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Introduction

Work context

Implementation and development of a simulation tool whose major
ingredients are :

A numerical model suited to industrial problems

Ongoing investigation : multirate schemes

Turbulence models suited to the simulation of turbulent flows with massive
separation and vortex shedding, for a large range of Reynolds numbers

Ongoing investigation : hybrid RANS/VMS-LES models
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Turbulence modelling

In the present work

Evaluation of hybrid turbulence models (DDES and RANS/VMS-LES) for
the prediction of the flow around a circular cylinder in subcritical
regimes :

Test cases that contain many features and difficulties encountered in
industrial problems
Well documented benchmarks
First step before the computation of array of cylinders (offshore oil and gas
industries, civil engineering, aeronautics)
Good candidates to test the multirate approach (boundary layers)
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Hybrid RANS/VMS-LES model

Motivations

Computation of massively separated flows at high Reynolds number
on unstructured mesh

A model also applicable to subcritical flows (moderate Reynolds number
and laminar boundary layer)

RANS : accuracy problems in flow regions with massive separation (as the
flow around bluff-bodies)

VMS-LES : more expensive than RANS, very fine resolution requirements
in boundary layers at high Reynolds number

Hybrid : combines RANS and VMS-LES in order to exploit the
advantages of the two approaches :

less computationally expensive compared with VMS-LES
better accuracy than RANS for flows dominated by large unsteady
structures

Desired features for the hybridation strategy : automatic and progressive
switch from RANS to VMS-LES and vice versa + automatic RANS
shielding zone
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Hybrid RANS/VMS-LES model

Central idea of the proposed hybrid VMS model :
Correction of the mean flow field obtained with a RANS model by adding
fluctuations given by a VMS-LES approach wherever the grid resolution is
adequate

Decomposition of the flow variables :

W = < W >︸ ︷︷ ︸
RANS

+ W c︸︷︷︸
correction

+W SGS

< W > = RANS flow variables
W c = remaining resolved fluctuations obtained with VMS-LES
(i.e. < W > +W c = Wh = VMS-LES flow variables)
W SGS = subgrid scale fluctuations
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Hybrid RANS/VMS-LES model

Hybrid RANS/VMS-LES governing equations

Semi-discretization of the RANS equations (k − ε Goldberg model +
Menter correction) :„

∂〈W 〉
∂t

,Φi

«
+ (∇ · F (〈W 〉),Φi ) = −

“
τRANS(〈W 〉),Φi

”
.

Final hybrid VMS model equations (RANS eq. + modified governing
eq. for reconstructed fluctuations) :„

∂Wh

∂t
,Φi

«
+ (∇ · F (Wh),Φi ) =

−θ
“
τRANS(〈W 〉),Φi

”
− (1− θ)

“
τLES(W ′

h),Φ′i

”
where Wh denotes the hybrid variables

θ ∈ [0, 1] is the blending function
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Hybrid RANS/VMS-LES model

Hybridization strategy

θ = 1− fd(1− θ̄)

fd ' 0 in the boundary layer
fd ' 1 outside the boundary layer

where θ̄ = tanh(ξ2) with ξ =
∆

lRANS
or ξ =

µSGS

µRANS
,

fd = 1− tanh((8rd)3) and rd =
νt + ν

max(
√

ui,jui,j , 10−10)K 2d2
w
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DDES

A DDES model :

Based on the low Reynolds k − ε model proposed by Goldberg

The turbulent viscosity is limited by the Bradshaw’s law in a similar way
to Menter’s SST model

DDES/k − ε/Menter formulation

The dissipation term DRANS
k = ρε in the RHS of the k − ε equations is replaced

by:

DDDES
k = ρ

k3/2

lDDES

with lDDES =
k3/2

ε
− fdmax

„
0,

k3/2

ε
− CDDES∆

«
where CDDES = 0.65 and ∆ is a

measure of local mesh size
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Circular cylinder at Re= 3900 v Subcritical regime

Test case definition

Flow parameters:
Mach = 0.1
Reynolds = 3900

Computational grid:
1.46M nodes
8.4M elements
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Circular cylinder at Re= 3900 v Subcritical regime

Cd −Cpb C rms
L Lr

Experiments
Norberg Min 0.94 0.83 - -
Norberg Max 1.04 0.93 - -
Parnaudeau - - - 1.51
Present simulations
No model 0.87 0.73 0.04 2.11
RANS k − ε/Menter 0.86 0.72 0.03 2.18
DDES k − ε/Menter 0.88 0.74 0.03 2.07
DVMS 0.96 0.84 0.12 1.54
H-RANS/DVMS 0.91 0.77 0.05 1.80
Other simulations
Wissink (DNS) 1.588
Tremblay (DNS) 1.03 0.93
Ma (DNS) 0.93
Froehlich (LES) 1.08 1.03 1.09
D’Alessandro SA-IDDES 0.98 0.83 0.109 1.67
D’Alessandro v̄2 − f DES 1.02 0.87 0.14 1.42
Malizia k − ω SST 1.04 .188 1.356
Malizia LES-Dyn-Sm 1.03 .196 1.307

Table 1: Circular cylinder: bulk flow parameters at Re=3900
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Circular cylinder at Re = 20× 103 v Subcritical regime

Test case definition

Flow parameters :
Reynolds = 20× 103

Mach=0.1

Computational grid :
1.8M nodes
9.4M elements
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Circular cylinder at Re = 20× 103 v Subcritical regime

Cd C rms
L -Cpb Θsep Lr

Experiments
Norberg 1.16 0.47 1.16 78 1.03
Present simulations
No model 1.27 0.61 1.35 82 0.96
RANS k − ε/Menter 1.27 0.71 1.25 85 0.64
DDES k − ε/Menter 1.16 0.36 1.12 82 0.83
DVMS 1.18 0.46 1.20 81 0.96
H-RANS/DVMS 1.15 0.46 1.15 86 0.88
Other simulations
Aradag LES Min 1.04
Aradag LES Max 1.25
Salvatici LES Min 0.94 0.17 0.83
Salvatici LES Max 1.28 0.65 1.38

Table 2: Circular cylinder : bulk flow parameters at Re=20000
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Circular cylinder at Re = 140000 v Subcritical regime

Cd C rms
L -Cpb Θsep Lr

Experiments
Cantwell and Coles 1.24 1.21 77 0.5
Kim, Lee, Kim, Choi 1.27 1.36
Present simulations
No model 0.49 0.14 0.53 90 0.93
RANS k − ε/Menter 0.77 0.31 0.84 99 0.80
DDES k − ε/Menter 0.97 0.30 1.01 92 0.96
DVMS 1.21 0.69 1.39 81 0.98
H-RANS/DVMS 0.77 0.35 0.86 99 0.86
Other simulations
Travin DES/SA 0.87 0.10 0.81 78 1.5
Hans-Krajnovic LES Smago Dyn 1.18 1.24 92 0.57
Breuer LES Smago 1.28 1.51 94 0.46

Table 3: Circular cylinder : bulk flow parameters at Re=140000

13



Introduction Turbulence Modelling Multirate time advancing by volume agglomeration Conclusion

Multirate time advancing by volume agglomeration

Work context

Development of a new explicit multirate time advancing scheme for the
solution of the compressible Navier-Stokes equations :

based on control volume agglomeration
well suited to our numerical framework using a mixed finite volume/finite
element formulation
developed in a parallel numerical framework
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Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Objectives

A frequent configuration in CFD calculations combines :

An explicit time advancing scheme for accuracy purpose

A computational grid with a very small portion of much smaller elements than in
the remaining mesh

Examples:

Isolated traveling shock

Boundary layer at high Reynolds number (few tens of microns thick) in LES
computations where vortices around one centimeter are captured

Explicit time advancing schemes with global time stepping are too costly
→ the multirate time stepping approach is an interesting alternative
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Multirate time advancing by volume agglomeration

Inner and outer zones - Definition

Inner and outer zones :

Let ∆t be the global time step over the computational domain
Define the outer zone as the set of cells for which the explicit scheme is
stable for a time step K∆t, and the inner zone as its complement
Definition of these zones through the local time steps

Coarse grid

Objective :

Advancement in time with time step K∆t
Advancement in time preserving accuracy in the outer zone (space order of
3, RK4)
Advancement in time consistent in the inner zone

Define the coarse grid as the macro cells in the inner zone + the fine cells in the
outer zone
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Multirate time advancing by volume agglomeration
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Multirate time advancing by volume agglomeration

fine cells i macro cell I

Multirate based on agglomeration - Definition

Flux on the coarse grid :

Assembling of the nodal flux Ψi on the fine cells (as usual)
Fluxes sum on the macro cells I (inner zone) :

ΨI =
X
k∈I

Ψk

Volumes sum on the macro cells I (inner zone) : Vol I =
P

k∈I Volk
where Volk is the volume of cellk
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Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Algorithm

Step 1 (predictor on the coarse grid) :

Advancement in time with Runge-Kutta (for example) on the macro cells in the inner
zone and on the fine cells in the outer zone, with time step K∆t :

For α = 1,RKstep

outer zone : voliw
(α)
i = voliw

(0)
i + bαK∆t Ψ

(α−1)
i

inner zone : vol Iw I ,(α) = vol Iw I ,(0) + bαK∆t ΨI ,(α−1)

w
(α)
i = w I ,(α) for i ∈ I

EndFor α.
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Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Algorithm

Step 2 (corrector in the inner zone) :

Unknowns frozen in the outer zone

Time interpolation of these unknowns (those useful for the next point)

In the inner zone : using these interpolated values, advancement in time with the
chosen explicit scheme and time step ∆t

Complexity mastered (proportional to the number of points in the inner zone)

→ CostMultirate(K) = CostExplicit(N)*( 1/K + Ninnernodes(K)/N )
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ALE calculation of a traveling contact discontinuity

Test case definition

Simulation :

Compressible Euler equations are solved in a rectangular parallelepiped

Density is initially discontinuous at the middle of the domain

Velocity and pressure are uniform

A deforming mesh :
Nodes Elements Subdomains
25K 92K 2

Figure 1: Instantaneous mesh with mesh
concentration in the middle of zoom
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ALE calculation of a traveling contact discontinuity

Figure 2: Zooms on the moving contact discontinuity using a load balancing procedure at
two different time steps

K CPU Nsmall (K)/N Expected CPU CPU Measured
explicit (%) gain pred. phase correc. phase gain

(s/∆t/node) (scalar) (s/K∆t) (s/K∆t) (parallel)

5 4.96.10−6 1.3 4.7 0.124 0.244 1.7
10 4.96.10−6 1.3 8.8 0.124 0.482 2.0
15 4.96.10−6 1.3 12.5 0.124 0.729 2.2

Table 4: ALE propagation of a contact discontinuity: Time step factor K, CPU of
the explicit scheme per explicit time-step ∆t and per node, percentage of nodes in the
inner region, theoretical gain in scalar mode, CPU of the prediction phase per time-step
K∆t, CPU of the correction phase per time-step K∆t, and measured parallel gain.
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Tandem Cylinders

Test case definition

Simulation :
Hybrid VMS-LES simulation combined
with non-dynamic and dynamic versions
of the WALE SGS model

Computational grid :

Nodes Elements Subdomains
16M 92M 768

Flow parameters :
Reynolds = 1.66 × 105

Mach=0.1
L/D = 3.7
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Tandem Cylinders

Figure 3: Animation of Q-criterion to observe the vortical structures in the flow

K CPU Nsmall (K)/N Expected CPU CPU Measured
explicit (%) gain pred. phase cor. phase gain

(s/∆t/node) (scalar) (s/K∆t) (s/K∆t) (parallel)

5 10−7 18 2.63 1.55 6.93 0.91
10 10−7 24 2.94 1.52 14.15 0.99
20 10−7 35 2.50 1.53 28.94 1.02

Table 5: Tandem cylinder - fine mesh: Time step factor K, CPU of the explicit scheme per

explicit time-step ∆t and per node, percentage of nodes in the inner region, theoretical gain in

scalar mode, CPU of the prediction phase per time-step K∆t, CPU of the correction phase

per time-step K∆t, and measured parallel gain.
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Cylinder

Test case definition

Simulation :
Hybrid VMS-LES simulation combined
with non-dynamic version of the WALE
SGS model

Computational grid :

Nodes Elements Subdomains
4.3M 25M 768

Flow parameters :
Reynolds = 8.4 × 106

Mach=0.1

24



Introduction Turbulence Modelling Multirate time advancing by volume agglomeration Conclusion

Cylinder

Test case definition

Simulation :
Hybrid VMS-LES simulation combined
with non-dynamic version of the WALE
SGS model

Computational grid :

Nodes Elements Subdomains
4.3M 25M 768

Flow parameters :
Reynolds = 8.4 × 106

Mach=0.1

24



Introduction Turbulence Modelling Multirate time advancing by volume agglomeration Conclusion

Cylinder

Figure 4: Left: Instantaneous Q-criterion isosurfaces; Right: Lift curves for explicit, implicit
and multirate schemes.

K CPU Nsmall (K)/N Expected CPU CPU Measured Error
explicit (%) gain pred. phase cor. phase gain (%)

(s/∆t/node) (scalar) (s/K∆t) (s/K∆t) (parallel)

5 8.4 10−8 15 2.86 0.39 1.53 1.02 4.4 10−4

10 8.4 10−8 19 3.45 0.39 3.12 1.11 7.8 10−4

20 8.4 10−8 24 3.45 0.39 6.24 1.18 2.6 10−3

Implicit 12.12 1.0

Table 6: Circular cylinder: Time step factor K, CPU of the explicit scheme per explicit

time-step ∆t and per node, percentage of nodes in the inner region, theoretical gain in scalar

mode, CPU of the prediction phase per time-step K∆t, CPU of the correction phase per

time-step K∆t, measured parallel gain, and relative error. 25
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Space probe model

Test case definition

Flow parameters :
Reynolds = 1 × 106

Mach=2.0

Simulation :
Hybrid VMS-LES simulation combined
with non-dynamic version of the WALE
SGS model

Computational grid :
Nodes Elements Subdomains
4.38M 25.8M 192
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Space probe model

Figure 5: Left: Instantaneous pressure with streaklines; Right: Lift curves for explicit, implicit
and multirate schemes.

K CPU Nsmall (K)/N Expected CPU CPU Measured Error
explicit gain pred. phase cor. phase gain

(s/∆t/node) (%) (scalar) (s/K∆t) (s/K∆t) (parallel) (%)

10 4.13.10−7 0.015 8.69 1.81 4.36 2.93 1 10−5
40 4.13.10−7 0.040 15.38 1.83 17.35 3.82 1.6 10−4

Implicit 36.88 2 .10−2

Table 7: Spatial probe: Time step factor K, CPU of the explicit scheme per explicit time-step
∆t and per node, percentage of nodes in the inner region, theoretical gain in scalar mode,
CPU of the prediction phase per time-step K∆t, CPU of the correction phase per time-step
K∆t, measured parallel gain, and relative error.
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Mesh partitioning improvement / Inner nodes

Mesh partitioning improvement / Inner nodes

At the present time, domain decomposition designed to minimize the intercore
communications (objective) under the requirement of an equivalent number of
vertices in each partition (constraint)
=⇒ inner nodes not equally distributed among the subdomains
=⇒ loss of parallel efficiency due to a too costly correction phase

Idea : multi-constraint partitioning (*) with weights assigned to vertices (the
objective being always the minimization of the edge-cut)
=⇒ two weights per node : a first weight equal for each node (first constraint :
partitions of same size), a second weight more important for the inner nodes
(second constraint : equal distribution of the inner nodes among the partitions)
=⇒ a more efficient correction phase and multirate algorithm on parallel
computers

Use of Metis 5.1.0 software

(*) George Karypis and Vipin Kumar, Multilevel Algorithms for Multi-Constraint Graph

Partitioning, Technical report # 98-019, university of Minnesota, 1998.
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Conclusion, perspectives

Presentation of a new multirate scheme based on agglomeration and relying on
a prediction step and a correction step

The proposed multirate strategy has been applied in complex CFD problems
such as the prediction of three-dimensional flows around bluff bodies with
complex hybrid turbulence models

Progress is underway to adapt the domain partitioning in such a way that the
cores workload becomes shared equally for both steps of the multirate scheme :
use of weights in mesh partitioning (multi-constraint, Metis 5.1.0)

Further efficiency can be gained in some cases if more than two zones can be
considered (Inner zone - Medium zone - Outer Zone)

Development in parallel of a hybrid turbulence model based on RANS and
VMS-LES approaches with an automatic RANS shielding zone, applicable on a
broad spectrum of Reynolds numbers and adapted to massive separated flows.

29



Introduction Turbulence Modelling Multirate time advancing by volume agglomeration Conclusion

Thank you for your attention !
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Appendix - Low Reynolds k − ε Goldberg Model

Modeling turbulent viscosity

Turbulent viscosity is modeled by : µt = Cµfµρ
k2

ε

where Cµ = 0.09, and the damping function is given by : fµ =
1− eAµRt

1− e−R
1/2
t

max(1, ψ−1)

with Aµ = 0.01, ψ = R
1/2
t /Cτ ,Rt = k2/(νε)

Transport equations for low Reynolds k − ε Goldberg Model

The turbulent kinetic energy k and its dissipation rate ε, respectively, are determined by the following
transport equations:

∂ρ̄k

∂t
+
∂(ρ̄υ̃jk)

∂xj
=
∂
h“
µ + µt

σt

”
∂k
∂xj

i
∂xj

+ τij
∂υ̃i

∂xj
− ρ̄ε

and

∂ρ̄ε

∂t
+
∂(ρ̄υ̃jε)

∂xj
=
∂
h“
µ + µt

σε

”
∂ε
∂xj

i
∂xj

+

„
Cε1τij

∂υ̃i

∂xj
− Cε2ρ̄ε + E

«
T−1
τ

where Cτ = 1.41,Cε1 = 1.42,Cε2 = 1.83, E = ρAE V (εTτ )0.5ξ and the following realizable time scale is
used here :

Tτ =
k

ε
max (1, ψ−1)

with AE = 0.3,V = max(
√

k, (νε)0.25) and ξ = max( ∂k
∂xi

∂τ
∂xi
, 0) where τ = k/ε.
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Appendix

Menter correction

The turbulent viscosity is limited as follows :

µt =
ρk
p

Cµ

max

 
ε

k
p

Cµfµ
, | r | ψ

!

where | r | is the norm of the vorticity, ψ = tanh(arg 2),

with arg = max

„
2
k3/2

εd
,

500νB∗k

d2ε

«
, ν =

ε

B∗k
and B∗ = 0.09(= Cµ)
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