure 3 in 1D), and
with, for a given explicit scheme, an allowable time step ∆t1 in Ω1 and ∆t2 = ∆t1/n in Ω2.

One global time step of the proposed multirate explicit scheme (for 2 subdomains) is per-
formed as follows:

• Add to Ω2 two grid points of Ω1, let Ω′2 be the new subdomain obtained (see Figure 3).
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Figure 3: 1D model, 2 subdomains splitting

• Specify a boundary condition for U (free or �xed) at point C (see Figure 3) and advance
one global time step ∆t1 in Ω1.

• Specify a boundary condition for U (free or �xed) at point A (see Figure 3) and advance
n small time steps ∆t2 = ∆t1/n in Ω′2.

• UA is obtained from Ω1, UC from Ω′2, UB = mean values obtained from Ω1 and Ω′2,
where B is the point between A and C (see Figure 3).

The same procedure can be performed with more than 2 subdomains splitting, and in the
multidimensional case.

The above multirate scheme was implemented with a second order explicit �nite element
scheme (Taylor-Galerkin method of Donea).
Three test-cases were considered:

• A transient solution of a 1D shock tube problem (Sod).

• A transient solution of a 2D supersonic inviscid �ow around a circular cylinder.

• A steady-state solution of a 2D supersonic inviscid �ow past a wedge.

The �rst two test-cases were chosen in order to show that shocks can be handled by the
method without problems. The third test-case illustrates the gain in CPU-time that can be
obtained with the multirate approach. A speedup of 2 between the multirate scheme and its
single-rate counterpart is achieved.

3.5 The work of Kirby on a multirate forward Euler scheme for
hyperbolic conservation laws, 2002 [19]

This work deals with one-dimensional hyberbolic conservation laws

∂y(t, x)
∂t

+
∂F (y(t, x))

∂x
= 0.

After semi-discretization by a �nite volume MUSCL scheme, a system of EDOs is obtained

ẏi(t) = fi(y1(t), . . . , yn(t)), i = 1, . . . , n

that is partitioned in fast and slow subsystems

ẏF = fF (yF , yS) (fast solution subsystem, explicit Euler time step ∆t/m)

ẏS = fS(yF , yS) (slow solution subsystem, explicit Euler time step ∆t).

A multirate scheme based on forward Euler steps is proposed for the solution of these sub-
systems:
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• For yF : m steps integration from tn to tn+1

yn+ηk

F = y
n+ηk−1
F + σk∆t fF (yn+ηk−1

F , ynS), k = 1, . . . ,m− 1

yn+1
F = y

n+ηm−1
F + σm∆t fF (yn+ηm−1

F , ynS)

• For yS : 1 step integration from tn to tn+1

yn+1
S = ynS + ∆t fS(ynF , y

n
S)

where

m∑
k=1

σk = 1 with 0 < σk ≤ 1, ηl =
∑l
k=1 σk, η0 = 0 and tn+ηk = tn + ηk∆t.

It is shown that the proposed multirate scheme satis�es the TVD property and a max-
imum principle under local CFL conditions, but it is only �rst order time accurate. No
application has been presented in this theoritical work.

3.6 The work of Constantinescu and Sandu on multirate RK meth-
ods for hyperbolic conservation laws, 2007 [16]

One-dimensional scalar hyperbolic equations are considered in this study:

∂y(t, x)
∂t

+
∂F (y(t, x))

∂x
= 0.

The objective of this work is to develop a second-order accurate multirate scheme that inherits
stability properties (maximum principle, TVD, TVB, monotocity-preservation, positivity) of
the single rate integrator.
After a semi-discrete �nite volume approximation (which satis�es some of the above stability
properties), a system of EDOs is obtained

ẏi(t) = fi(y1(t), . . . , yn(t)), i = 1, . . . , n

which is partitioned into slow and fast subsystems

ẏF = fF (yF , yS), fast subsystem

ẏS = fS(yF , yS), slow subsystem.

This partioning can be represented schematically by Figure 4:

Figure 4: Partitioning into fast and slow subsytems

where

ΩF is the subdomain corresponding to a fast characteristic time and where a small time step
∆t/m is used in the multirate scheme (m = integer corresponding to the number of small
time steps per large time step ∆t),
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ΩS denotes the subdomain with a slow characteristic time and where a large time step ∆t
is used in the multirate scheme,
ΩFB (fast bu�er)is the subdomain with a slow characteristic time but a small time step
∆t/m is used in the multirate scheme (the size of the fast bu�er is equal to half of the stencil
size),
the Fast solution is the part of the solution which corresponds to a fast characteristic time,
the Slow solution denotes the part of the solution which corresponds to a slow character-
istic time,
the Fast bu�er solution is the solution de�ned on the fast bu�er ΩFB ,
yF denotes the fast solution ∪ fast bu�er solution for which the time integration is based
on the small time step ∆t/m,
yS is the slow solution \ fast bu�er solution for which the time integration uses the large
time step ∆t.

Note that yF is di�erent from the fast solution, and that yS is di�erent from the slow so-
lution. The fast bu�er ΩFB, which bridges the transition between ΩF and ΩS , is introduced
for the purpose that the multirate scheme satis�es the stabilitiy properties of the single rate
scheme.

The following general multirate partitioned RK scheme, associated with a base RK
method noted RKB , is proposed (the Butcher notation is used, see Section 2):

Hereafter, RKF denotes the RK method which applies on yF de�ned on ΩF ∪ΩFB , and
RKS the RK method which applies on yS de�ned on ΩS\ΩFB (see Figure 5).

Figure 5: RKF applies on yF , and RKS applies on yS

Base method (RKB) :
c A

bT

Fast method (RKF ) : ẏF = fF (yF , yS) Slow method (RKS) : ẏS = fS(yF , yS)

1
mc

1
mA

1
m1 + 1

mc
1
m1bT 1

mA
...

...
. . .

m−1
m 1 + 1

mc
1
m1bT · · · 1

m1bT 1
mA

1
mb

T 1
mb

T · · · 1
mb

T

c A
c A
...

. . .

c A
1
mb

T 1
mb

T · · · 1
mb

T

One can notice that the same weight coe�cients are taken for RKF and RKS(
bFi

= bSi
= bi

m

)
, for the purpose of second order accuracy and conservation properties of

the multirate scheme.
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For the case RKB = RK2 and m = 2 (2 small time steps ∆t/2 per large time step ∆t),
the previous multirate scheme based on RKB , RKF and RKF becomes:

0 0 0
1 1 0

1/2 1/2

0 0
1/2 1/2 0
1/2 1/4 1/4 0
1 1/4 1/4 1/2 0

1/4 1/4 1/4 1/4

0 0
1 1 0
0 0 0 0
1 0 0 1 0

1/4 1/4 1/4 1/4
Base method (RKB) Fast method (RKF) Slow method (RKS)

which corresponds to the following RKB, RKF and RKS stages :

RKB (ẏ = f(y)) : RKF (ẏF = fF (yF , yS)) : RKS (ẏS = fS(yF , yS)) :

k1 = f(yn) k1
F = fF (yn

F,y
n
S) k1

S = fS(yn
F,y

n
S)

y(1) = yn + ∆t k1 y
(1)
F = ynF + ∆t

2 k
1
F y

(1)
S = ynS + ∆t k1

S

k2 = f(y(1)) k2
F = fF (y(1)

F ,y(1)
S ) k2

S = fS(y(1)
F ,y(1)

S )
yn+1 = yn + ∆t

2 (k1 + k2) y
(2)
F = ynF + ∆t

4 k
1
F + ∆t

4 k
2
F y

(2)
S = ynS

k3
F = fF (y(2)

F ,yn
S) k3

S = fS(y(2)
F ,yn

S)
y

(3)
F = y

(2)
F + ∆t

2 k
3
F y

(3)
S = ynS + ∆t k3

S

k4
F = fF (y(3)

F ,y(3)
S ) k4

S = fS(y(3)
F ,y(3)

S )
yn+1
F = ynF + ∆t

4 (k1
F + k2

F + k3
F + k4

F ) yn+1
S = ynS + ∆t

4 (k1
S + k2

S + k3
S + k4

S)

Note that at each stage of the multirate formula, the �ux functions are evaluated at
the same argument values so that the conservation properties are satis�ed by the multirate
scheme.

In order to decouple yS from yF and to show that the major part of yS is advanced in
time using the large time step ∆t, a slow bu�er region ΩSB of size m× half of stencil size
is introduced (see Figure 6) so that fS depends only on yS in ΩS\ΩSB (we recall that m
denotes the number of small time steps per large time step ∆t) .
The previous multirate scheme (case RKB = RK2 and m = 2) becomes

ΩF ∪ΩFB, RKF : ΩSB, RKS : ΩS\ΩSB, RKS → RKB :
(ẏF = fF (yF , yS)) (ẏS = fS(yF , yS)) (ẏS = fS(yS))

k1
F = fF (yn

F,y
n
S) k1

S = fS(yn
F,y

n
S) k1

S = fS(yn
S)

y
(1)
F = ynF + ∆t

2 k
1
F y

(1)
S = ynS + ∆t k1

S y
(1)
S = ynS + ∆t k1

S

k2
F = fF (y(1)

F ,y(1)
S ) k2

S = fS(y(1)
F ,y(1)

S ) k2
S = fS(y(1)

S )
y

(2)
F = ynF + ∆t

4 k
1
F + ∆t

4 k
2
F y

(2)
S = ynS

{
y

(2)
S = ynS

}
k3
F = fF (y(2)

F ,yn
S) k3

S = fS(y(2)
F ,yn

S)
{
k3
S = fS(yn

S) = k1
S

}
y

(3)
F = y

(2)
F + ∆t

2 k
3
F y

(3)
S = ynS + ∆t k3

S

{
y

(3)
S = ynS + ∆t k3

S = y
(1)
S

}
k4
F = fF (y(3)

F ,y(3)
S ) k4

S = fS(y(3)
F ,y(3)

S )
{
k4
S = fS(y(3)

S ) = k2
S

}
yn+1
F = ynF + ∆t

4 (k1
F + k2

F + k3
F + k4

F ) yn+1
S = ynS + ∆t

4 (k1
S + k2

S + k3
S + k4

S) yn+1
S = ynS + ∆t

2 (k1
S + k2

S)
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Figure 6: Slow bu�er ΩSB

Expressions in braces (last column) indicate that they are not evaluated.

The proposed multirate partitioned RK scheme satis�es the following properties:

• second order accurate

• conservative

• nonlinear stable (positivity, maximum principle preserving, TVB)

The theoritical speedup (single rate/multirate) is given by:

Speedup =
m(NΩF

+NΩF B
+NΩS

)

m(NΩF
+NΩF B

+NΩSB
)+NΩS

−NΩSB
=

m(NΩF
+NΩF B

+NΩS
)

m(NΩF
+NΩF B

+Nintm∆)+NΩS
−Nintm∆

where NΩX
denotes the number of nodes in ΩX , ∆ is the half of stencil size, and Nint the

number of interface nodes between NΩF B
and NΩS

.

It is deduced that:

• the speedup depreciates asm grows, but in practical applications largem can be avoided
through nested partitioning.

• in practice, NΩSB
<< min(NΩF

+NΩF B
, NΩS

)
⇒ Speedup ' m(NΩF

+NΩF B
+NΩS

)

m(NΩF
+NΩF B

)+NΩS

⇒ Speedup close to the ideal value of m if NΩF
+NΩF B

<< NΩS
.

The applications presented in this work concern the following points:

• a multirate RK2 scheme with m = 2 (∆t/2) and m = 3 (∆t/3), and 2 levels of
partitioning, is used,

• the problem of a 1D advection equation (initial solutions : step, triangular and expo-
nential shapes), on �xed and moving grids, discretized with a 2nd order limited FV
scheme, is considered,
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• the case of a 1D burger equation (initial solutions : step and exponential shapes), on
�xed grids, discretized with a 3rd order TVD FV scheme, is also presented.

It was checked that the numerical solutions are second order accurate, positive, obey the
maximum principle, TVD, wiggle free, and the integration is conservative.

By way of example, for the case of the Burger equation (fast region ' 10 % entire domain),
the speedup (single rate/multirate) is given by the following Table :

Time Single rate Multirate Experimental Theoritical
ratio time (sec) time (sec) Speedup Speedup
m = 2 25.28 13.71 1.84 1.80
m = 3 36.73 15.07 2.43 2.45

3.7 The work of Seny et al. on a parallel implementation of multirate
RK methods, 2014 [20]

The work of Seny et al. focuses on the e�cient parallel implementation of explicit multirate
RK schemes in the framework of discontinuous Galerkin methods. The multirate RK scheme
used is the approach proposed by Constantinescu [16] and introduced in the previous sub-
section.
In order to optimize the parallel e�ciency of the multirate scheme, they propose a solution
based on multi-constraint mesh partitioning. The objective is to ensure that the workload,
for each stage of the multirate algorithm, is almost equally shared by each computer core
i.e. the same number of elements are active on each core, while minimizing inter-processor
communications. The METIS software is used for the mesh decomposition, and the parallel
programming is performed with the Message Passing Interface.
The e�ciency of the parallel multirate strategy is evaluated on three test cases: the wind
driven circulation in a square basin and the propagation of a tsunami wave using a shallow
water model (two-dimensional), and the acoustic propagation in a turbofan engine intake us-
ing the linearized Euler equations (three-dimensional). It is shown that the multi-constraint
partitioning strategy increases the e�ciency of the parallel multirate scheme compared to
the classical single-constraint partitioning. However, they observe that strong scalability is
achieved with more di�culty with the multirate algorithm than with its singlerate counter-
part, especially when the number of processors becomes important compared to the number
of mesh elements. The possible low number of elements per multirate group and per processor
is a limiting factor for the proposed approach.

4 Conclusion

A review on multirate schemes is performed in this document. Some important works have
been reviewed, ranging from that of Rice [1] in 1960 on �rst order di�erential equations
to recent works on time integration of PDEs associated with hyperbolic conservation laws
[16, 20]. On the basis of this review, it can be said that few works on multirate methods
were conducted for the solution of hyperbolic conservation laws and rare applications in CFD
were performed [21, 20]. There is therefore a need to developp such methods in the �eld of
CFD.
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