Unsteady Mesh Adaptation

Nicolas Barral, Adrien Loseille and Frédéric Alauzet

INRIA - Gamma3 Project - Rocquencourt, France

Kick-off ANR MAIDESC

- Unsteady solutions: metric-based anisotropic mesh adaptation for unsteady flows
- 2 Moving geometries: moving mesh algorithm
- Our Perspectives

Unsteady Mesh Adaptation

2 Moving Mesh Algorithm

3 Perspectives

(INRIA - Gamma3 Project - Rocquencourd Unsteady Mesh Adaptation

Motivations

To address these problems : \mathbf{L}^{ρ} metric-based adaptation

 Error estimate → metric field → unit mesh [Vallet, 1992], [Casto-Diaz et Al., 1997], [Hecht et Mohammadi, 1997] [Peraire et Al., 1987] [Zienkiewicz et Wu, 1994]

 \implies based on continuous mesh model

- Unit mesh obtained with a local remesher
 - \implies cavity-based primitive [Loseille, IMR, 2012]

Other mesh adaptation methods:

[Bottasso, Tango, Poly. Milano], [Coupez, Forge3D, CEMEF], [Dobrinsky et al., MMG3D, UMB], [George et al., INRIA] [Lipnikov et al. Los Alamos], [Loseille, Feflo.a, INRIA], [Park, Nasa Langley], [Piggot, MadLib, Imp. College] [Oubay et al., Swansea U.], [Remacle et al., Louvain U.], [Shepard et al., MeshAdapt, SCOREC]

Discrete	Continuous		
Element <i>K</i>	Metric tensor ${\cal M}$		
Volume <i>K</i>	Volume $lpha \left(det \mathcal{M} ight)^{-rac{1}{2}}$		
Mesh ${\mathcal H}$ of Ω_h	Riemannian metric space $\mathbf{M} = (\mathcal{M}(\mathbf{x}))_{\mathbf{x} \in \Omega}$		
Number of vertices N_v	Complexity $\mathcal{C}(M) = \int_{\Omega} \sqrt{\det(\mathcal{M}(x))} dx$		
Linear interpolate $\Pi_h u$	Continuous linear interpolate $\pi_{\mathcal{M}} u$		
Interpolation error $\ u - \Pi_h u\ $	$\operatorname{Trace}(\mathcal{M}^{-rac{1}{2}} \mathcal{H}_u \mathcal{M}^{-rac{1}{2}})$		

Problem

• Discrete space-time mesh adaptation :

Find \mathcal{H}_{opt} having N_{st} space-time vertices such that

$$\mathcal{H}_{opt}(u) = \operatorname{Arg\,min}_{\mathcal{H}} \| u - \prod_{h} u \|_{\mathcal{H}, \mathsf{L}^{p}(\Omega \times [0, T])}$$

• Continuous space-time mesh adaptation:

Find $\mathbf{M}_{\mathbf{L}^p} = (\mathcal{M}_{\mathbf{L}^p}(\mathbf{x}, t))_{(\mathbf{x}, t) \in \mathcal{Q}}$ of space-time complexity N_{st} such that

$$\begin{split} E_{\mathsf{L}^{p}}(\mathsf{M}_{\mathsf{L}^{p}}) &= \min_{\mathsf{M}} \left(\int_{0}^{T} \int_{\Omega} |u(\mathbf{x}, t) - \pi_{\mathcal{M}} u(\mathbf{x}, t)|^{p} \, \mathrm{d}\mathbf{x} \mathrm{d}t \right)^{\frac{1}{p}} \\ &= \min_{\mathsf{M}} \left(\int_{0}^{T} \int_{\Omega} \mathrm{Trace} \left(\mathcal{M}(\mathbf{x}, t)^{-\frac{1}{2}} |H_{u}(\mathbf{x}, t)| \mathcal{M}(\mathbf{x}, t)^{-\frac{1}{2}} \right)^{p} \, \mathrm{d}\mathbf{x} \mathrm{d}t \right)^{\frac{1}{p}} \\ &\text{under constraint} \quad \mathcal{C}_{st}(\mathsf{M}) = N_{st} = \int_{0}^{T} \tau(t)^{-1} \left(\int_{\Omega} d_{\mathcal{M}}(\mathbf{x}, t) \mathrm{d}\mathbf{x} \right) \, \mathrm{d}t \end{split}$$

6 / 32

Fixed-Point Mesh Adaptation Algorithm [Alauzet et al., JCP 2007]

• A global fixed-point algorithm

- \implies to compute the space-time metric complexity
- \implies to converge the non-linear mesh adaptation problem
- \implies to predict the solution evolution
- Split the simulation into several time sub-intervals and set an adapted mesh for each sub-interval to limit the number of meshes

$$[0, T] = [0 = t_0, t_1] \cup ... \cup [t_i, t_{i+1}] \cup ... \cup [t_{n_{adap}} - 1, t_{n_{adap}}].$$

 \implies use of a *mean* hessian on each sub-interval

Fixed-point loop

(INRIA - Gamma3 Project - Rocquencourt

Unsteady Mesh Adaptation

7 / 32

Problem

• Continuous space-time mesh adaptation :

$$E_{\mathbf{L}^{p}}(\mathbf{M}_{\mathbf{L}^{p}}) = \min_{\mathbf{M}} \left(\int_{0}^{T} \int_{\Omega} \operatorname{Trace} \left(\mathcal{M}(\mathbf{x}, t)^{-\frac{1}{2}} | \mathcal{H}_{u}(\mathbf{x}, t) | \mathcal{M}(\mathbf{x}, t)^{-\frac{1}{2}} \right)^{p} \mathrm{d}\mathbf{x} \mathrm{d}t \right)$$

• Semi-discrete space-time mesh adaptation with sub-intervals

Find
$$\mathbf{M}_{\mathbf{L}^{p}}^{i} = (\mathcal{M}_{\mathbf{L}^{p}}^{i}(\mathbf{x}))_{(\mathbf{x})\in\Omega}$$
 of space-time complexity N^{i} such that
 $E_{\mathbf{L}^{p}}^{i}(\mathbf{M}_{\mathbf{L}^{p}}^{i}) = \min_{\mathbf{M}^{i}} \int_{\Omega} \operatorname{trace} \left((\mathcal{M}^{i})^{-\frac{1}{2}}(\mathbf{x}) \mathbf{H}_{u}^{i}(\mathbf{x}) (\mathcal{M}^{i})^{-\frac{1}{2}}(\mathbf{x}) \right)^{p} \mathrm{d}\mathbf{x}$

under constraint $C(\mathbf{M}^{i}) = N^{i}$ with \mathbf{H}_{u}^{i} defined by:

$$\mathbf{H}_{\mathbf{L}^{1}}^{i}(\mathbf{x}) = \int_{t_{i-1}}^{t_{i}} |H_{u}(\mathbf{x},t)| \, \mathrm{d}t \quad \text{or} \quad \mathbf{H}_{\mathbf{L}^{\infty}}^{i}(\mathbf{x}) = \Delta t_{i} \max_{t \in [t_{i-1},t_{i}]} |H_{u}(\mathbf{x},t)|,$$

Minimizing the Interpolation Error in L^{p} -norm

Optimization problem for time sub-intervals, two steps resolution:

- 1. Spatial minimization on a sub-interval
- 2. Temporal minimization on a sub-interval

Spatial minimization on a sub-interval

$$\mathcal{M}_{\mathsf{L}^p}^i(\mathsf{x}) = (N^i)^{rac{2}{3}} \left(\mathcal{K}^i\right)^{-rac{2}{3}} \left(\det \mathsf{H}_u^i(\mathsf{x})
ight)^{-rac{1}{2p+3}} \; \mathsf{H}_u^i(\mathsf{x})$$

Temporal minimization on a sub-interval for au [Belme et al., JCP 2012]

$$\mathcal{M}_{\mathbf{L}^{p}}^{i}(\mathbf{x}) = N_{st}^{\frac{2}{3}} \left(\sum_{j=1}^{n_{adap}} (\mathcal{K}^{j})^{\frac{3}{2p+3}} \left(\int_{t_{j-1}}^{t_{j}} \tau(t)^{-1} dt \right)^{\frac{2p}{2p+3}} \right)^{-\frac{2}{3}} \\ \left(\int_{t_{i-1}}^{t_{i}} \tau(t)^{-1} dt \right)^{-\frac{2}{2p+3}} (\det \mathbf{H}_{u}^{i}(\mathbf{x}))^{-\frac{1}{2p+3}} \mathbf{H}_{u}^{i}(\mathbf{x})$$

with
$$\mathcal{K}^{i} = \left(\int_{\Omega} (\det \mathbf{H}^{i}_{u}(\bar{\mathbf{x}}))^{\frac{p}{2p+3}} \mathrm{d}\bar{\mathbf{x}}\right)$$

(INRIA - Gamma3 Project - Rocquencour

Fixed-Point Mesh Adaptation Algorithm [Alauzet et al., JCP 2007]

Fixed-point loop

Examples: First a Movie to Illustrate the Approach

Mesh size: 182 500 vertices and 364 000 triangles

Mesh size: 182500 vertices and 364000 triangles

3D Blast in a Town

Problem:

- Bast initialization:
 - high-density (10, 0, 0, 0, 25) and air (1, 0, 0, 0, 2.5)
- 3D town geometry (85 \times 70 \times 70 $m^3)$
- \implies 3D *a priori* unpredictable physical phenomena

Simulation :

- 8-processors 64-bits MacPro with an IntelCore2 chipsets with a clockspeed of 2.8GHz with 32Gb of RAM
- 40 mesh adaptations, 5 fixed point iterations, 21 metric intersection in time
- Simultion CPU time 4h32m

(Computation: first 9m and last 40m)

	Solver / Metric / Interpolation	Gradation / Mesh	Global
Total CPU time	2h52m	1h40m	4h32m
Percentage	63.23%	36.77%	100%

3D Blast in a Town

Problem:

- Bast initialization:
 - high-density (10, 0, 0, 0, 25) and air (1, 0, 0, 0, 2.5)
- 3D town geometry (85 \times 70 \times 70 $m^3)$
- \implies 3D a priori unpredictable physical phenomena

• Adapted meshes characteristics:

Iteration	nv	nt	nf	min h	ratio	quotient
Initial Unif.	99 255	549 128	35 420	35cm	2 (32)	4 (540)
10	305 027	1 746 040	42 486	4cm	15 (105)	164 (6804)
20	225 829	1 275 931	45 000	бст	12 (72)	122 (3380)
30	189 858	1 057 022	48 594	9cm	9 (76)	77 (2890)
40	185 148	1 027 537	50 250	11cm	8 (71)	56 (2813)

ratio =
$$\sqrt{\frac{\min_i \lambda_i}{\max_i \lambda_i}} = \frac{\max_i h_i}{\min_i h_i}$$
 and $quo = \frac{\max_i h_i^3}{h_1 h_2 h_3}$

1 Unsteady Mesh Adaptation

2 Moving Mesh Algorithm

3 Perspectives

Motivation in CFD

Industrial problems

Most of the industrial problems are unsteady and involve moving geometries.

Examples of moving geometry computations:

- landing or take off of an aircraft: slat, flap, landing gear, ...
- turbo machinery, open rotor
- fluid structure interaction problems: off-shore, aeroelasticity, bioinformatics, contact problems...

...

Main numerical difficulty: how to handle the geometry displacement ?

Possible strategies to handle geometry displacement:

• Embedded/immersed grid techniques

[Peskin, JCP 1972], [Löhner et al., IJNME 2004], ...

• Body-fitted Chimera approach (overlapping structured grids) [Benek et al., AIAA 1985], [Brezzi et al., CRAS 2001], ...

Gody-fitted moving mesh techniques (single mesh)

- Move the mesh with a constant connectivity as far as possible and globally remesh the domain when the mesh is too distorted [Batina, AIAA 1990], [Baum and Löhner, AIAA 1997], [Hassan et al., CMAME 2000], [Degand and Farhat, C&S 2002], [Bottasso et al., CMAME 2005], [Hassan et al., IJNMF 2007]...
- Move the mesh and optimize it with local mesh modification at each time step [Dobrzynski and Frey, IMR 2008], [Compère et al., IJNME 2010]

Goal: Coupling ALE simulations with anisotropic mesh adaptation

- \implies remesh only when we want for adaptation
- \implies handle efficiently anisotropic adapted meshes
- \implies keep constant the number of dof

Strategy:

- relax the fixed topology constraint imposed by the ALE framework ie use only the swap and smoothing operators to move the mesh without remeshing
 - \implies feasability ?
 - \Longrightarrow design an ALE formulation of the swap operator
- take into account the mesh movement in the adaptation

- Aim: assign a trajectory to inner vertices
- 2 methods tried: elasticity analogy and IDW
- → Elasticity analogy: displacement **d**(**x**) obtained by solving an elasticity problem [Baker and Cavallo, AIAA 1999]

$$\begin{cases} \operatorname{div} \left(\mathcal{S}(\mathcal{E}) \right) = 0 \,, & \text{with } \mathcal{E} = \frac{\nabla \mathbf{d} + {}^t \nabla \mathbf{d}}{2}, \quad \mathcal{S}(\mathcal{E}) = \lambda \operatorname{trace} \left(\mathcal{E} \right) \mathcal{I}_n + 2 \, \mu \, \mathcal{E} \\ \mathbf{d}_{|\partial\Omega} \text{ prescribed by the movement of the bodies} \\ \lambda, \mu \approx \text{ very soft material} \end{cases}$$

- Aim: assign a trajectory to inner vertices
- 2 methods tried: elasticity analogy and IDW
- \rightarrow Inverse Distance Weighted (IDW) interpolation [Luke et al., JCP 2012] :
 - variant of the Radial Basis Functions (RBF) method
 - speed of inner vertices: mean of the boundary vertices speeds

$$ec{s}(ec{r}) = rac{\sum w_i(ec{r})ec{s}_i(ec{r})}{\sum w_i(ec{r})}$$

• boundary vertices speeds weighted by the inverse of the distance to inner vertices

$$w_i(\vec{r}) = A_i * \left[\left(\frac{L_{def}}{\|\vec{r} - \vec{r}_i\|} \right)^a + \left(\frac{\alpha L_{def}}{\|\vec{r} - \vec{r}_i\|} \right)^b \right]$$

- Reduce number of elasticity resolution:
 - mesh optimisations
 - curved trajectories: each vertex is given a speed and an acceleration
- Stiffen small elements: stiffness alteration based on element Jacobian (volume)
- Rigidify regions: some inner regions are associated with a body
- Elasticity dedicated coarser mesh

Local Mesh Optimisations

- Mesh quality criterium: $Q(K) = \frac{\sqrt{3}}{216} \left(\sum_{i=0}^{5} \ell_{\mathcal{M}}^2(\mathbf{e}_i) \right)^{\frac{1}{2}} |K|_{\mathcal{M}}^{-1} \in [1, +\infty]$
- Mesh vertices smoothing:

• Generalized face/edge swapping:

5 possible triangulations

Moving mesh algorithm:

$$(\mathbf{v}, \mathbf{a}) = ext{SolveElasticities} \left(\mathbf{d}_{|\partial \Omega_h}, \, dt^{els}
ight)$$

CheckMeshValidity

$$\begin{split} \text{While } & (t < t^{els} + dt^{els}) \\ & dt^{mov} = \texttt{GetMovingMeshTimeStep}\left(\mathcal{H}^k, \textit{CFL}^{geom}\right) \\ & \mathcal{H}^k = \texttt{PerformSwaps}\left(\mathcal{H}^k, \textit{Q}^{swap}_{target}\right) \\ & \textbf{v}_{opt} = \texttt{PerformLaplacianSmoothing}\left(\mathcal{H}^k, \textit{Q}^{smoothing}_{target}, \textit{Q}_{max}\right) \\ & \mathcal{H}^{k+1} = \texttt{MoveTheMesh}\left(\mathcal{H}^k, \textbf{v}, \textbf{v}_{opt}, \textbf{a}, dt^{mov}\right) \end{split}$$

End while

Two crossing F117s

IFP engine

- Arbitrary Lagrangian Eulerian (ALE) framework : formulation of the fluid equations on a moving mesh
- Time discretization: speed of the edges chosen to be DGCL conservative
- Specific treatment for 2D topology changes: ALE swap formulation
- Loose FSI coupling

Example: A Turbopump

(INRIA - Gamma3 Project - Rocquencourt

Unsteady Mesh Adaptation

Kick-off ANR MAIDESC

26 / 32

Unsteady Mesh Adaptation

2 Moving Mesh Algorithm

3 Perspectives

- Mesh Adaptation for moving geometries
- Adaptative mesh deformation

Mesh Adaptation for Moving Bodies Simulations

Optimal ALE metric [Alauzet and Olivier, AIAA 2011]

$$\mathcal{M}_{\mathsf{L}^p}^{n+1,\mathsf{ALE}}[u](\mathsf{x}^n) = \left(\det\left|H_u^{n+1,*}(\mathsf{x}^n)\right|\right)^{\frac{-1}{2p+3}}\left|H_u^{n+1,*}(\mathsf{x}^n)\right|$$

with

$$H_{u}^{n+1,*}(\mathbf{x}^{n}) = \left(\det\left(\nabla^{n}\left[\phi\right](\mathbf{x}^{n})\right)\right)^{\frac{1}{p}} \nabla^{n}\left[\phi\right](\mathbf{x}^{n}) \cdot H_{u}^{n+1}(\phi(\mathbf{x}^{n})) \cdot \nabla^{n}\left[\phi\right](\mathbf{x}^{n})$$

and $\phi = Id + \mathbf{d}$ is the mapping between t^n and t^{n+1}

$\mathcal{M}_{\mathsf{L}^p}^{n+1,ALE}[u](\mathsf{x}^n)$ used to generate \mathcal{H}^n

It verifies the following properties:

- If *Hⁿ⁺¹* is the image of *Hⁿ* by mapping φ. Then, *Hⁿ⁺¹* is optimal to control the interpolation error in L^p-norm on sensor uⁿ⁺¹
- There is no reason for Hⁿ to be optimal to control the interpolation error in L^p-norm on sensor uⁿ

Example: A 2D Adapted Pitching NACA0012 [Olivier and Alauzet, AIAA 2011]

Pitching NACA0012

Example: A 2D Adapted Blast Problem [Olivier and Alauzet, AIAA

Blasting a box

• Move the mesh following an adapted metric field

Problem

Given two metric fields at times t and $t + \Delta t$: \mathcal{M}_t and $\mathcal{M}_{t+\Delta t}$, and a mesh at time t (adapted to \mathcal{M}_t or not): \mathcal{H}_t What is the displacement v(x, t) of the mesh vertices so that $\mathcal{H}_{t+\Delta t}$ is adapted to $\mathcal{M}_{t+\Delta t}$?

- Ongoing preliminary work
- In 1D, good analytical results on polynomial metrics for moving equation:

$$m\frac{\partial v}{\partial x} + \frac{1}{2}\frac{\partial m}{\partial x}v = -\frac{1}{2}\frac{\partial m}{\partial t}$$

Several bricks available:

- Moving mesh algorithm
- Unsteady mesh adaptatiom
- Goal-oriented mesh adaptation
- Mesh adaptation for level set application

We're trying to combine them for more complex problems:

- Mesh adaptation for moving bodies ALE simulation
- Unsteady adaptation using moving mesh equations