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Abstract

In this work, we develop a new anisotropic space and time adaptive method for convection dominated prob-
lems with inner and boundary layers. A new route to construct a metric field directly at the nodes of the
mesh is highlighted using the length distribution tensor and an edge based error analysis. A Streamline Up-
wind Petrov-Galerkin (SUPG) finite element method is employed to solve the unsteady convection-diffusion
equation. The numerical experiments show that the use of both space and time adaptivity generates optimal
time stepping, allows the recovery of the global convergence order of the numerical schemes, reduces the
computational time and cost and produces accurate and oscillation free numerical solutions.

Keywords: Anisotropic Meshing, Adaptive time stepping, Convection-dominated problem, Boundary
Layers, Stabilized finite element method

1. INTRODUCTION

The numerical solution of the unsteady convection-diffusion equation using the Galerkin formulation
normally exhibits global spurious oscillations in convection-dominated problems, especially in the vicinity
of sharp gradients. Over the last two decades, a variety of finite element approaches have been proposed
to deal with such situations. These methods increase stability while maintaining consistency by adding
weighted residual terms to the weak formulation of the problem. They have grown in popularity, especially
in applications to fluid dynamics, heat transfer and fluid-structure interactions. We can find the SUPG
method (Streamline Upwind Petrov-Galerkin) in [1, 2, 3], the Galerkin/Least-Squares (GLS) method in
[4, 5], the gradient Galerkin/least-squares (GGLS) method in [6, 7], the unusual stabilized method (USFEM)
in [8, 9, 10], the enriched method with time interpolation in [11], the subgrid scale method in [12] and many
others, each was used to optimize the performance of the finite element formulations for advection-diffusion
equation with or without production.

At the same time, from a practical point of view, in order to perform long-time and large-scale industrial
applications it is preferable to choose a number of nodes N based on the available computational resources
and determine the most accurate possible solution. So the level of accuracy is not set apriori but it is highly
desirable to have the best representation of the simulated phenomena.

This goal opens the door to the emergence of many numerical techniques that aim at optimizing both
the spatial and the temporal discretizations [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Indeed, combining
stabilized finite element methods with these techniques allows the recovery of the global convergence order
of the numerical schemes, reduces the computational time and cost and produces accurate and oscillation
free numerical solutions.

One of the most popular technique in this domain is the anisotropic mesh adaptation. It allows the
capture of scale heterogeneity in particular when simulating multi-components systems as the discontinuities
and high gradients of the solution are captured with good accuracy for a reasonable number of elements.
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Anisotropic mesh adaptation was first proposed in the late 1980s [24, 25, 26, 27]. Significant research
effort has been devoted in the last few years to devise fruitful anisotropic mesh adaptation techniques with
real applications. We distinguish four major error estimates for anisotropic adaptation: the hessian based
relying on the solution hessian information to evaluate the linear interpolation error [28, 29, 30, 31], the a
posteriori estimates approximating the discretization error using a theoretical analysis [32, 33, 34, 35, 36],
the a priori error estimates [37, 38] and the goal oriented estimates that provide mathematical framework for
assessing the quality of some functionals [39, 40, 41, 42]. Thanks to these technical and theoretical advances
a considerable improvement was obtained in the accuracy and the efficiency of numerical simulations.

The challenging construction of the anisotropic mesh adaptation can be conveyed to that of constructing
an appropriate mesh tensor by means of a discretization error analysis. For instance, during a re-meshing
process, the elements of the original mesh are much more volatile than its nodes. Thus for practical reasons
the meshing tools demand a nodal metric map. Other challenges are related to the possibility of constructing
error estimators and adapting the mesh while taking into account different fields in particular for coupled
systems (i.e. velocity, temperature, concentration,...).

In this work, we propose an alternative to these challenges. The main target of the approach is to produce
extremely stretched and highly directional elements under the constraint of a fixed number of nodes. We
intend to develop a metric based mesh adaptation that is capable of well capturing the anisotropy of a
physical phenomena. The metric tensor would prescribe optimal mesh sizes and element orientations. It is
a procedure that can be divided into three key steps. We start by constructing a length distribution tensor
followed by a second order optimal nodal gradient reconstruction procedure as proposed in [43]. Then we
determine the edge based error estimates that are driven entirely from an a posteriori analysis without
any prior assumptions. The developed algorithm strives to improve the quality of the aforementioned
error estimates by attempting to reduce and equidistribute the error over the edges of the mesh under the
constraint of a fixed degree of freedom. The novelty of this paper resides in the combination of an edge-based
error estimation with the equidistribution principle to derive a set of edge stretching factors resulting in
an optimal anisotropic mesh adaptation. Unlike the hessian-based techniques for metric construction, the
method that we propose avoids the reconstruction of this tensor and renders a reduction in the computational
cost.

The second objective of this paper is to use the information gathered from the developed anisotropic
mesh adaptation procedure together with the equidistribution principle in order to compute time step size
that would significantly improve the computational cost and the global accuracy of the calculations. In
general, a small time-step size produces more accurate solutions but with a high computational cost since
more time-steps and hence more computations are required. On one hand, adopting a fixed time-stepping all
over the simulation, requires an apriori knowledge of the user about the choice of this constant as it should
satisfy a stability condition to guarantee the convergence of the numerical solution to the analytical one. On
the other hand, determining the time-step sizes through a CFL argument might produce very small time-
steps as their values depend on the smallest mesh-size. This choice of time-steps can be computation-wise
very limiting especially when used with anisotropic meshing, as in the latter technique the mesh sizes can
become very small at the locations of high solution gradients.

Using the error equidistribution in space and time, the developed mesh adaptation method, allows the
control of the Lp norm of space-time interpolation error. It can be applied to any type of problems, allows
a good and automatic capture of boundary and emerging inner layers in particular for high Peclet number.
With such an advantage, the proposed approach recovers the orders of convergence and could be seen as
a very useful tool for very stiff and convection-dominated problems. It is important to mention that the
method tends to refine the mesh in the hierarchical importance of the solution’s gradient. In other words,
if new features (with high gradients) appear in the solution, the mesh will be automatically coarsened in
regions with lower gradient and will be refined near the newly emerging features. In this case, if a small
number of nodes was fixed by the user, the solution will still be well captured although not with the same
degree of accuracy.

The combination of the space and time adaptive algorithms constitutes a tool to study with the available
computational resources (a limitation on the number of degrees of freedom) and simulate real large unsteady
convection dominated problems. The method is first demonstrated to produce optimal anisotropic meshes
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minimizing the L2 norm of the interpolation error. Note that the only parameter to be chosen by the user
is a fixed number of nodes that will provide a control of both space and time.

The method demonstrated second order convergence in space and time. The results were also compared
with ones presented in the literature and appear in general agreement with them. Finally 2D and 3D coupled
problems were considered to prove the performance of the method, its scalability and its applicability to
any type of equations.

This paper is organized as follows: we start in section 2 with the description of the developed anisotropic
mesh adaptation method. Then we present in section 3 the time adaptation technique. The Streamline
Upwind Petrov Galerkin method that is used to solve the unsteady convection-diffusion equation is presented
in section 4. Section 5 contains several numerical experiments showing the efficiency and the accuracy of
the proposed method. Finally, section 6 is dedicated to the conclusion and the upcoming work.

2. Mesh adaptation

In general, approaches to easily build unstructured anisotropically adapted meshes ([44], [45], [46], [47])
are based on local modifications of an existing mesh. Theories about anisotropic a posteriori error estimation
(see [37, 43, 48, 31, 49, 50]) have been well developed in the literature, leading to some standardization of
the adaptation process; development of metrics from the analysis of the discretization error and the steering
of remeshing by these metrics.

In this work, we develop a new route for the metric construction. The latter is done directly at the
nodes of the mesh without any direct information from the elements, neither considering any underlying
interpolation. It is performed by introducing a statistical concept: the length distribution function. A
second order tensor is employed to approximate the distribution of lengths. It is defined by gathering the
information from the edges onto their common node. Using such a technique, the error along and in the
direction of each edge is computed. Keystone characteristics of this adaptive technique are its automaticity
and its independence from the problem at hand. Then the theory is extended to take into account multi-
components fields (tensors, vectors, scalars) within a single metric thus avoiding additional computations of
metrics intersection as in [49]. An additional feature of this method is that it works under the constraint of
a fixed number of nodes and hence maintains computationally affordable meshes.

2.1. Construction of an anisotropic mesh

The main idea of anisotropic, metric based, mesh adaptation is to generate a unit mesh (with unit length
edges and regular elements) in a prescribed Riemannian metric space. As it is almost impossible to achieve
this property, we intend to construct a mesh that is optimal (very close to unity) up to a certain tolerance.
Note that the specialty of this work is that the tolerance is implicitly assigned by the user through the
assignment of a fixed number of nodes. The resulting mesh is uniform in the metric space but anisotropic
in the Euclidean space.

2.2. Edge based error estimation

An a posteriori error estimate based on the length distribution tensor approach and the associated edge
based error analysis is presented. It enables the calculation, for each node, of a metric tensor that prescribes
a density of neighboring nodes, a set of anisotropic directions and stretching factors along these directions.
The optimal stretching factor field is obtained by solving an optimization problem using the equidistribution
principle under the constraint of a fixed number of nodes in the mesh.

We consider a variable u ∈ C2(Ω) = V and Vh a simple P 1 finite element approximation space:
Vh =

{
wh ∈ C0(Ω), wh|K ∈ P 1(K),K ∈ K

}
where Ω =

∪
K∈K

K and K is a simplex (segment, triangle, tetra-

hedral, ... ).

We define X =
{
Xi ∈ Rd, i = 1, · · · , N

}
as the set of nodes in the mesh, we denote by U i the nodal

value of u at Xi and we let Πh be the Lagrange interpolation operator from V to Vh such that: Πhu(X
i) =
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u(Xi) = U i , ∀i = 1, · · · , N . As shown in figure 1, the set of nodes connected to node i is denoted by
Γ(i) =

{
j , ∃K ∈ K , Xi,Xj are nodes of K

}
.

Starting from the assumption that for metric based adaptation methods, in order to master the global
approximation error it is sufficient to control the interpolation error, the target can be summarized into
finding the mesh, made up of at most N nodes, that minimizes the linear interpolation error in the Lp norm.

By introducing the notation: Xij = Xj −Xi and using the analysis carried in [43], we can set:

∇uh ·Xij = U ij , (1)

Figure 1: Length Xij of the edge joining nodes i and j.

||∇uh ·Xij︸ ︷︷ ︸
Uij

−∇u(Xi) ·Xij || ≤ max
Y∈[Xi,Xj ]

|H(u)(Y)Xij ·Xij | , (2)

where H(u) = ∇(2)u is the associated Hessian of u. Recall that taking u ∈ C2(Ω) we obtain ∇u ∈ C1(Ω).

Applying the interpolation operator on ∇u together with (1) we obtain a definition of the projected
second derivative of u in terms of only the values of the gradient at the extremities of the edge:

∇ghX
ij ·Xij = gij ·Xij , (3)

where gh = Πh∇u, gi = ∇u(Xi) and gij = gj − gi.
Using a mean value argument, we set that: ∃Y ∈ [Xi,Xj ]|gij ·Xij = H(u)(Y )Xij ·Xij .
We use this projection as an approximation of the error along the edge:

eij = gij ·Xij . (4)

However this equation cannot be evaluated exactly as it requires knowing the gradient of u and also its
continuity at the nodes of the mesh. For that reason, we resort to a gradient recovery procedure.

2.3. Gradient Recovery

We use the method proposed in [43] for gradient recovery based on an optimization analysis. The latter
will be defined by:

Gi = (Xi)−1
∑

j∈Γ(i)

U ijXij , (5)

where Xi = d
|Γ(i)|

∑
j∈Γ(i)

Xij ⊗ Xij is what we call the length distribution tensor at node Xi. Note that

this construction preserves the second order:
∣∣(Gi − gi

)
·Xij

∣∣ ∼ (H(u)Xij ·Xij
)
where Gi is the recovery

gradient given by (5) and gi is the exact value of the gradient at node i.
Hence, the approximated error is evaluated by substituting G by g in (4):

eij = Gij ·Xij .
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2.4. Metric construction from the edge distribution tensor

Taking into account this error analysis, we construct the metric for the unit mesh as follows:

Mi =

 d

|Γ(i)|
∑

j∈Γ(i)

Xij ⊗Xij

−1

.

For a complete justification of this result, the reader is referred to [43].

2.5. Error behavior due to varying the edge length

We examine now how the error behaves when the length of the edges changes by stretching coefficients
sij ∈ S defined by :

S =
{
sij ∈ R+ , i = 1, · · · , N , j = 1, · · · , N , Γ(i) ∩ Γ(j) ̸= ∅

}
.

To obtain a new metric depending on the error analysis, a new length for each edge has to be calculated and
then used for rebuilding the length distribution tensor. An interesting way of linking the error variations to
the changes in edge lengths is by introducing a stretching factor s ∈ R+ would be{

X̃ij = sXij

||ẽij || = s2||eij || = s2||Gij ·Xij ||
(6)

where ẽij and X̃ij are the target error at edge ij and its associated edge length respectively.
Following the lines of [43] we can simply define the metric associated with S by:

M̃i =
|Γ(i)|
d

(
X̃i
)−1

, (7)

where X̃i = d
|Γ(i)|

∑
j∈Γ(i) s

2
ijX

ij ⊗Xij is the length distribution tensor and |Γ(i)| is the cardinality of Γ(i).

Let nij be the number of created nodes in relation with the stretching factor sij and along the edge ij.
When scaling the edges by a factor sij , the error changes quadratically so that the number of created nodes
along the edge ij is given by:

nij =

(
ẽij
eij

)− 1
2

= s−1
ij . (8)

As per node i, the local mesh orientation and anisotropy is given by the following tensor:

N i =

 d

|Γ(i)|
∑

j∈Γ(i)

nij
Xij∣∣Xij
∣∣ ⊗ Xij∣∣Xij

∣∣
 . (9)

So that the local mesh density i.e. the total number of created nodes per node i is:

ni = det

 d

|Γ(i)|
∑

j∈Γ(i)

nij
Xij∣∣Xij
∣∣ ⊗ Xij∣∣Xij

∣∣
 . (10)

By considering the averaging process of the number of nodes distribution function, the total number of
nodes in the adapted mesh is given by:

N =
∑
i

ni. (11)

A direct relation between N and e, assuming a uniform totally balanced error along the edge ẽij = e where
e is a constant reads as:

nij(e) = s−1
ij (e) =

(
e

eij

)− 1
2

. (12)
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Hence, for a node i, we have

ni(e) = e−
d
2 det

 d

|Γ(i)|
∑

j∈Γ(i)

(
1

eij

)− 1
2 Xij∣∣Xij

∣∣ ⊗ Xij∣∣Xij
∣∣
⇔ ni(e) = e

d
2 ni(1), (13)

where ni(1) is the number of created nodes for a uniform error equal to 1. so that

N = e−
d
2

∑
i

ni(1). (14)

Therefore, the global induced error for a given total number of nodes N can be determined by:

e(N) =

 N∑
i

ni(1)

− 2
d

. (15)

Thus, the corresponding stretching factors under the constraint of a fixed number of nodes N are given
by:

sij =

(
e(N)

eij

) 1
2

=


∑
i

ni(1)

N


1
d

e
−1/2
ij . (16)

Figure 2: Varying the edge in its own direction.

2.6. Extension to multi-component field

Here we propose to construct a unique metric directly from a multi-component vectors field containing,
for instance, all the components of the velocity field, its norm, the temperature field, a concentration
scalar field. Consequently, we do not need to intersect several metrics but construct it using the following
error vector e⃗ij =

{
e1ij , e

2
ij , · · · , enij

}
where n is the number of components . Let u = {u1, u2, · · · , un} be

the set of parameters based on which we want to adapt, and let Z = Vn and Zh = Vn
h . In the view

of constructing a unique metric, the above theory is applied for each component of u. That way, we
make important computational savings. It comes out immediately that the error is now a vector given by:
−→eij =

{
e1ij , e

2
ij , · · · , enij

}
and then

sij =

(
||e(N)||
||−→eij ||

) 1
2

. (17)

Here, the norm can be the discrete L2, L1 or L∞ norms.
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3. Time adaptation procedure

Many a posteriori error estimators that can be found in the litterature deal with stationary convection-
diffusion problems combined with stabilized finite elements methods (see for instance [51, 52]. However,
fewer papers are available for treating unsteady problems [53]. In this work, we propose a new adaptation
technique that relies on equidistributing the error in space and in time. Our objective is to extend the above
developed analysis to unsteady problems and to test the accuracy of the new space-time error indicator in
the particular case of convection dominated regime and in presence of inner and boundary layers.

Here we consider the time dimension as a 1D spatial problem and apply the whole theory in 1D. Now
that we have shown how to construct a metric field at each node i of the discretized domain that would
lead to an adapted anisotropic mesh in Rd we move on to use the information that we obtained from this
construction in order to build an adaptive time marching technique. The latter should at the same time
provide accurate estimations and not require a large computational cost. Based on the information given
by the derived error estimator in space and the solutions at the previous times, the algorithm automatically
calculate an appropriate time-step for the following computations regardless of the properties of the problem
at hand.

Denote by T = {t0, · · · , tn−1, tn, tn+1, · · · } and let tn,k = |tn − tk| , n, k ∈ T the temporal nodes and by
∆tn = tn,n+1 the time increments as shown in figure 3. Assume that the solution is already computed on
the whole domain up to time tn. The aim is to choose an appropriate time-step ∆tn.

Without loss of generality, the analysis will be carried on an arbitrary spatial node i. Note that at a

Figure 3: Temporal discretization at the spatial node i.

spatial node i, we only have one time edge to be determined (tn, tn+1). Define {τn,n+1} to be the temporal
edge scaling (stretching) factor such that:

ẽn+1,n = τ2n+1,nen+1,n

t̃
n+1,n

= τn+1,nt
n+1,n (18)

where en+1,n is an approximation of the interpolation error known as the edge based error (more details are
defined later), ẽ and t̃ are the target error at the temporal edge tntn+1 and its associated edge length.

Let ui
n−1, ui

n and ui
n+1 be the solutions at node i at times tn−1, tn, and tn+1, respectively. Using

a forward difference approximation, we have un+1 − un = u̇n∆tn and un−1 − un = −u̇n−1∆tn−1. Then
applying the P1 recovery gradient in 1D, we get:

u̇n =
ui
n,n+1∆tn + ui

n,n−1∆tn−1

∆t2n +∆t2n−1

(19)

and the quadratic interpolation error is given by:

ein,n−1 = u̇i
n,n−1∆tn−1 (20)

and
ẽin,n−1 = τ in−1

2
u̇i
n,n−1∆tn−1 (21)

where u̇i
n,n−1 = u̇i

n − u̇i
n−1. Now using the equi-distribution error argument, we write

ẽin,n−1 = en(N) (22)
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with en(N) being the maximal error in space for a total number of nodes N . Hence the stretching factor of
the time-step size is given by:

τ in−1 =

(
e(N, tn)

ein,n−1

) 1
2

(23)

and the optimal time-step is determined by:

∆̃tn = min
i

τ in−1∆tn (24)

However if we consider this formula deeply we find out that it requires the solution at time tn+1 and the
latter is not computed yet. Therefore instead of computing the optimal time-step ∆tn we calculate ∆tn−1

and we let ∆tn = ∆tn−1. It is important to note that when frequency f of spatial adaptation is used,
the temporal stretching factors will be modified to account for a new equidistribution. The new stretching
factor is then defined by:

τ in−1 =

(
e(N, tn)/f

ein,n−1

) 1
2

(25)

Finally, it is worth mentioning that h-refinement is used, a classical linear interpolation from one mesh
to the other is applied, and this work can be extended to maintain conservation as proposed in [54]. All
these steps for space and time adaptation are summarized in the following algorithm:

Algorithm 1 Adaptive Algorithm

Set T 0
h , u

0
h, n = 1, t = 0 and ∆̃t = ∆t ◃ Initializations

while t < T do ◃ Time loop
Set N ◃ Fixing the number of nodes

t := t+ ∆̃tn−1 ◃ Time step incrementation
Compute un

h on mesh T n−1
h

Do for each nodes Xi

Compute Xi ◃ The length distribution tensor
Compute Gi using (5) ◃ Recovery gradient operator

Do for all edges Xij

Compute Gij ◃ Recovery gradient operator
Compute eij ◃ Edge based error
Compute e(N) using (15) ◃ The equidistributed error
Compute sij ◃ Stretching factor for each edge
Compute the L2 norm ◃ For multi-component fields

Compute X̃i ◃ The new length distribution tensor

Compute M̃i using (7) ◃ The new metric
Compute T n

h using MTC Mesher see [44] ◃ Mesh adaptation
Interpolate un

h on T n
h ◃ Linear Interpolation

Do for each node Xi

Compute u̇n using (19) ◃ Temporal gradient
Compute ẽin,n−1 using (20) ◃ Temporal error

Compute ∆̃tn using (24) ◃ The optimal new time step
end while

4. Convection diffusion equation

In this section the general equation of the unsteady convection diffusion equation is solved. A stabilized
solution is obtained using the Streamline Upwind Petrov-Galerkin formulation.
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We consider the following problem that models the transport of a quantity u through convection and
diffusion:  ∂tu− a∆u+ v · ∇u = f , in Ω ,

u(., 0) = u0 in Ω ,
u = g , on Γ ,

(26)

where Ω ⊂ Rd is a bounded polyhedral domain with boundary Γ, for simplicity we have taken Dirichlet

boundary conditions. Here a is the constant diffusion factor, v(x) ∈
[
W 1,∞(Ω)

]2
is the divergence-free

velocity field, f(x) ∈ L2(Ω) is a given source term, u0 is the initial data and g is a given boundary condition.
We distinguish four types of boundary layers:

• Regular boundary layers: appear at the outflow boundary defined by Γ− = {x ∈ Γ : v · n < 0} where
the velocity field v is not parallel to the boundary. Their width is of O(a). This order results from
the difference between the solution of the convection-diffusion problem (26) and the only diffusion one
(when a = 0).

• Parabolic boundary layers: appear at the characteristic boundary defined by Γ0 = {x ∈ Γ : v · n = 0}
where the velocity field v is parallel to the boundary. Their width is thicker than that of the regular
boundary layers and is of O(

√
a).

• Corner boundary layers: appear at the neighborhood of a corner of the domain i.e. at the intersection
of boundary layers.

• Interior layers: appear at the inflow boundary Γ+ = {x ∈ Γ : v · n < 0} due to the discontinuities
in the data that propagate inside the domain according to the velocity field v. Their width is of the
same order of that of the parabolic boundary layers i.e. O(

√
a).

4.1. Galerkin finite element formulation

Let us consider the functional Sobolev space of functions having square integrable first order derivatives
H1

S(Ω) in which we are searching the solution in accordance with its regularity:

H1
s =

{
w ∈ H1(Ω) |w = s∀x ∈ ∂Ω

}
(27)

with
H1(Ω) =

{
w ∈ L2(Ω), ||∇w|| ∈ L2(Ω)

}
(28)

and L2 is the Hilbert vector space given by:

L2(Ω) =

{
w(x)

∣∣∣∣∫
Ω

|w|2 dx < ∞
}

The Galerkin finite element formulation is obtained by multiplying Eq. (26) by an appropriate test function
w ∈ H1

0 (Ω) and by integrating over the computational domain. The discrete problem becomes:
find u ∈ H1(Ω) such that u = g on Γ and(

∂u

∂t
, w

)
+ B(u,w) = F(w) ∀w ∈ H1

0 (Ω) (29)

where (u,w) =
∫
Ω
uw dΩ and

{
B(u,w) = a(∇u,∇w) + (v · ∇u,w)
F(w) = (f, w)

.

Challenge arises when convection dominates diffusion i.e. when a << ||v||. Note that this case is in

accordance with a Peclet number (Pe = ||v||h
2a ) much greater than one. In this case, the standard Galerkin

finite element discretization, if the mesh is not well refined, gives rise to node-to-node oscillations in the
solution. One way to eliminate these oscillations is the use of upwind techniques such as the stabilized finite
element method.
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4.2. Streamline Upwind Petrov-Galerkin method

For the spatial discretization, we consider the finite element partition Th of Ω into tetrahedral elements
K. Using these representations, the above-defined functional spaces H1

s (Ω) and H1
0 (Ω) are approached by

discretized spaces H1h
s (Ω) and H1h

0 (Ω). Let Vh ⊂ H1(Ω) be the space of piecewise linear functions defined
on the elements of Th and gh ∈ Vh be a piecewise linear interpolation of g on Th. The SUPG approximation
of (29) is formulated on these finite-dimensional subspaces by modifying the standard Galerkin weighting
functions wh for all terms in the equation into wh+ τKv ·∇wh. This modification is interpreted by allowing
more weight to the node in the upstream direction and reducing the weight to the node in the downstream
direction. The variational formulation becomes:
find uh ∈ Vh such that uh = gh on Γ and(

∂uh

∂t
, wh

)
+ Bτ (uh, wh) = Fτ (wh) ∀wh ∈ H1

0 (Ω) (30)

where τK is a stabilization parameter and


Bτ (uh, wh) = B(uh, wh) +

∑
K∈T

τK (−a∆uh + v · ∇uh,v · wh)K

Fτ (wh) = F(wh) +
∑

K∈K
τK (f,v · ∇wh)K

.

Comparing equations (29) and (30) we notice that the SUPG formulation introduce a diffusion along the
streamline direction weighted by a stabilization parameter. As the additional stabilizing terms vanish for
the exact solution of the problem, the SUPG discretization is consistent.

Finally, the problem defined by equation (30) yields the system of first order differential equations:

C
∂U

∂t
+KU = F (31)

where U is the vector of nodal unknown values of the solution.

4.3. Time integration scheme

The system of ordinary differential equations (31) has to be integrated in time. Using the θ time
discretization schemes, the derivative of the solution with respect to time can be approximated at time tn

by:

C
Un − Un−1

∆t
+K

(
θUn + (1− θ)Un−1

)
= F (32)

where ∆t is the time-step, n = 1, ..., N , and 0 ≤ θ ≤ 1. We remind that this family includes the backward
Euler scheme (θ = 1), the Crank-Nicolson scheme (θ = 0.5) and the forward Euler scheme (θ = 0).

4.4. Choice of the stabilizing parameter

The stabilizing parameter τK will govern the amplitude of the added artificial diffusion in the direction
of the streamline as it determines and calibrates the amount of upwinding weights locally in each element.
In the literature, we can find many references [1, 2, 55, 56, 57, 58] concerning the choice of the stabilizing
parameters.

A theoretical analysis of convection diffusion problems, in one space dimension and on a uniform mesh,
has shown in [51, 59] that the SUPG solution is nodally exact for continuous piecewise linear finite elements
if

τK =
hK

2||v||2

(
coth(PeK)− 1

PeK

)
(33)

where PeK = ||v||2hK

2|a| is the mesh Peclet number and hK is the element size.

Another possible suggestion for the stabilizing parameter taken from [1] is:

τK =
hK

2||v||2
max

{
0, 1− 1

PeK

}
(34)
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Experimental studies have shown that in a convection dominated regime for large Peclet numbers this choice
of the stabilizing parameters gives more stable numerical results. Note that τK is positive for both convection
and diffusion dominated problems with:

τK =

{
c1hK for PeK > 3,

c2
h2
K

a for PeK ≤ 3
(35)

where c1 and c2 are positive constants.
Note that the calculation of hK is one of the main subjects of this paper in particular when using

anisotropic mesh adaptation. Indeed, the stability coefficients depend on the local mesh size hK and weight
the extra terms added to the weak formulation. In the case of strongly anisotropic meshes with highly
stretched elements, the definition of hK is still an open problem and plays a critical role in the design of the
stabilizing coefficients. We followed the lines in [60] to compute hK as the diameter of K in the direction of
the velocity v as follows:

hK =
2|v|

ΣNK
i=1|v · ∇φi|

(36)

where NK is the number of vertices of K and φ1, ..., φNK
are the usual basis functions of P1(K) mapped

onto K.

4.5. Existence, Uniqueness and order of convergence

The existence and the uniqueness of the solution obtained using the SUPG method can be studied using
the Lax-Milgram theorem. Note that in convection dominated problems, the standard Galerkin formulation
fails to satisfy the coercivity condition leading to instabilities in the solution. We define the energy norm as
|||w|||22 = a||∇w||22 + τ ||w||22. For this norm, the linear functional Fτ (.) is continuous and the bilinear form
B(., .) satisfies:

B(u, u) ≥ |||u|||2 ∀u ∈ H1
0 (Ω) (37)

B(u,w) ≤ |||u||| ·
(
a−1/2||v||∞||w||

)
(38)

and thus is coercive and continuous with respect to the energy norm.
Theorem: If linear approximation is used on a finite element triangulation, then there exists a constant

C, asymptotically proportional to the mesh Peclet number with:

||∇(u− uh)|| ≤ Chmax
K ||u||H2(Ω) (39)

Theorem: If piecewise linear approximations is used on a uniform finite element triangulation with
h > 2a, then there exists a bounded constant C, independent of the diffusion coefficient with:

|||u− uh||| ≤ C (hmax
K )

3/2 ||u||H2(Ω) (40)

The error bounds in the L2 norm show a loss in the order of convergence by half-an-order for the SUPG
method which reflects that in the presence of steep layers and convection dominated regimes it is difficult to
achieve optimal convergence rates. Accuracy and convergence improvements can be obtained by resorting
to anisotropic mesh adaptations.

5. Numerical examples

The main objective of this paper is to provide a method that can be used to simulate diverse industrial
applications. For practical reasons and as noted above, it is highly desirable to find the most accurate
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solution using the available computational resources. In this section, we assess the performance of the newly
developed space and time adaptive algorithms on several time dependent problems. We first examine the
order of convergence of the numerical method using a well-known inner layers test case. The following two
examples deal with dynamic properties of the space-time adaptive procedure. In these examples, we present
the results in problems with boundary layers and internal layers that move through the domain and compare
them to [53]. Finally, the last two examples present coupled problems showing the ability of the proposed
method to automatically detect and reflect evolving/emerging layers, to produce oscillating free solutions
and to reduce the computational costs of a 3D large scale simulation.

5.1. Application to the steady convection-diffusion equation

We first consider a well-known steady test case [52, 38] with interior layer and variable convective field.
We set the computational domain Ω = (0, 1)2 and a diffusion coefficient a = 0.005. We choose the exact
solution to be continuous all over the domain but to develop an interior layer along the line y = −x+ 0.85:

u(x, y) =
(
1 + e

x+y−0.85
2a

)−1

The boundary conditions and the source term are derived from the exact solution. We consider a variable
velocity field v = (u(x, y), u(x, y))T . Figure 4(a) presents the numerical solution obtained on a mesh made
up of around 4, 000 elements. The obtained anisotropic mesh is shown in figure 4(b). One can notice the
high concentration of the elements along the line y = −x + 0.85 in order to accurately capture the inner
layer. Taking a closer look at the mesh in the zoomed version near the left boundary we can observe the
good orientation of the elements with the stretching in the direction of the sharp layer. This demonstrates
the ability of the algorithm to work under the constraint of a fixed number of nodes and to effectively
control the elements’ sizes, orientations and locations. This example aims at emphasizing the spatial order

(a) Solution (b) Adapted mesh (c) Convergence rate

Figure 4: Numerical solution, corresponding mesh and L∞, L2 and H1 norms of the error versus the number of elements in
the mesh for a = 0.005.

of convergence when using the mesh adaptation technique. The global convergence order is computed in
the L∞, L2 and H1 norms. As can be seen in figure 4(c) the convergence is of first order in the H1, L∞

norms and of second order in the L2 norm recovering the theoretical predictions. The very small errors in
the L2 norm reflect the advantage of the adapted mesh as it is well aligned with the solution that has strong
anisotropic features.

5.2. Convection-diffusion in a plane shear flow

We consider a problem proposed in [61] and revisited by [53] using a space-time adaptive algorithm.
It models the transport of a small source in a plane shear flow. The computational domain is set to
Ω = (0, 24000)× (−34000, 34000). We consider zero source term, a small diffusion coefficient k = 1, a final
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time T = 9000 and a convective field v = (v0 + λy, 0)t where a0 = 0.5 and λ = 1e−3. The initial condition
is a point source with mass m at (x0, y0) = (7200, 0). The analytical solution of the problem is given by:

u(x, y, t) =
m

4πεt
(
1 + λ2 t2

12

)1/2 exp−ζ

where

ζ =
(x− x− λyt/2)2

4εt
(
1 + λ2 t2

12

) +
y2

4εt
andx = x0 + a0t .

We start the numerical resolution at time t = 2400 with

m = 4πεt0

(
1 + λ2 t

2
0

12

)1/2

The objective of this test case is to assess and compare the performance of the developed adaptation
technique with the one proposed in [53]. Therefore, we repeated the simulations using the same number of
nodes.

Figure 5: The obtained isovalues and the adapted meshes at two different time step.

Figure 5 presents the isovalues of the temperature field and the adapted mesh for a fixed number of
nodes 8000. As shown in [53], we point out how well the mesh is stretched in the direction of high gradients
of the solution. The corresponding history of the L2 norm of the approximation error and the time-step size
evolution are provided in Table 1.

Number of nodes ϵpresent work ϵreference Nτ present work Nτ reference

1679 0.04556 0.116 27 159
3728 0.02303 0.0551 37 206
11990 0.00970 0.0265 58 281
40525 0.00149 0.0129 160 400

Table 1: The error and the number of time steps of the adapted solution at final time.

We can see how the time-step size increases as the solution is advected and diffused. We note that the
profile of the time-step variations is similar to the one presented in [53] with a better control of the L2 norm
of the error for almost the same number of nodes. Finally, for almost the same number of nodes, we achieve
a better control of the approximation error within a fewer number of time-steps.

Finally, we emphasize in Figure 6 that the optimal second order convergence is reached with respect to
the number of nodes and to the number time-steps. In accordance with [53], we have the same order of
convergence with fewer time-steps and a lower error which proves the efficiency and accuracy of the proposed
technique.
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Figure 6: Total number of time steps with respect to the tolerance.

5.3. Internal and boundary layers

We present a second test case, taken from [53], with challenging anisotropic features, exhibiting internal
and boundary layers. The convective field is considered to be constant v = (2, 1)t in the whole computational
domain Ω = (0, 1)2. The diffusion coefficient is set to a = 10−3 and zero source term is assumed. The initial
condition is zero everywhere except at the boundary where the boundary condition is defined by:

u(x, y) =


1 if {x = 0 , 0 ≤ y ≤ 1} ∪ {0 ≤ x ≤ 1 , y = 1} ,
δ−x
δ if {x ≤ δ , y = 0} ,

y−1+δ
δ if {x = 1 , y ≥ 1− δ} ,

0 if {x > δ , y = 0} ∪ {x = 1 , y ≤ 1− δ}.

As time advances, the gradient of temperature at the left boundary spreads into the domain creating an
internal layer that reaches the right wall resulting in a boundary layer. On the other hand, the discontinuity
at the top wall reduces with time. Figure 7 shows the evolution of the temperature over time together with
the corresponding anisotropically adapted mesh. A localized refinement of the mesh where the solution
exhibits steep layers can be clearly observed. To keep up with the fixed number of nodes, the mesh is
automatically coarsened at the locations of lower solution gradients. The plots also reflect how well the
mesh follows the propagation of the solution with time.

Note the importance of this test case to reflect the potential of the developed algorithm. If non adaptive
mesh is used, a very fine mesh size would be necessary everywhere inside the domain and a very small
time-step would be required to correctly capture the layers’ propagation along the whole domain.

Figure 8 shows the history of the time-step sizes that responds very well to the solution’s profile. We
notice that the algorithm starts by generating small time-steps in order to allow a good capture of the
solution’s gradients. As the temperature diffuses, the size is progressively increased then as it stabilizes
(around the time t = 0.5s), significant increase of the time-steps is observed.

We have reported in Table 2 the obtained error and the total number of time steps for several number of
nodes N . As observed in the previous example, we achieve a better control of the approximation error with
fewer time-steps. Figure 9 shows that the optimal second order of convergence with respect to the time step
is again recovered as the number of time step is multiplied by

√
2 when the user’s specified tolerance (TOL)

is divided by two.

5.4. Application to coupled heat transfer and fluid flows

The last two examples deal with 2D and 3D coupled heat transfer and fluid flows problems. We solved si-
multaneously the Navier-Stokes equations along with the heat transfer convection-diffusion equation. There-

fore, the adaptivity takes into account different fields: T
T∞

, v
∥v∥2

, ∥v∥2

∥v∥∞
. For the sake of simplicity, we will
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Figure 7: Numerical solutions at different time-steps with their corresponding anisotropically adapted meshes.

Figure 8: Evolution of the time-step size over time.

Number of nodes ϵpresent work ϵreference Nτ present work Nτ reference

3987 0.10369 0.25 46 163
12222 0.06134 0.125 62 247
38874 0.01964 0.0625 121 353
140057 0.00900 0.03125 204 502

Table 2: The error and the number of time steps of the adapted solution at final time.
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Figure 9: Total number of time steps with respect to the tolerance.

not discuss here the discretization of the Navier-Stokes equations and we kindly ask the reader to refer to
[62] for more details.

5.4.1. Forced convection inside a cavity

We consider a 2D forced convection problem. This test case can be regarded as a simplified model of a
gas-fired furnace or a temperature distribution inside a room.

Heated air is pumped into the enclosure from an inlet at the left wall with a velocity of magnitude 1m/s
and a temperature of 100K. Adiabatic condition for the temperature is applied at all other boundaries.
The air is vented out of the enclosure through the outlet positioned at the right wall. The computations
were run on a period of 10, 000s.

We have considered two different viscosity values (µ = 0.01 and µ = 0.0005) to test the performance of the
adaptive algorithms for quasi-static and unsteady flows. We have also varied the parametric components
of the vector field used to adapt the mesh. The aim of this test case is first to select the best set of
parameters for meshing and second to validate the efficiency of the space and time adaptive techniques.
The numerical results have shown that the vector field taking into account the velocity and the temperature

i.e. T
T∞

, v
∥v∥2

, ∥v∥2

∥v∥∞
gives the best results. Figures 10 and 11 show the obtained approximated temperature

and velocity’s magnitude and their corresponding mesh. Note the concentration of the elements not only
along the boundary layers but also around the emerging vortices and the detachment regions. This reflects
how, for a fixed number of nodes equal to 20, 000, the mesh is automatically coarsened in regions with low
gradient of the solution and is refined in regions of high gradients. Also note the alignment between the
direction of the gradient and the direction of refinement which allows an accurate capture of the anisotropy
of the physical phenomena.

We have tested the time-step algorithm with the different possible combinations for the adaptation vector
field. Figures 12(a) and 12(b) provide the evolution of the time-step sizes. The profiles of the time-step,
for the different combinations, are as expected in the case where the solution stabilizes after a certain
time. However, it can be noticed from the plot corresponding to the unsteady case that when adapting
with respect to the velocity field only, the time-step grows significantly and in turn the resulting numerical
solution is never stable. However, when adapting on the temperature alone and on the combination of both
the temperature and the velocity field, the time-step size oscillates around a small value allowing a good
capture of the solution’s details. This highlights once more the capability of the algorithm in producing
automatic and controlled time steps.

5.5. Application to 3D heat transfer and turbulent flow inside an industrial furnace

This test case is dedicated to the simulation of a 3D industrial furnace. The idea is to assess the capability
of the proposed algorithms to deal with a complex 3D geometry and to handle simulating long time heating
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Figure 10: Temperature and velocity profiles with the corresponding adapted mesh for µ = 0.01.

Figure 11: Temperature and velocity profiles with the corresponding adapted mesh for µ = 0.0005.

(a) µ = 0.01 (b) µ = 0.0005

Figure 12: Time-step evolution for the different possible combinations of the adaptation vector field.
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inside large scale furnaces.
The furnace is modeled as a hexagonal section duct of 2.7× 8.1× 5.3m3 forming one heat transfer zone.

All computations have been conducted by starting with a gas at rest with a constant temperature of 1000C.
Adiabatic temperature is considered at all other boundaries for sake of simplicity. The heated air is pumped
into the furnace at constant speed of 14m/s by a circular burner and located at the left vertical wall. The
air is vented out of the furnace through two outlets positioned at the bottom of the left vertical wall. The
3D computations aim at simulating an hour of heating and have been conducted in parallel on 32, 2.4Ghz
Opteron cores.

Figure 13 (top) shows the isothermal distribution at different time-steps. When the hot fluid spreads
along the volume of the furnace, it induces a turbulent motion within the geometry. This forced convection is
caused by the interaction of the moving stream and the stationary fluid inside the furnace. The numerically
obtained temperature distribution clearly reflects the expected flow pattern. A number of small vortexes
inside different buffer zones can be observed. The latter are due to the turbulence dissipation and mixing
of the hot and cold air.

Figure 13 (bottom) highlights how well the mesh is adapted to capture the gradients of the solution,
the boundary layers and the emerging vortices. All the boundary layers as well as the vortices are sharply
captured and identified. The obtained meshes show the stretching of the elements and the high resolution
near the walls, in the corners and at the location of high gradients. The anisotropic adaptive procedure
modifies the mesh, according to the fixed number of nodes ( 100, 000), in such a way that the local density
is adequately distributed in all directions. Recall again that the algorithm builds up the mesh in a way to
maximize the accuracy of the numerical solution. Note that for such forced convection, the mesh is adapted
only according to the velocity components.

Figure 13: Isotherms inside the furnace (Top) and corresponding adapted meshes (bottom) at three different time-steps.

The results describing only one hour of the heating process required 100 days of computations on 32
cores with a fixed time-step equal to 0.005s. This points out the necessity to supply fast algorithms capable
of reproducing the full heating sequences in a reasonable time. Significant CPU time and computational
cost were saved by applying the time adaptive procedure as it required only 2 days of calculations (see table
3).

6. Conclusion

We proposed in this paper a new adaptive time-step technique combined with anisotropic mesh adap-
tation for the solution of unsteady convection-dominated problems. A Streamline Upwind Petrov-Galerkin
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CPU Time (s)
Non-Adaptive ∆t = 0.005s 8,640,000

Adaptive ∆t 172,800
Ratio 50

Table 3: CPU time required for computing the solution with non-adaptive and a space/time adaptive methods

(SUPG) finite element method is presented and used to solve the unsteady convection-diffusion equation.
An a posteriori error estimation based on the length distribution tensor approach and the associated edge
based error estimator is applied to the stabilized finite element solution detecting automatically all sharp
gradients, inner and boundary layers. A new time error estimator is derived and combined with the space
adaptivity to provide automatically an appropriate time-step. Combining a stabilized finite element method
of the SUPG type with the space and time adaptivity has shown to be favourable for simulating convection-
dominated problems. All the meshes are obtained by solving an optimization problem under the constraint
of a fixed number of nodes in the mesh. Several numerical 2D and 3D test cases are presented and show
that the use of both space and time adaptivity allows the recovery of the global convergence order of the
numerical schemes, reduces the computational time and cost and produces accurate and oscillation free
numerical solutions.
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