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Reminder: Metric-based Mesh Adaptation

To address these problems : Lp metric-based adaptation

Error estimate −→ metric field −→ unit mesh
[Vallet, 1992], [Casto-Diaz et Al., 1997], [Hecht et Mohammadi, 1997]

[Peraire et Al., 1987] [Zienkiewicz et Wu, 1994]

=⇒ based on continuous mesh model

Unit mesh obtained with a local remesher
=⇒ cavity-based primitive [Loseille, IMR, 2012]

Other mesh adaptation methods:
[Bottasso, Tango, Poly. Milano], [Coupez, Forge3D, CEMEF], [Dobrinsky et al., MMG3D, UMB], [George et al., INRIA]
[Lipnikov et al. Los Alamos], [Loseille, Feflo.a, INRIA], [Park, Nasa Langley], [Piggot, MadLib, Imp. College]
[Oubay et al., Swansea U.], [Remacle et al., Louvain U.], [Shepard et al., MeshAdapt, SCOREC]
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Reminder: Continuous Mesh Model [Loseille and Alauzet, SIAM 2011]

Discrete Continuous

Element K Metric tensor M

Volume |K | Volume α (detM)−
1
2

Mesh H of Ωh Riemannian metric space M = (M(x))x∈Ω

Number of vertices Nv Complexity C(M) =

∫
Ω

√
det(M(x)) dx

Linear interpolate Πhu Continuous linear interpolate πMu

Interpolation error ‖u − Πhu‖ Trace(M− 1
2 |Hu|M−

1
2 )
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Problem

Discrete space-time mesh adaptation :

Find Hopt having Nst space-time vertices such that

Hopt(u) = Arg min
H
‖u − Πhu‖H,Lp(Ω×[0,T ])

Continuous space-time mesh adaptation:

Find MLp = (MLp(x, t))(x,t)∈Q of space-time complexity Nst such that

ELp(MLp) = min
M

(∫ T

0

∫
Ω
|u(x, t)− πMu(x, t)|p dxdt

) 1
p

= min
M

(∫ T

0

∫
Ω
Trace

(
M(x, t)−

1
2 |Hu(x, t)|M(x, t)−

1
2

)
p dxdt

) 1
p

under constraint Cst(M) = Nst =

∫ T

0
τ(t)−1

(∫
Ω
dM(x, t)dx

)
dt
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Fixed-Point Mesh Adaptation Algorithm [Alauzet et al., JCP 2007]

A global fixed-point algorithm
=⇒ to compute the space-time metric complexity
=⇒ to converge the non-linear mesh adaptation problem
=⇒ to predict the solution evolution

Split the simulation into several time sub-intervals
and set an adapted mesh for each sub-interval
=⇒ to limit the number of meshes

[0,T ] = [0 = t0, t1] ∪ ... ∪ [ti , ti+1] ∪ ... ∪ [tnadap−1, tnadap ].

=⇒ use of a mean hessian on each sub-interval

t

Tini

metric sampling

∆T

∆t

Tend

Fixed-point loop
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Problem

Continuous space-time mesh adaptation :

ELp(MLp) = min
M

(∫ T

0

∫
Ω
Trace

(
M(x, t)−

1
2 |Hu(x, t)|M(x, t)−

1
2

)p
dxdt

) 1
p

Semi-discrete space-time mesh adaptation with sub-intervals

Find Mi
Lp = (Mi

Lp(x))(x)∈Ω of space-time complexity N i such that

E i
Lp(Mi

Lp) = min
Mi

∫
Ω
trace

(
(Mi )−

1
2 (x) Hi

u(x) (Mi )−
1
2 (x)

)p
dx

under constraint C(Mi ) = N i with Hi
u defined by:

Hi
L1(x) =

∫ ti

ti−1

|Hu(x, t)|dt or Hi
L∞(x) = ∆ti max

t∈[ti−1,ti ]
|Hu(x, t)| ,
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Minimizing the Interpolation Error in Lp-norm

Optimization problem for time sub-intervals, two steps resolution:

1. Spatial minimization on a sub-interval
2. Temporal minimization on a sub-interval

Spatial minimization on a sub-interval

Mi
Lp(x) = (N i )

2
3 (Ki )−

2
3 (det Hi

u(x))−
1

2p+3 Hi
u(x)

Temporal minimization on a sub-interval for τ [Belme et al., JCP 2012]

Mi
Lp(x) = N

2
3
st

(nadap∑
j=1

(Kj)
3

2p+3

(∫ tj

tj−1

τ(t)−1dt
) 2p

2p+3

)− 2
3

(∫ ti

ti−1

τ(t)−1dt
)− 2

2p+3
(det Hi

u(x))−
1

2p+3 Hi
u(x)

with Ki =

(∫
Ω

(det Hi
u(x̄))

p
2p+3dx̄

)
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Fixed-Point Mesh Adaptation Algorithm [Alauzet et al., JCP 2007]

t

Tini

metric sampling

∆T

∆t

Tend

Fixed-point loop

For j=1,nptfx

For i=1,nadap

S j0,i = InterpolateSolution(Hj
i−1,S

j
i−1,H

j
i )

S ji = SolveState(S j0,i ,H
j
i )

|Hmax|ji = ComputeHessianMetric(Hj
i , {S

j
i (k)}k=1,nk )

End for

Cj = ComputeSpaceTimeComplexity({|Hmax|ji}i=1,nadap)

Mj−1
i = ComputeUnsteadyLpMetrics(Cj−1, |Hmax|j−1

i )

Hj
i = GenerateAdaptedMeshes(Hj−1

i ,Mj−1
i )

End for

( INRIA - Gamma3 Project - Rocquencourt, France )Unsteady Mesh Adaptation Kick-off ANR MAIDESC 10 / 32



Examples: First a Movie to Illustrate the Approach
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A 2D Blast (Leveque)
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A 2D Blast (Leveque)
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A 2D Blast (Leveque)

Mesh size: 182 500 vertices and 364 000 triangles
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3D Blast in a Town

Problem:
Bast initialization:
high-density (10, 0, 0, 0, 25) and air (1, 0, 0, 0, 2.5)

3D town geometry (85× 70× 70m3)

=⇒ 3D a priori unpredictable physical phenomena

Simulation :
8-processors 64-bits MacPro with an IntelCore2 chipsets with a
clockspeed of 2.8GHz with 32Gb of RAM

40 mesh adaptations, 5 fixed point iterations, 21 metric intersection in
time

Simultion CPU time 4h32m
(Computation: first 9m and last 40m)

Solver / Metric / Interpolation Gradation / Mesh Global

Total CPU time 2h52m 1h40m 4h32m

Percentage 63.23% 36.77% 100%
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3D Blast in a Town

Problem:
Bast initialization:
high-density (10, 0, 0, 0, 25) and air (1, 0, 0, 0, 2.5)

3D town geometry (85× 70× 70m3)

=⇒ 3D a priori unpredictable physical phenomena

Adapted meshes characteristics:

Iteration nv nt nf min h ratio quotient

Initial Unif. 99 255 549 128 35 420 35cm 2 (32) 4 (540)

10 305 027 1 746 040 42 486 4cm 15 (105) 164 (6804)

20 225 829 1 275 931 45 000 6cm 12 (72) 122 (3380)

30 189 858 1 057 022 48 594 9cm 9 (76) 77 (2890)

40 185 148 1 027 537 50 250 11cm 8 (71) 56 (2813)

ratio =

√
mini λi
maxi λi

=
maxi hi
mini hi

and quo =
maxi h

3
i

h1h2h3
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Motivation in CFD

Industrial problems

Most of the industrial problems are unsteady and involve moving
geometries.

Examples of moving geometry computations:

landing or take off of an aircraft: slat, flap, landing gear, ...

turbo machinery, open rotor

fluid structure interaction problems: off-shore, aeroelasticity,
bioinformatics, contact problems...

...

Main numerical difficulty: how to handle the geometry displacement ?

( INRIA - Gamma3 Project - Rocquencourt, France )Unsteady Mesh Adaptation Kick-off ANR MAIDESC 16 / 32



Existing Approaches

Possible strategies to handle geometry displacement:

Embedded/immersed grid techniques
[Peskin, JCP 1972], [Löhner et al., IJNME 2004], ...

Body-fitted Chimera approach (overlapping structured grids)
[Benek et al., AIAA 1985], [Brezzi et al., CRAS 2001], ...

X Body-fitted moving mesh techniques (single mesh)

Move the mesh with a constant connectivity as far as possible and
globally remesh the domain when the mesh is too distorted [Batina, AIAA

1990], [Baum and Löhner, AIAA 1997], [Hassan et al., CMAME 2000], [Degand and

Farhat, C&S 2002], [Bottasso et al., CMAME 2005], [Hassan et al., IJNMF 2007]...

Move the mesh and optimize it with local mesh modification at each
time step [Dobrzynski and Frey, IMR 2008], [Compère et al., IJNME 2010]
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Chosen Approach

Goal: Coupling ALE simulations with anisotropic mesh adaptation

=⇒ remesh only when we want for adaptation

=⇒ handle efficiently anisotropic adapted meshes

=⇒ keep constant the number of dof

Strategy:

relax the fixed topology constraint imposed by the ALE framework
ie use only the swap and smoothing operators to move the mesh
without remeshing
=⇒ feasability ?
=⇒ design an ALE formulation of the swap operator

take into account the mesh movement in the adaptation
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PDE-based Mesh Deformation

Aim: assign a trajectory to inner vertices

2 methods tried: elasticity analogy and IDW

−→ Elasticity analogy: displacement d(x) obtained by solving an elasticity
problem [Baker and Cavallo, AIAA 1999]
div (S(E)) = 0 , with E =

∇d +t ∇d

2
, S(E) = λ trace (E) In + 2µ E

d|∂Ω
prescribed by the movement of the bodies

λ, µ ≈ very soft material
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PDE-based Mesh Deformation

Aim: assign a trajectory to inner vertices

2 methods tried: elasticity analogy and IDW

−→ Inverse Distance Weighted (IDW) interpolation [Luke et al., JCP 2012] :

variant of the Radial Basis Functions (RBF) method
speed of inner vertices: mean of the boundary vertices speeds

~s(~r) =

∑
wi (~r)~si (~r)∑
wi (~r)

boundary vertices speeds weighted by the inverse of the distance to
inner vertices

wi (~r) = Ai ∗
[(

Ldef
‖~r −~ri‖

)a

+

(
αLdef
‖~r −~ri‖

)b
]
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Improve efficiency

Reduce number of elasticity resolution:

mesh optimisations
curved trajectories: each vertex is given a speed and an acceleration

Stiffen small elements: stiffness alteration based on element Jacobian
(volume)

Rigidify regions: some inner regions are associated with a body

Elasticity dedicated coarser mesh
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Local Mesh Optimisations

Mesh quality criterium: Q(K) =

√
3

216

(
5∑

i=0

`2
M(ei )

) 3
2

|K |−1
M ∈ [1, +∞]

Mesh vertices smoothing:
Initial configuration

Each edge of the ball propose
an optimal new position for P

New configuration

P
P’

Generalized face/edge swapping:

3 → 2

3← 2
(face swapping)

5 → 6

5 possible triangulations

e e

e
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Topology-change Moving Mesh Algorithm

Moving mesh algorithm:

(v, a) = SolveElasticities
(
d|∂Ωh

, dtels
)

CheckMeshValidity

While (t < tels + dtels)

dtmov = GetMovingMeshTimeStep
(
Hk ,CFLgeom

)
Hk = PerformSwaps

(
Hk ,Qswap

target

)
vopt = PerformLaplacianSmoothing

(
Hk ,Qsmoothing

target , Qmax

)
Hk+1 = MoveTheMesh

(
Hk , v, vopt , a, dtmov

)
End while
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Two crossing F117s
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IFP engine
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Coupling with an ALE solver

Arbitrary Lagrangian Eulerian (ALE) framework : formulation of the
fluid equations on a moving mesh

Time discretization: speed of the edges chosen to be DGCL
conservative

Specific treatment for 2D topology changes: ALE swap formulation

Loose FSI coupling
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Example: A Turbopump

0.3

0.50.3

2.

1

2

3
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Mesh Adaptation for Moving Bodies Simulations

Optimal ALE metric [Alauzet and Olivier, AIAA 2011]

Mn+1,ALE
Lp [u](xn) =

(
det
∣∣Hn+1,∗

u (xn)
∣∣) −1

2p+3
∣∣Hn+1,∗

u (xn)
∣∣

with

Hn+1,∗
u (xn) =

(
det (∇n [φ] (xn))

) 1
p ∇n [φ] (xn) · Hn+1

u (φ(xn)) · ∇n [φ] (xn)

and φ = Id + d is the mapping between tn and tn+1

Mn+1,ALE
Lp [u](xn) used to generate Hn

It verifies the following properties:

If Hn+1 is the image of Hn by mapping φ. Then, Hn+1 is optimal to
control the interpolation error in Lp-norm on sensor un+1

There is no reason for Hn to be optimal to control the interpolation
error in Lp-norm on sensor un
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Example: A 2D Adapted Pitching NACA0012 [Olivier and Alauzet,

AIAA 2011]

Pitching NACA0012
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Example: A 2D Adapted Blast Problem [Olivier and Alauzet, AIAA

2011]

Blasting a box
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Adaptative Mesh Deformation

Move the mesh following an adapted metric field

Problem

Given two metric fields at times t and t + ∆t: Mt and Mt+∆t , and a
mesh at time t (adapted to Mt or not): Ht

What is the displacement v(x , t) of the mesh vertices so that Ht+∆t is
adapted to Mt+∆t ?

Ongoing preliminary work

In 1D, good analytical results on polynomial metrics for moving
equation:

m
∂v

∂x
+

1

2

∂m

∂x
v = −1

2

∂m

∂t
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Conclusion

Several bricks available:

Moving mesh algorithm

Unsteady mesh adaptatiom

Goal-oriented mesh adaptation

Mesh adaptation for level set application

We’re trying to combine them for more complex problems:

Mesh adaptation for moving bodies ALE simulation

Unsteady adaptation using moving mesh equations
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