On a unique mesh modification operator for mesh adaptation

Adrien Loseille 1

¹EPI GAMMA3 INRIA Paris-Rocquencourt

A. Theoretical background
 Concept of Metric-Based Mesh Adaptation
 Multiscale Anisotropic Mesh Adaptation

 B. Algorithms
 Volume cavity-based operators
 Surface cavity-based operators
 Hybrid cavity-based operators

Why Mesh Adaptation ?

Flow characteristics

- Phenomena are concentrated in small regions of the computational domain
 - → uniform meshes are not optimal in term of sizes
- Phenomena are anisotropic: shock waves, boundary layers, ...
 with uniform meshes are not optimal in term of directions
- These regions are moving if the flow is unsteady
 ~ require an uniformly fine mesh in all evolution regions

In the real world we face:

- 3D problems
- Complex geometries
- Complex flows
- ⇒ Problem solution is *a priori* unknown
- \implies Simulation requires a large number of degrees of freedom

Development of methods in order to reduce the complexity

one among them mesh adaptation

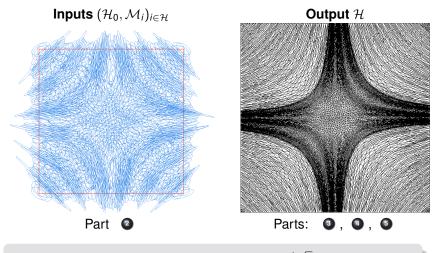
Idea: Modify discretization of Ω to control solution accuracy

Outline

Concept of Metric-Based Mesh Adaptation

- Hybrid cavity-based operators

Generation of Adapted Meshes



 $\mathcal{H} \text{ unit mesh } \iff \forall \boldsymbol{e}, \ \ell_{\mathcal{M}}(\boldsymbol{e}) \approx 1 \text{ and } \forall \mathcal{K}, \ |\mathcal{K}|_{\mathcal{M}} \approx \begin{cases} \sqrt{3}/4 & \text{in 2D} \\ \sqrt{2}/12 & \text{in 3D} \end{cases}$

Concept of Metric-Based Mesh Adaptation

2 Multiscale Anisotropic Mesh Adaptation

- 3 Volume cavity-based operators
- Surface cavity-based operators
- 5 Hybrid cavity-based operators

Minimizing the Interpolation Error in L^{ρ} -norm

An ill-posed problem

Find \mathcal{H}_{opt} having N vertices such that $\mathcal{H}_{opt}(u) = \operatorname{Arg\,min}_{\mathcal{H}} \|u - \Pi_{h}u\|_{\mathcal{H}, L^{p}(\Omega)}$

formatics **/**mathematics

We proposed a continuous mesh framework to solve this problem [Loseille and Alauzet, SINUM 2010]

Discrete	Continuous	
Element K	Metric tensor ${\cal M}$	
Mesh \mathcal{H} of Ω_h	Riemannian metric space $\textbf{M} = (\mathcal{M}(\textbf{x}))_{\textbf{x} \in \Omega}$	
Number of vertices N_v	Complexity $\mathcal{C}(\mathbf{M}) = \int_{\Omega} \sqrt{\det(\mathcal{M}(\mathbf{x}))} d\mathbf{x}$	
Linear interpolate $\Pi_h u$	Continuous linear interpolate $\pi_{\mathcal{M}} u$	

Working in this framework enables us to use powerful mathematical tool

Continuous Mesh and Global Duality

Definition

• function
$$\mathbf{M} : \mathbf{a} \in \Omega \mapsto \mathcal{M}(\mathbf{a}),$$

• density:
$$d = \frac{1}{h_1 h_2 h_3} = \sqrt{\lambda_1 \lambda_2 \lambda_3}$$
,

- *n* anisotropic quotients $r_i = \frac{h_i^3}{h_1 h_2 h_3}$
- complexity C :

$$\mathcal{C}(\mathbf{M}) = \int_{\Omega} d(\mathbf{a}) \, d\mathbf{a} = \int_{\Omega} \sqrt{\det(\mathcal{M}(\mathbf{a}))} \, d\mathbf{a}$$

Matrix rewriting

$$\mathcal{M}(\mathbf{a}) = d^{\frac{2}{3}}(\mathbf{a}) \, \mathcal{R}(\mathbf{a}) \begin{pmatrix} r_1^{-2/3}(\mathbf{a}) & & \\ & r_2^{-2/3}(\mathbf{a}) & \\ & & r_3^{-2/3}(\mathbf{a}) \end{pmatrix} {}^t \mathcal{R}(\mathbf{a}).$$

Continuous Interpolation Error

Local interpolation error [Loseille and Alauzet, SINUM 2010]

For all *K* unit for \mathcal{M} and for all *u* quadratic positive form $(u(\mathbf{x}) = \frac{1}{2} {}^t \mathbf{x} H_u \mathbf{x})$:

$$\|u - \Pi_h u\|_{\mathbf{L}^1(\mathcal{K})} = \frac{|\mathcal{K}|}{40} \sum_{i=1}^{6} {}^t \mathbf{e}_i |H_u| \mathbf{e}_i$$
$$= \frac{\sqrt{2}}{240} \underbrace{\det(\mathcal{M}^{-\frac{1}{2}})}_{mapping} \underbrace{\operatorname{trace}(\mathcal{M}^{-\frac{1}{2}} H_u \mathcal{M}^{-\frac{1}{2}})}_{anisotropic term}$$

Discrete-continuous duality

$$\begin{aligned} \forall \mathbf{a} \in \Omega, \quad |\boldsymbol{u} - \pi_{\mathcal{M}} \boldsymbol{u}|(\mathbf{a}) &= 2 \, \frac{\|\boldsymbol{u} - \Pi_{h} \boldsymbol{u}\|_{\mathbf{L}^{1}(K)}}{|K|} \\ &= \frac{1}{10} \mathrm{trace} \big(\mathcal{M}(\mathbf{a})^{-\frac{1}{2}} \, |\mathcal{H}_{\boldsymbol{u}}(\mathbf{a})| \, \mathcal{M}(\mathbf{a})^{-\frac{1}{2}} \big) \end{aligned}$$

Adrien Loseille

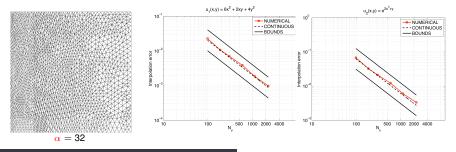
Examples

Sequence of 2D embedded continuous meshes $\mathbf{M}(\alpha) = (\mathcal{M}_{\alpha}(\mathbf{x}))_{\mathbf{x} \in \Omega}$

$$\mathcal{M}_{\alpha}(x,y) = \alpha \begin{pmatrix} h_1^{-2}(x,y) & 0\\ 0 & h_2^{-2}(x,y) \end{pmatrix} \text{ with } \begin{array}{c} h_1(x,y) = 0.1(x+1) + 0.05(x-1)\\ h_2(x,y) = 0.2 \end{pmatrix}$$

Analyze the interpolation error of functions:

$$u_1(x, y) = 6x^2 + 2xy + 4y^2$$
 and $u_2(x, y) = e^{(2x^2+y)}$



Adrien Loseille

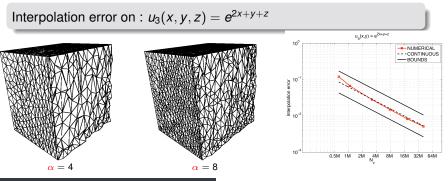
Examples

Sequence of 3D embedded continuous meshes

$$\begin{split} \mathbf{M}(\alpha) &= (\mathcal{M}_{\alpha}(\mathbf{x}))_{\mathbf{x} \in \Omega} \text{ defined on } \Omega = [0,1] \times [0,1] \times [0,1] \text{ by:} \\ \mathcal{M}_{\alpha}(x,y,z) &= \alpha \begin{pmatrix} h_1^{-2}(x,y,z) & 0 & 0 \\ 0 & h_2^{-2}(x,y,z) & 0 \\ 0 & 0 & h_3^{-2}(x,y,z) \end{pmatrix}, \end{split}$$

where

$$h_1(x, y, z) = 0.1(x + 1) + 0.05(x - 1), h_2(x, y, z) = 0.2, h_3(x, y, z) = 0.2(z + 2)$$



An ill-posed problem

Find \mathcal{H}_{opt} having *N* vertices such that $\mathcal{H}_{opt}(u) = \operatorname{Argmin}_{\mathcal{H}} \|u - \Pi_h u\|_{\mathcal{H}, L^p(\Omega)}$

A well-posed problem

Find $\mathbf{M}_{\mathbf{L}^{p}} = (\mathcal{M}_{\mathbf{L}^{p}}(\mathbf{x}))_{\mathbf{x} \in \Omega}$ of complexity N such that

$$\begin{aligned} E_{\mathbf{L}^{\rho}}(\mathbf{M}_{\mathbf{L}^{\rho}}) &= \min_{\mathbf{M}} E_{\mathbf{L}^{\rho}}(\mathbf{M}) &= \min_{\mathbf{M}} \| u - \pi_{\mathcal{M}} u \|_{\mathbf{L}^{\rho}(\Omega)} \\ &= \min_{\mathbf{M}} \left(\int_{\Omega} |u(\mathbf{x}) - \pi_{\mathcal{M}} u(\mathbf{x})|^{\rho} \, \mathrm{d}\mathbf{x} \right)^{\frac{1}{\rho}} \end{aligned}$$

Solved by a calculus of variations

Optimal metric

L

Global normalization: to reach the constraint complexity N

$$D_{L^{p}} = N^{\frac{2}{3}} \left(\int_{\Omega} (\det |H_{u}|)^{\frac{p}{2p+3}} \right)^{-\frac{2}{3}} \text{ and } D_{L^{\infty}} = N^{\frac{2}{3}} \left(\int_{\Omega} (\det |H_{u}|)^{\frac{1}{2}} \right)^{-\frac{2}{3}}$$

Local normalization: sensitivity to small solution variations, depends on L^p norm

- Optimal directions equal to Hessian eigenvectors
- Diagonal matrix of absolute values of Hessian eigenvalues

Minimizing the Interpolation Error in L^{p} -norm

It verifies the following properties: [Loseille and Alauzet, SINUM 2010]

- MLp(u) is unique
- M_L(u) is locally aligned with the eigenvectors basis of H_u and has the same anisotropic quotients as H_u
- M_{L^p}(u) provides an optimal explicit bound of the interpolation error in L^p norm:

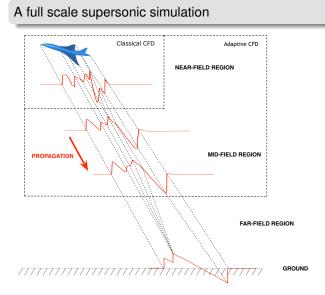
$$\|\boldsymbol{u} - \pi_{\mathcal{M}_{\mathbf{L}^{p}}}\boldsymbol{u}\|_{\mathbf{L}^{p}(\Omega)} = 3N^{-\frac{2}{3}} \left(\int_{\Omega} (\det|\boldsymbol{H}_{\boldsymbol{u}}|)^{\frac{p}{2p+3}}\right)^{\frac{2p+2}{3p}}$$

For a sequence of embedded continuous meshes (M^N_{L^p}(u))_{N=1...∞}, the asymptotic order of convergence verifies:

$$\|u-\pi_{\mathcal{M}_{L^{p}}^{N}}u\|_{L^{p}(\Omega)}\leq\frac{Cst}{N^{2/3}}.$$

Thus, we may expect a global second order of mesh convergence for the mesh adaptation process

A more challenging computation

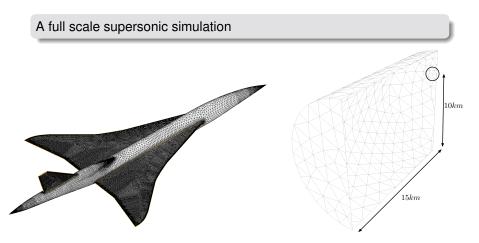


Adrien Loseille Unique Operator for Mesh Adaptation

nformatics 🖉 mathematics

A more challenging computation

Informatics mathematics

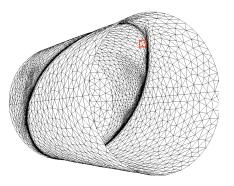


- initial mesh: frontal mesh generation, # vert. 415 535, # tets 2 397 666
- volume [5.4*e*⁻¹¹, 4.7*e*¹⁰]

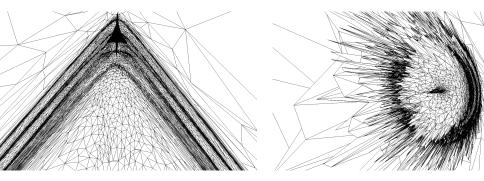
•
$$h_{min}/h_{max} = 1.0^{-9}$$

Iteration	Complexity	Ratio	Quotient	# Vertices	# Tet.	CPU time
5	80 000	200	10964	432 454	2 254 826	1 h 10 mn
10	160 000	383	30 295	608 369	3 294 197	2 h 54 mn
15	240 000	698	81 129	1 104 910	6 243 462	6 h 9 m n
20	400 000	1 0 8 9	177 295	1 757 865	10 125 724	11 h 15 mn
25	600 000	1 575	340 938	2572814	14967820	18 h 47 mn
30	800 000	1 907	503 334	3 299 367	19264402	28 h 35 mn

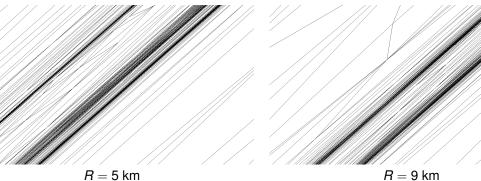
- 8 Cpu Mac Intel Xeon with 20 GB of memory
- total CPU time is around 28 h 35 mn
- 75 % FEFLO, 35 % in the remeshing, interpolation and error estimate.



3 299 367 vertices and 19 264 402 tets.

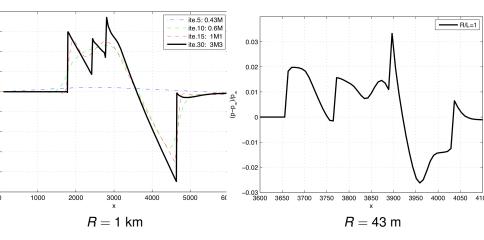


3 299 367 vertices and 19 264 402 tets.

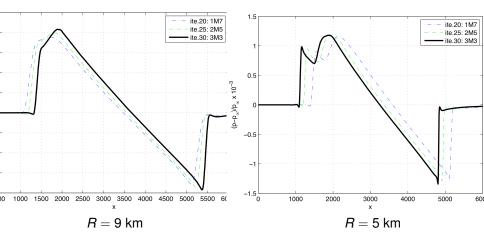


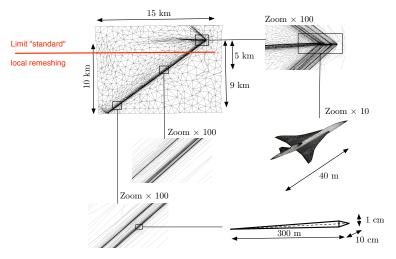
R = 9 km

3 299 367 vertices and 19 264 402 tets.



Adrien Loseille Unique Operator for Mesh Adaptation





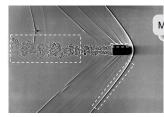
- Error estimate: L^2 estimates \implies no h_{min} and small scales
- Solver : Implicit time-stepping
- Adaptation: anisotropy and quality \Longrightarrow accuracy and stability

Mesh Generation Algorithms

- Volume cavity-based operators
- Surface cavity-based operators

5 Hybrid cavity-based operators

Problematics : Mesh Generation



Many phenomena \Longrightarrow Many kinds of meshes

- Turbulent flow: isotropic,structured, ...
- Shock waves: anisotropic O(1/100 1000)
- Boundary-layers: quasi-structured O(1/10⁴ - 10⁶)

Frontal	High-Quality	Small Anisotropy
Delaunay	Robust	Anisotropy but Bad Quality
Octree-based	Robust	Surface mesh not constrained
Cartesian	Robust	Low Anisotropy, viscous effects
BL Extrusion		Closure of the domain, adaptivity
Local Refinement	Robust	Slow, High Anisotropy but Bad Quality

\implies No Unique Technology \implies Robustness decreases with Geometry Complexity

[Coupez, Forge3D, CEMEF], [George et al., GHS3D, INFIA], [Ito, UAB-JAXA], [Löhner, Gen3D, GMU] [Marcum et al., AFLR, MSU], [Oubay et al., Swansea U.], [Rassineux, UTC], [Remacle et al., Louvain U.] [Shepard et al., MeshAdapt, SCOREC], [Schöberl et al., NETGEN, JKU], [Si, TetGen, WIAS], [Yvinec et al., CGAL, INRIA]

Robustness is the primary concern

- Local mesh modification operators
 - adaptivity is an iterative procedure
 - no mesh ⇒ no solution
 - always a valid mesh on output
 - use of simplicial meshes

Handling all types of meshes is the secondary concern

Onique operator

- mesh adaptation : surface-volume
- mesh optimization: edge-face swaps, point smoothing
- boundary layer mesh generation: hybrid entities insertion

Cavity-based operators

- Generalization of edge-based operators
- Each operator is either an insertion or a re-insertion

insertion, collapse, edge-face swaps, smoothing, surface projection, quasi-structured layers generation, ...

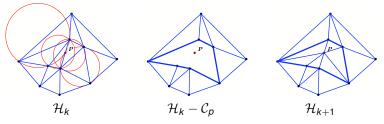
- Volume operators
- Surface operators
- Hybrid operators (Boundary Layer)

- 2 Multiscale Anisotropic Mesh Adaptation
- Volume cavity-based operators
 - 4 Surface cavity-based operators
- 5 Hybrid cavity-based operators

Volume operators: Generality

Insertion of P (incremental Delaunay context)

$$\mathcal{H}_{k+1} = \mathcal{H}_k - \mathcal{C}_P + \mathcal{B}_P$$



[see authors: Baker, Borouchaki, Chen, Chrisochoides, George, Miller, Rivara, Shewchuck, Shimada, Si, Simpson, Wang, Weatherill, CG community...]

Validity principle

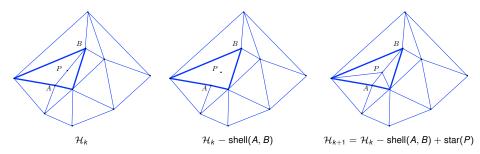
- a) \mathcal{H}_k is valid
- b) C_P is connected by faces
- c) P visible from external face of C_P

Adrien Loseille

$$\implies \mathcal{H}_{k+1}$$
 is valid

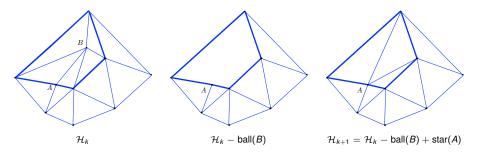
Different choices of C_P lead to different operators

- edge-insertion:
 - *P* ∈ [*A*, *B*]
 - $C_P = \text{shell}(A, B)$
 - insert P



Different choices of C_P lead to different operators

- edge-insertion
- edge-collapse:
 - $C_A = \text{ball}(B)$
 - re-insert A



Different choices of C_P lead to different operators

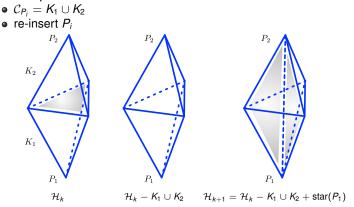
- edge-insertion
- edge-collapse
- point smoothing/moving:

•
$$C_A = \text{ball}(A)$$

• re-insert A

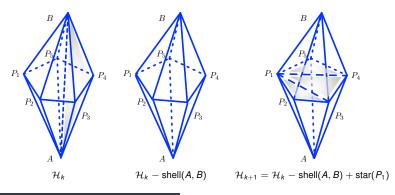
Different choices of C_P lead to different operators

- edge-insertion, edge-collapse, point smoothing/moving
- face-swap



Different choices of \mathcal{C}_P lead to different operators

- edge-insertion, edge-collapse, point smoothing/moving
- face-swap
- edge-swap [A,B]
 - $C_{P_i} = \text{shell}(A, B)$
 - re-insert P_i

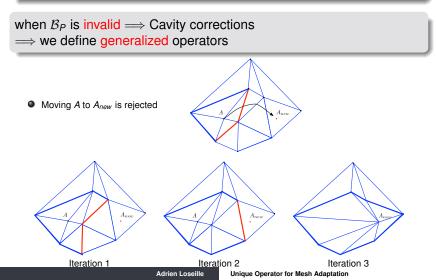


Adrien Loseille

Volume operators: Cavity correction

Informatics mathematics

if \mathcal{B}_P is valid from these initializations \implies we recover edge-based/standard operators



Operators implemented in a metric-based framework $(\mathcal{H}, \mathcal{M})$, redefinition of length and quality

Step 1: Generate a unit-mesh

- Collapse all edges of size lower than $1/\sqrt{2}$
- Split all edges of size greater than $\sqrt{2}$

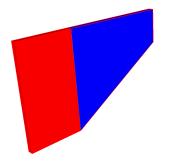
Step 2: Mesh optimization

- Perform point smoothing to improve $Q_{\mathcal{M}}$
- Perform edge and face swaps to improve $Q_{\mathcal{M}}$

3D double mach reflection

Ensuring optimality for unsteady simulations anisotropy <> quality <> minimal time step

- 8-processors 64-bits MacPro with an IntelCore2 chipsets with a clockspeed of 2.8GHz with 32Gb of RAM
- Unsteady multi-scale error estimate [Alauzet et Olivier, AIAA 2011]
- Feflo compressible flow solver [Löhner, see AIAA from 1996 to 2013]
- 30 mesh adaptations, 5 fixed point iterations, 21 metric intersection in time
- Simultion CPU time 8h55m (Computation: first 1m30s and last 1h56m)
- 80% Solver, 20% mesh adaptation



Mesh of size N with an accuracy of h:

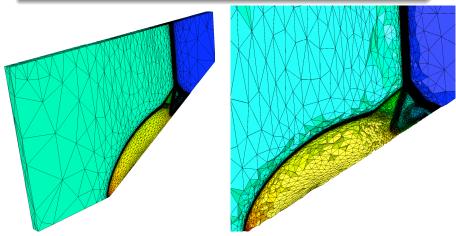
$$\frac{h}{2} \rightsquigarrow 8N \text{ and } dt \sim h_{min} \rightsquigarrow \frac{dt}{2} \implies \text{CPU} \times 16$$
$$\frac{h}{4} \rightsquigarrow 64N \text{ and } dt \sim h_{min} \rightsquigarrow \frac{dt}{4} \implies \text{CPU} \times 256$$

the quality of generated mesh must be perfect \Rightarrow NO bad element

$$dt \sim h_{min} \Longrightarrow h_{min} = 0.01 h_{target} \rightsquigarrow \text{CPU} imes 100$$

3D double mach reflection

Ensuring optimality for unsteady simulations anisotropy <> quality <> minimal time step



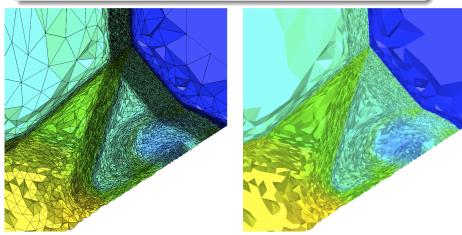
235 095 vertices, 1 310 082 tetrahedra and 57 864 boundary faces

Adrien Loseille

3D double mach reflection

informatics mathematics

Ensuring optimality for unsteady simulations anisotropy <> quality <> minimal time step



235 095 vertices, 1 310 082 tetrahedra and 57 864 boundary faces

Adrien Loseille

Features of *generalized* cavity-based volume operators

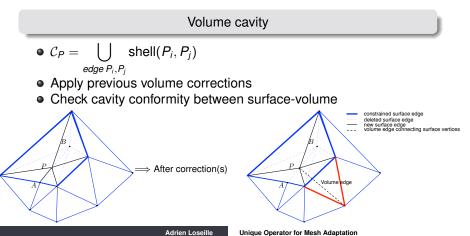
- Embed (multiples) collapses/swaps in one call of the operator Improve locally the mesh quality
- Additional more restrictive control possible (tetrahedra altitude) Ensure optimal CPU for the flow solver
- No more threshold based on quality Faster convergence
- Only ONE operator throughout the code

- Concept of Metric-Based Mesh Adaptation
- 2 Multiscale Anisotropic Mesh Adaptation
- 3 Volume cavity-based operators
- Surface cavity-based operators
- 5 Hybrid cavity-based operators

Surface operators (1/2)

Surface cavity

- Check geometric surface approximation
- Check topology conformity (patches, lines, ridges, corners)
- Check manifold components



Surface operators (2/2)

Curvature-based metric

[Borouchaki and Frey, 1997, Frey, IMR 2000, Aubry et al., JCP 2013]

$$\mathcal{M}_{\mathcal{S}}(\varepsilon) = (\mathbf{u}_{\mathcal{S}}, \mathbf{v}_{\mathcal{S}}, \mathbf{n}_{i}) \begin{pmatrix} \frac{\lambda_{1,\mathcal{S}}}{\varepsilon} & \mathbf{0} \\ 0 & \frac{\lambda_{2,\mathcal{S}}}{\varepsilon} & \mathbf{0} \\ 0 & \mathbf{0} & h_{max}^{-2} \end{pmatrix}^{t} (\mathbf{u}_{\mathcal{S}}, \mathbf{v}_{\mathcal{S}}, \mathbf{n}_{i})$$

- Local surface approximation : no global parameter, ...
- Background surface mesh, background discrete metric
- Projection on background surface mesh

Cavity enhancements to limit volume cavity growth

- Steiner point to ease surface point insertion
- On-the-fly cavity retrianglulation
- On-the-fly cavity optimization (2-3 face swaps)

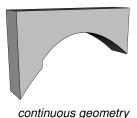
Adrien Loseille

Just to be able to adapt correctly the surface mesh while preserving the volume mesh

- Inserting/projecting a surface point to a new position
- Avoid dependance on the volume mesh

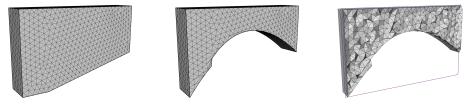


initial mesh

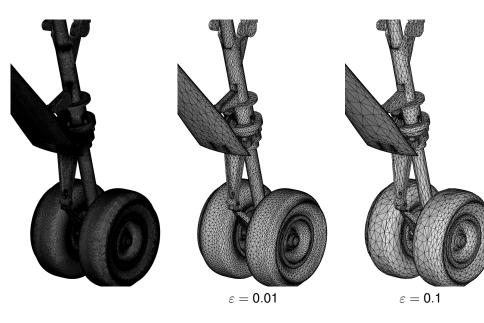


Just to be able to adapt correctly the surface mesh while preserving the volume mesh

- Inserting/projecting a surface point to a new position
- Avoid dependance on the volume mesh



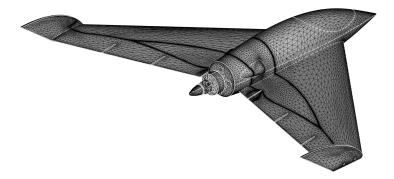
 \implies Standard movement/smoothing always REJECTED \implies One call of Generalized point smoothing \implies Surface mesh adaptation with a boundary layer (volume) mesh



Volume-surface adaptation

Blending surface approximation $\mathcal{M}_{\mathcal{S}}$ and computational metric $\mathcal{M}_{L^{\rho}}$

- Transsonic flight at Mach 0.7
- Multi-scale metric [Loseille and Alauzet, IMR 2009]
- Wolf flow solver [Alauzet and Loseille, JCP 2009]



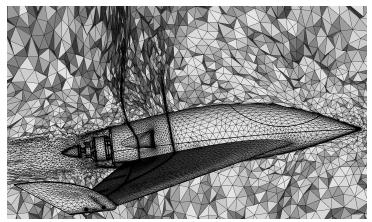
43 000 surface points 85 000 triangles

Adrien Loseille

Volume-surface adaptation

Blending surface approximation $\mathcal{M}_{\mathcal{S}}$ and computational metric $\mathcal{M}_{L^{p}}$

- Transsonic flight at Mach 0.7
- Multi-scale metric [Loseille and Alauzet, IMR 2009]
- Wolf flow solver [Alauzet and Loseille, JCP 2009]



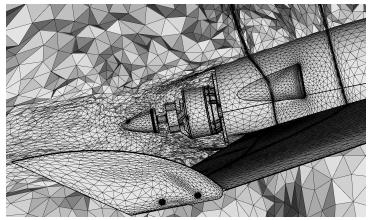
345 000 vertices 85 000 triangles 2 million tetrahedra

Adrien Loseille

Volume-surface adaptation

Blending surface approximation $\mathcal{M}_{\mathcal{S}}$ and computational metric $\mathcal{M}_{L^{p}}$

- Transsonic flight at Mach 0.7
- Multi-scale metric [Loseille and Alauzet, IMR 2009]
- Wolf flow solver [Alauzet and Loseille, JCP 2009]



345 000 vertices 85 000 triangles 2 million tetrahedra

Adrien Loseille

Features of *generalized* cavity-based surface operators

- Embed collapses/swaps in one call of the operator Improve locally the mesh quality
- Surface points are directly inserted to the *desired* position *Remove the need of CPU-intensive, elasticity-based moving*
- Surface remeshing becomes independent of the volume mesh *Remeshing with boundary layers*

- Hybrid cavity-based operators

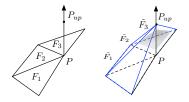
Hybrid cavity-based operator

Hybrid entities insertion for quasi-structured mesh generation

- Given a starting surface mesh $S = (F_i)_i$
- Given a set of normals (directions of extrusion) (**n**_j)_j
- Given visibility conditions $(\mathbf{n}_i, F_{k_1}, \ldots, F_{k_n})$

Constrained insertion of P_{up} from P, $(\mathbf{n}_i, F_{k_1}, \ldots, F_{k_n})$

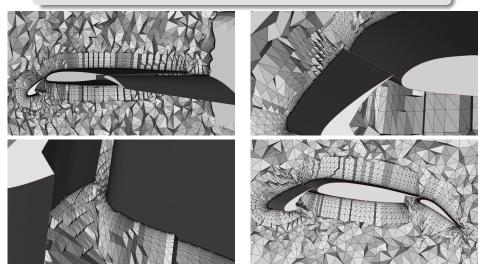
$$egin{aligned} \mathcal{H}_{k+1} &= \mathcal{H}_k - (\mathcal{C}_{\mathcal{P}} - oldsymbol{\mathcal{K}}) + \mathcal{B}_{\mathcal{P}} \ \mathcal{S}_{k+1} &= oldsymbol{S}_k - \cup_i oldsymbol{F}_{k_i} + \cup_i oldsymbol{\widetilde{F}}_{k_i} \end{aligned}$$



- Front surface S is updated
- *K* is updated with elements having one *F_{k_i}* as face
- Surface cavity checks are applied to *S*_{*k*+1}

This operator generates quasi-structured layers hybrid entities depending on the nature of the faces

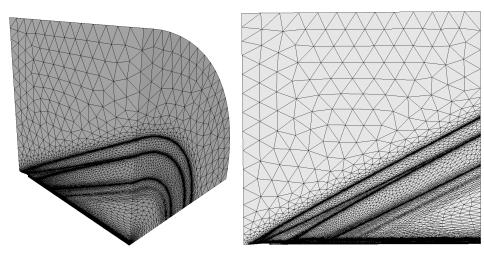
[Loseille and Löhner, IMR 2012]



100 000 prisms/second, laptop Mac i7 @ 2,7 Ghz

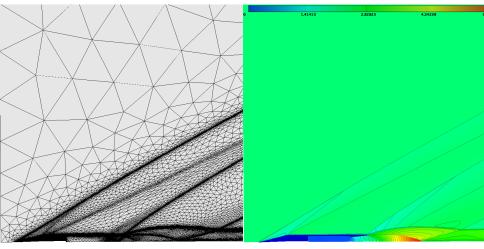
Blending $\mathcal{M}_{\mathcal{S}},$ boundary layer and computational metric $\mathcal{M}_{L^{\rho}}$

- Supersonic inflow at mach 2.2
- Laminar, Reynolds number of 1.8 Million.
- Surface/volume remeshing
- Mixed structured/unstructured boundary layer
- Adaptation on the density/mach
- Feflo flow solver [Löhner, see AIAA from 1996 to 2013]
- 6 hours on 8 procs (Mac book pro)



- 1,4 million of vertices, 8 millions of tets
- 10 quasi-structured layers recovered at each adaptation

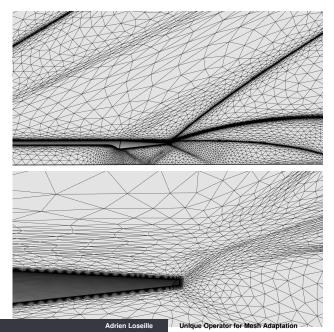
Adrien Loseille

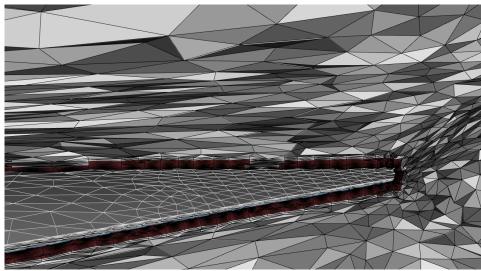


Time: 0

- 1,4 million of vertices, 8 millions of tets
- 10 quasi-structured layers recovered at each adaptation

Adrien Loseille





- 1,4 million of vertices, 8 millions of tets
- 25 quasi-structured layers recovered at each adaptation

Adrien Loseille

Conclusion

Cavity-based local operators

- unique operator with multiple cavity initializations/corrections
- adaptive code (≈ 150 000 lines of code)
 ⇒ ease of code robustness/maintenance/improvements

Achievements

- Surface and volume remeshing in a adaptive robust context
- First runs of adaptive mesh adaptation with a mixed approach

Long term goals

- Fully adaptive hybrid mesh adaptation : boundary layer, cartesian, structured, anisotropic, uniform, ...
- Adaptivity for turbulent NS equations

Adrien Loseille

Acknowledgments

- INRIA
 - Frédéric Alauzet
 - Alain Dervieux
 - Paul Louis George
 - Loïc Maréchal
- GMU CFD center:
 - Fernando Camelli
 - Rainald Löhner
- NRL:
 - Romain Aubry
- Boeing:
 - Todd R. Michal