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MAIDESC M42: AGENDA

Accueil 9:00 café
Début 9:30
E. Hachem Titre non parvenu
Y. Mesri Titre non parvenu
A. Boilley Maillage d’objets complexes avec couche limite
E. Gauci Adaptation ALE
12:00 Repas salle club
Début seconde session 13:30
B. Koobus Progrès en multi-rate
O. Allain Progrès en adaptation
A. Dervieux Exposé de C. Dobrzynski:
An immersed boundary method for NS equations on unstructured
anisotropic mesh
A. Dervieux Adaptation basée erreur pour Navier-Stokes
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Error reduction

Several approaches for evaluating the effect of an
anisotropic mesh change on the final approximation error
u−uh:

Apply local deformations:
- A priori estimates.

Formaggia, Perotto,...
- Local discrete perturbation.

Yano, Darmofal.

Our proposition: express the approximation error in terms
of interpolation errors.
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Overview

Three families of adaptation criteria (elliptic case)
Feature-based (or Hessian-based)
Goal-oriented
Norm-oriented

Application to Euler, Navier-Stokes
Higher-order, unsteady case
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I. Feature-based mesh adaptation

Mesh parameterization
Metric M :

M (x) = Rt(x,y)

(
1

∆ξ 2(x,y) 0
0 1

∆η2(x,y)

)
R(x,y)

∆ξ (x,y),∆η(x,y): mesh sizes in characteristic directions.
R(x,y) = matrix of eigenvectors.

Number of vertices: C (M ) =
∫

Ω

√
det(M (x)) dx

Which mesh?
A unit mesh for M has any edge ij of length 1:

distM (xi,xj)+
∫ 1

0

√
txixjM (xi +θxixj)xixj dθ = 1.
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Feature-based mesh adaptation

Minimize the P1 interpolation error in Lp:
ε

p
M = ||u−ΠM u||pLp ≈∫

Ω

[trace(M−1
2 (x) |Hu(x)|M−1

2 (x))]pdx

under the constraint: C (M ) = N.
Hu is the Hessian matrix of u.

(...magic wand...)⇔ optimal metric field :

MLp,opt(x) = Kp(1,H
(∗)
uM )

Kp(k,HuM ) = DLp det(|kHuM (x)|)
−1

2p+dim |kHuM (x)|

DLp = N
2

dim (
∫

Ω

det(|kHuM (x)|)
p

2p+dim dx)−
2

dim (here dim = 2).

(*): evaluated by recovery.
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Application of feature-based to a simulation

Step 1: solve PDE for state uM ,
Step 2: evaluate MLp,opt ,
Step 3: build new unit mesh for MLp,opt ; go to 1.
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The main a priori limitation of a feature-based method is
the delicate choice of the feature(s) (=”sensor”), in
particular for systems.

Further, the feature-based method doesn’t take into
account the state PDE (only sensors from the solution). In
particular, reducing the L2 interpolation error does reduce
as much the approximation error.

Example : Poisson problem with 1D boundary layer as
solution.
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II.Goal-Oriented mesh adaptation

The goal-oriented formulation is probably the first
formulation in which the mesh adaptation problem is
completely set on a rigorous mathematical form:
Find the mesh which minimizes the approximation error
committed on a specified scalar output (g,u):

minM δ jgoal(M ) = |(g,u−uM )| , C (M ) = N
Ψ(M ,uM ) = 0 ,state equation

A. LOSEILLE, A. DERVIEUX and F. ALAUZET, Fully anisotropic goal-oriented mesh
adaptation for 3D steady Euler equations, Journal of Computational Physics, Vol. 229, Issue
8, pp. 2866-2897, 2010.
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Goal-Oriented mesh adaptation : Poisson problem

State: Ψ(M ,uM ) = 0 ⇔ ∆u = f , u|∂Ω = 0.

Adjoint state: ∂Ψ

∂u
∗
u∗ = ∂J

∂u ⇔ ∆u∗ = g, u∗|∂Ω = 0

(...)
Mopt,goal = K1(|ρ(H(u∗g,M ))|,HuM ).

ρ(H(u∗g,M )) : max eigenvalue of Hessian of u∗g,M .
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Goal-Oriented mesh adaptation (cont’d)

Step 1: solve state
Step 2: solve adjoint state
Step 3: evaluate metric :

Mopt,goal = K1(|ρ(H(u∗))|,Hu)
Step 4: generate unit mesh for Mopt,goal. Go to 1.

But:
- only features influencing the scalar functional will be
refined,
- then we have lost the convergence to the PDE
solution!
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Computational example:

Supersonic business aircraft at farfield Mach number 1.6.

Bottom: mesh adaptation based on the feature “Mach
number”.
Top: mesh adaptation based on the goal of pressure
integral at ground.
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III. Norm-Oriented mesh adaptation

A goal-oriented adaptation method is not field-convergent.

Functionals generally express mean properties while
many engineering applications are interested in space or
time fluctuations.

Why being satisfied with an accurate single scalar output
when the numerical methods claims field convergence?
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III. Norm-Oriented mesh adaptation

Minimize:
j(M ) = ||u−uM ||2L2(Ω)

.

We evaluate a corrector gcorr ≈ u−uM by
coarse-fine Defect Correction.

gcorr =
4
3 A−1

h Rh/2→h(Ah/2Ph→h/2uh− fh/2)
⇒ j(M )≈ (gcorr,u−uM ).

Freezing gcorr, we get the goal-oriented context:
Adjoint:

a(ψ,u∗corr) = (gcorr,ψ)
Optimal metric:

Mopt,norm = K1(|ρ(H(u∗corr))|,HuM )
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Norm-Oriented Adaptation

Step 1: solve state equation
Step 2: solve corrector equation
Step 3: solve adjoint equation
Step 4: evaluate optimal metric :

Mopt,norm = K1(|ρ(H(u∗corr))|,HuM ).

Step 5: generate unit mesh for Mopt,norm and go to 1.

Convergence, in the prescribed norm, towards the
PDE solution.
G. Brèthes, A. Dervieux, Anisotropic Norm-Oriented Mesh Adaptation for a Poisson
problem, Journal of Computational Physics 322 (2016) 804-826.
A. Loseille, A,. Dervieux, F. Alauzet, Anisotropic Norm-Oriented Mesh Adaptation
for a compressible inviscid flow, AIAA paper, 2015-2037
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An example : 2D boundary layer, Poisson problem
(Formaggia-Perotto-2003 test case)
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2D boundary layer, cont’d
In practice, we have not u−uh.

We use u′ = gcoor as an estimate of u−uh.
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Singular test case

Mesh adaptation should manage small scales and
singularities.

Example: discontinuous derivative along a curve (in 2D).

Barrier lemma: With adapted anisotropic meshes,
convergence can be second-order and not better.

Continuous analysis: It can be shown that:∫
Ω

det(|Hu|)
p

2p+dim < ∞

Then the optimal error is second-order:

‖u−πMLp u‖Lp ≈N−
2

dim

(∫
Ω

det(|Hu|)
p

2p+dim

)2p+dim
3p ≤ Cst

N2/dim .
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Solution with a discontinuous gradient
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More complex physics : Euler equations

∂F x(u)
∂x +

∂F y(u)
∂y +

∂F z(u)
∂ z = 0 +b. cond.⇔ΨE(u,M )= 0

j(M ) = J(u,M ) ; [
∂ΨE

∂u
]−∗u∗ =

∂J
∂u

(...)
Min

∫
Ω

trace(M−1
2 (x) |H̄(u,u∗)(x)|M−1

2 (x))dx
H̄(u,u∗) =

∑ |∂u∗j
∂x ||H(F x

j )|+ |
∂u∗j
∂y ||H(F y

j )|+ |
∂u∗j
∂ z ||H(F z

j )|

Then M = K1(1, H̄)
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Feature-based adaptation for minimizing the L1 norm of
the interpolation error on the density, velocity and
pressure.

There is not much mesh concentration on the body in the
wake of wing.
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Feature-based adaptation (cont’d).
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Adaptation for minimizing the norm ||W−Wh||L2 with
the norm-oriented approach.

Near-body mesh is finer, and show much more details on
the aircraft body.
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Norm-oriented, concl’d
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Compressible Navier-Stokes model

(Ψ(W),Φ) =
∫

Ω×[0,T]
Φ Wt dvdt

−
∫

Ω×[0,T]
(∇Φ ·FE(W) + ∇Φ ·Fv(W))dvdt

+
∫

∂Ω×[0,T]
Φ F̂ (W)dσdt

FE = [ρu,ρuu+pI,ρuH]T

Fv = [0,σ(∇u),−(q(λ∇T)−u.σ(∇u))]T .
σ = µ(∇u+∇uT)− 2

3µ∇.uI ; q = −λ∇T
A error analysis applies (similar to elliptic case).
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Compressible Navier-Stokes : a 2D example

Flow around a NACA0012,
Mach number = 1.4, α = 0 deg
Medium Reynolds number: 1000.
Shock reflection on Γ, wall at bottom.

Goal-oriented adaptation with:

j =
∫

Γ

(p−p∞)
2/p∞dΓ.

Meshes from 10K to 40K vertices.
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2D example (cont’d)

Adaptive mesh for laminar flow with Rey = 103(20Kvertices).
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2D example (end’d)
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 0.0065
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 0.008

 0.0085

 10000  15000  20000  25000  30000  35000  40000  45000

j(w
)

No. of nodes

Goal-based adapt
Uniform refinement

Convergence analysis:
Pressure footprint output functional vs. Mesh size
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3D example, turbulent, preliminary

Case : flow around a Falcon aircraft, UMRIDA test case,
Mach number =0.8, α = 2 deg.
Spalart Allmaras turbulence model,

Norm-oriented mesh adaptation (except in close boundary
layer),
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3D example

Top, Mach solution field. Bottom, final adapted mesh.
Shape: courtesy of Dassault Aviation.
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Compressible Navier-Stokes model (end’d)

Mesh convergence⇔ 415K vertices (“current”)
Comparison with a very fine mesh (10M vertices,
“final”)
Cp cut on wing,
Use of the corrector by visualizing:

”pressure ± | corrected pressure−pressure |”
for estimating the accuracy.
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Higher order (and unsteady) approximations

Central Essentially Non Oscillating (T. Barth, C. Groth)
Vertex, dual cell, 2-exact quadratic reconstruction

Given ūi ∀ cell i of centroid Gi, find the ci,α , |α| ≤ 2 s.t.:

R0
2ūi(x) = ūi +∑|α|≤2 ci,α [(X−Gi)

α −
∫

Celli (X−Gi)
αdx]

R0
2ū =

∫
Celli R

0
2ūi,idx = ui

∑j∈N(i)(R0
2ūi,j−uj)

2 = Min .
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Reconstruction error analysis (2)

Same treatment as interpolation

R2: 2D quadratic ENO reconstruction:

|u(x)−R0
2u(x)| ≈ |

i=3

∑
i=0

(k
i )aixiyk−i|6

(
|D3u(δx)3|

)
a(u)i are third derivatives of u.
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CENO2 Scheme (1)

Variational statement of the Euler model

B(u,v) =
∫

Ω

v∇ ·F (u) dΩ−
∫

Γ

vFΓ(u) dΓ,

B is linear with respect to v.

Find u ∈ V such that B(u,v) = 0 ∀ v ∈ V .

CENO discrete statement (after C. Groth), vertex version

V0 = {v0,V0|Celli = const ∀ i vertex}
Find u0 ∈ V0 such that B(R0

2u0,v0) = 0 ∀ v0 ∈ V0
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CENO2 Scheme (2)

2-exact flux integration
The integral on a cell interface Cij = Ci∩Cj is split into
the integrals on the two segments of Cij.

On each segment C(1)
ij and C(2)

ij a numerical integration
with two Gauss points (two Riemann solvers) is applied.
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A priori error analysis (1)

Scalar output j(u) = (g,u).

Projection π0: V → V0, v 7→ π0v

∀ Ci,dual cell, π0v|Ci =
∫

Ci

vdx/meas(Ci).

Output error δ j = (g,R0
2π0u−R0

2u0).

The adjoint state u∗0 ∈ V0 is the solution of:

∂B
∂u

(R0
2u0)(R0

2v0,u∗0) = (g,R0
2v0), ∀ v0 ∈ V0.
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A priori error analysis (2)

Simpler case:

B(u,v) = F(v) where B is bilinear, F is linear, for
example:
B(u,v) =

∫
Ω

vdiv(Vu)dΩ+
∫

Γ
uvV ·ndΓ and

F(v) =
∫

Γ
uBvV ·ndΓ.

B(R0
2u0,v) = F(v) (discrete state eq.)

B(v,u∗0) = (g,v) (discrete adjoint. eq.)
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Simpler case (cont’d):
⇒

(g,R0
2π0u−R0

2u0) =

B(R0
2π0u−R0

2u0,u∗0) (discr.adj. eq.)
= B(R0

2π0u,u∗0)−B(R0
2u0,u∗0)

≈ B(R0
2π0u,u∗0)−F(u∗0) (discr.state eq.)

≈ B(R0
2π0u,u∗0)−B(u,u∗0) (cont.state eq.)

≈ B(R0
2π0u−u,u∗0)
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A priori error analysis (3)

Unsteady Euler: W = (ρ,ρu,ρv,ρE)
For the case of Euler eqs, we get after some calculations:

|B(R0
2π0W−W,W∗0)| ≈≤

2
∫

Ω
∑
q

Kq(W,W∗)|R0
2π0uq−uq| dΩ

with (uq)q=1,8 = (W,Wt) ,
and in which the Kq(W,W∗) are built from space
derivatives of W∗ and Euler fluxes derivatives with respect
to dependant variable W.
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Optimal metric (1)

|R0
2π0uq−uq| ≈

(
|D3uq(δx)3|

)
.

Third derivatives are evaluated by reconstruction.

An equivalent pseudo-Hessian Sq is computed by a least
square fitting on the neighboring cells j:

Sq,i = Argmin∑
N(i)
j=1

(
Sq,i(
−→
ij )2 − (|(D3uq)i(

−→
ij )3|)2/3

)2

|R0
2π0uq−uq| ≈

(
trace(M−1/2SqM−1/2)

)3
2
.
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Optimal metric (2)

Optimization problem
Minimize :

E =
∫

∑
q

Kq(W,W∗)
(

trace(M−1/2SqM
−1/2)

)3
2 dxdy

=
∫ (

trace(M−1/2SM−1/2)
)3

2 dxdy

with constraint
∫

dM dxdy = N.

⇔Mopt = N (
∫

det(S)
3
5 dxdy)−1det(S)−

2
5 RSΛ̄

−1
S RT

S
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Unsteady mesh adaptation: Global fixed point

The time interval is divided in nadap sub-intervals in
which the adapted mesh is frozen.

The nadap-uple
(
Miadap, iadap = 1,nadap

)
minimizes

the total functional error under the constraint of a
prescribed total number of vertices.
The adaptation loop iterates over the whole time
interval:

Computation of state solution.
Computation of adjoint.
Evaluation of the nadap metrics.
Generation of the nadap unit meshes.
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Unsteady mesh adaptation: Global fixed point
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Two numerical examples

- Nonlinear acoustics (Euler).
- Noise source on “road”, bottom left.
- Case 1: Propagation in a rectangulat box.
- Micro on top center.
- Case 2:Propagation around an anti-noise oblique “wall”.
- Micro on lower part of a “balcony”.
- Output functional = integral of pressure at micro.
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Mean pressure at bottom as a function of time:
Adapted meshes: 2700 vertices in mean, 5400, 10700: O(2.72).
Aspect ratio in refined zone: 3-4.
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Mean pressure at balcony bottom as a function of time:
-Uniform meshes in red(57K) and green(117K): O(1).
-Adapted meshes: 2K≈578K, (8K≈1.25M, 15K, 31K≈5M): O(2.48).
Aspect ratio in refined zone: 3-4.
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About convergence order of unsteady case

Then space convergence is observed by increasing the
mean number of vertices over the nadap meshes.
Space-time convergence:

Needs to add the time error.
The discretization parameter nadap needs to be increased.

Due to a unique time-step, space-time convergence is limited
to 8/5< 2.(*)
Pushing higher the 8/5 limit may be obtained with a
multi-rate time advancing.

(*)A. Belme, A. Dervieux, F. Alauzet, Time Accurate Anisotropic Goal-Oriented Mesh
Adaptation for Unsteady Flows, J. Comp. Phys., 231:19, 2012, 6323-6348
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CONCLUSIONS

Anisotropic mesh adaptation can address simulations
which are not affordable without adaptation.

Anisotropic mesh adaptation carries more surely O2 mesh
convergence for many types of user-prescribed outputs.

Anisotropic mesh adaptation progressively frees the user
from delicate mesh management.

We have illustrated these properties with
interpolation-based a priori estimates made of many
approximations but, at last, rather accurate.
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CONCLUSIONS, TO BE IMPROVED

The correctors are useful for adaption purpose but need
improvements in order to give an accurate estimate of the
approximation error.
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CONCLUSIONS, TO BE DONE

The mastering of high-Reynolds aerodynamics needs to
combine efficiently mesh adaptation with highly stretched
meshes.

mesh 7→ error 7→ metric 7→ mesh
This needs in particular to improve:
- discrete error evaluation,
- mesh generation.

For space-time O2/O3 unsteady calculations, still a long
way has to be gone.
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