PROGRESS IN MULTIRATE AND TURBULENCE MODELING

E. Itam⁽¹⁾, B. Koobus⁽¹⁾

(1) IMAG, Université de Montpellier, France.

MAIDESC meeting - May 2017

Introduction

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Ongoing investigation : multirate schemes
 - Turbulence models suited to the simulation of **turbulent flows** with massive separation and vortex shedding, for a large range of Reynolds numbers
 - Ongoing investigation : hybrid RANS/VMS-LES models

In the present work

- Evaluation of hybrid turbulence models (DDES and RANS/VMS-LES) for the prediction of the flow around a **circular cylinder** in **subcritical regimes** :
 - Test cases that contain many features and difficulties encountered in industrial problems
 - Well documented benchmarks
 - First step before the computation of array of cylinders (offshore oil and gas industries, civil engineering, aeronautics)
 - Good candidates to test the multirate approach (boundary layers)

Hybrid RANS/VMS-LES model

Motivations

- Computation of massively separated flows at high Reynolds number on unstructured mesh
- A model also applicable to **subcritical flows** (moderate Reynolds number and laminar boundary layer)
- **RANS** : accuracy problems in flow regions with massive separation (as the flow around bluff-bodies)
- **VMS-LES** : more expensive than RANS, very fine resolution requirements in boundary layers at high Reynolds number
- Hybrid : combines RANS and VMS-LES in order to exploit the advantages of the two approaches :
 - less computationally expensive compared with VMS-LES
 - **better accuracy** than RANS for flows dominated by large unsteady structures
- Desired features for the hybridation strategy : automatic and progressive switch from RANS to VMS-LES and vice versa + automatic RANS shielding zone

Hybrid F	RANS/VMS-LES	model	
	0000000000		
	Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusio

• Central idea of the proposed hybrid VMS model :

Correction of the mean flow field obtained with a RANS model by adding fluctuations given by a VMS-LES approach wherever the grid resolution is adequate

• Decomposition of the flow variables :

$$W = \underbrace{< W >}_{RANS} + \underbrace{W^{c}}_{correction} + W^{SGS}$$

 $\langle W \rangle = \text{RANS}$ flow variables $W^c = \text{remaining resolved fluctuations obtained with VMS-LES}$ (i.e. $\langle W \rangle + W^c = W_h = \text{VMS-LES}$ flow variables) $W^{SGS} = \text{subgrid scale fluctuations}$ Introductio

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusion 0000

Hybrid RANS/VMS-LES model

Hybrid RANS/VMS-LES governing equations

• Semi-discretization of the RANS equations $(k - \epsilon \text{ Goldberg model} + \text{Menter correction})$:

$$\left(\frac{\partial \langle W \rangle}{\partial t}, \Phi_i\right) + (\nabla \cdot F(\langle W \rangle), \Phi_i) = -\left(\tau^{RANS}(\langle W \rangle), \Phi_i\right)$$

• Final hybrid VMS model equations (RANS eq. + modified governing eq. for reconstructed fluctuations) :

$$\begin{pmatrix} \frac{\partial W_h}{\partial t}, \Phi_i \end{pmatrix} + (\nabla \cdot F(W_h), \Phi_i) = \\ -\theta \left(\tau^{RANS}(\langle W \rangle), \Phi_i \right) - (1 - \theta) \left(\tau^{LES}(W'_h), \Phi'_i \right)$$

where W_h denotes the hybrid variables

• $heta \in [0,1]$ is the blending function

Introductio

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusion

Hybrid RANS/VMS-LES model

Hybridization strategy

$$\theta = 1 - f_d(1 - \overline{\theta})$$

 $f_d\simeq 0$ in the boundary layer $f_d\simeq 1$ outside the boundary layer

where
$$\bar{\theta} = tanh(\xi^2)$$
 with $\xi = \frac{\Delta}{I_{RANS}}$ or $\xi = \frac{\mu_{SGS}}{\mu_{RANS}}$,
 $f_d = 1 - tanh((8r_d)^3)$ and $r_d = \frac{\nu_t + \nu}{max(\sqrt{u_{i,j}u_{i,j}}, 10^{-10})K^2d_w^2}$

Introduction	Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusion
O	○○○○○●○○○○○		0000
DDES			

A DDES model :

- Based on the low Reynolds $k \epsilon$ model proposed by **Goldberg**
- The turbulent viscosity is limited by the **Bradshaw's law** in a similar way to Menter's SST model

$DDES/k - \varepsilon/Menter$ formulation

The dissipation term $D_k^{RANS} = \rho \varepsilon$ in the RHS of the $k - \epsilon$ equations is replaced by: $k^{3/2}$

$$D_{k}^{DDES} = \rho \frac{\kappa}{l_{DDES}}$$
with $l_{DDES} = \frac{k^{3/2}}{\epsilon} - f_{d} max \left(0, \frac{k^{3/2}}{\epsilon} - C_{DDES}\Delta\right)$ where $C_{DDES} = 0.65$ and Δ is a

measure of local mesh size

Introduction

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusion 0000

Circular cylinder at Re= $3900 \sim$ Subcritical regime

Test case definition

• Flow parameters: Mach = 0.1 Reynolds = 3900

• **Computational grid:** 1.46M nodes 8.4M elements

・ロト ・個ト ・モト ・モト

Circular cylinder at Re= $3900 \sim$ Subcritical regime

	\overline{C}_d	$-\overline{C}_{p_b}$	C_L^{rms}	Lr
Experiments				
Norberg Min	0.94	0.83	-	-
Norberg Max	1.04	0.93	-	-
Parnaudeau	-	-	-	1.51
Present simulations				
No model	0.87	0.73	0.04	2.11
RANS $k - \varepsilon$ /Menter	0.86	0.72	0.03	2.18
DDES $k - \varepsilon$ /Menter	0.88	0.74	0.03	2.07
DVMS	0.96	0.84	0.12	1.54
H-RANS/DVMS	0.91	0.77	0.05	1.80
Other simulations				
Wissink (DNS)				1.588
Tremblay (DNS)	1.03	0.93		
Ma (DNS)		0.93		
Froehlich (LES)	1.08	1.03		1.09
D'Alessandro SA-IDDES	0.98	0.83	0.109	1.67
D'Alessandro $\bar{v}^2 - f$ DES	1.02	0.87	0.14	1.42
Malizia $k - \omega$ SST	1.04		.188	1.356
Malizia LES-Dyn-Sm	1.03		.196	1.307

Introduction

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusion

Circular cylinder at Re = $20 \times 10^3 \sim \text{Sub}$ critical regime

Test case definition

- Flow parameters : Reynolds = 20×10^3 Mach=0.1
- Computational grid : 1.8M nodes 9.4M elements

Circular cylinder at $Re = 20 \times 10^3 \sim Subcritical regime$

	$\overline{C_d}$	C_L^{rms}	- Cpb	Θ_{sep}	Lr
Experiments					
Norberg	1.16	0.47	1.16	78	1.03
Present simulations					
No model	1.27	0.61	1.35	82	0.96
RANS $k - \varepsilon$ /Menter	1.27	0.71	1.25	85	0.64
DDES $k - \varepsilon$ /Menter	1.16	0.36	1.12	82	0.83
DVMS	1.18	0.46	1.20	81	0.96
H-RANS/DVMS	1.15	0.46	1.15	86	0.88
Other simulations					
Aradag LES Min			1.04		
Aradag LES Max			1.25		
Salvatici LES Min	0.94	0.17	0.83		
Salvatici LES Max	1.28	0.65	1.38		

Table 2: Circular cylinder : bulk flow parameters at Re=20000

12

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Circular cylinder at $Re = 140000 \sim Subcritical regime$

	$\overline{C_d}$	C_L^{rms}	- Cpb	Θ_{sep}	Lr
Experiments					
Cantwell and Coles	1.24		1.21	77	0.5
Kim, Lee, Kim, Choi	1.27		1.36		
Present simulations					
No model	0.49	0.14	0.53	90	0.93
RANS $k - \varepsilon$ /Menter	0.77	0.31	0.84	99	0.80
DDES $k - \varepsilon$ /Menter	0.97	0.30	1.01	92	0.96
DVMS	1.21	0.69	1.39	81	0.98
H-RANS/DVMS	0.77	0.35	0.86	99	0.86
Other simulations					
Travin DES/SA	0.87	0.10	0.81	78	1.5
Hans-Krajnovic LES Smago Dyn	1.18		1.24	92	0.57
Breuer LES Smago	1.28		1.51	94	0.46

Table 3: Circular cylinder : bulk flow parameters at Re=140000

Introduction

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusion 0000

Multirate time advancing by volume agglomeration

Work context

- Development of a new **explicit multirate time advancing scheme** for the solution of the compressible Navier-Stokes equations :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation
 - developed in a parallel numerical framework

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ ◆ ○ ♀

Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Objectives

A frequent configuration in CFD calculations combines :

- An explicit time advancing scheme for accuracy purpose
- A computational grid with a very small portion of much smaller elements than in the remaining mesh

Examples:

- Isolated traveling shock
- Boundary layer at high Reynolds number (few tens of microns thick) in LES computations where vortices around one centimeter are captured

Explicit time advancing schemes with global time stepping are too costly \rightarrow the **multirate time stepping approach** is an interesting alternative

<ロ> <四> <四> <四> <四> <四> <四</p>

16

Multirate time advancing by volume agglomeration

Inner and outer zones - Definition

- Inner and outer zones :
 - Let Δt be the global time step over the computational domain
 - Define the **outer zone** as the set of cells for which the explicit scheme is stable for a time step *K*Δ*t*, and the **inner zone** as its complement
 - Definition of these zones through the local time steps

Multirate time advancing by volume agglomeration

Inner and outer zones - Definition

- Inner and outer zones :
 - Let Δt be the global time step over the computational domain
 - Define the **outer zone** as the set of cells for which the explicit scheme is stable for a time step $K\Delta t$, and the **inner zone** as its complement
 - Definition of these zones through the local time steps

Coarse grid

- Objective :
 - Advancement in time with time step $K\Delta t$
 - Advancement in time preserving accuracy in the outer zone (space order of 3, RK4)
 - Advancement in time consistent in the inner zone
- Define the **coarse grid** as the macro cells in the inner zone + the fine cells in the outer zone

Introduction

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusion 0000

Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Definition

- Flux on the coarse grid :
 - Assembling of the nodal flux Ψ_i on the fine cells (as usual)
 - Fluxes sum on the macro cells I (inner zone) :

$$\Psi' = \sum_{k \in I} \Psi_k$$

• Volumes sum on the macro cells I (inner zone) : $Vol' = \sum_{k \in I} Vol_k$ where Vol_k is the volume of $cell_k$

Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Algorithm

Step 1 (predictor on the coarse grid) :

Advancement in time with Runge-Kutta (for example) on the macro cells in the inner zone and on the fine cells in the outer zone, with time step $K\Delta t$:

For $\alpha = 1$, *RKstep* outer zone : $vol_i w_i^{(\alpha)} = vol_i w_i^{(0)} + b_{\alpha} \mathcal{K} \Delta t \Psi_i^{(\alpha-1)}$ inner zone : $vol^{I} w^{I,(\alpha)} = vol^{I} w^{I,(0)} + b_{\alpha} \mathcal{K} \Delta t \Psi^{I,(\alpha-1)}$ $w_i^{(\alpha)} = w^{I,(\alpha)}$ for $i \in I$ EndEor α

(ロ) (部) (主) (主) (三) の(()

Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Algorithm

Step 2 (corrector in the inner zone) :

- Unknowns frozen in the outer zone
- Time interpolation of these unknowns (those useful for the next point)
- In the inner zone : using these interpolated values, advancement in time with the chosen explicit scheme and time step Δt
- Complexity mastered (proportional to the number of points in the inner zone)

 \rightarrow CostMultirate(K) = CostExplicit(N)*(1/K + Ninnernodes(K)/N)

19

<ロ> <部> <部> <き> <き> <き> <

ALE calculation of a traveling contact discontinuity

Test case definition

- Simulation :
 - Compressible Euler equations are solved in a rectangular parallelepiped
 - Density is initially discontinuous at the middle of the domain
 - Velocity and pressure are uniform

•	A deform	ning mesh :	
	Nodes	Elements	Subdomains
	25K	92K	2

Figure 1: Instantaneous mesh with mesh concentration in the middle of zoom

Introduction

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusion

ALE calculation of a traveling contact discontinuity

Figure 2: Zooms on the moving contact discontinuity using a load balancing procedure at two different time steps

ĸ	CPU	N ^{small} (K)/N	Expected	CPU	CPU	Measured
	explicit	(%)	gain	pred. phase	correc. phase	gain
	$(s/\Delta t/node)$		(scalar)	$(s/K\Delta t)$	$(s/K\Delta t)$	(parallel)
5	$4.96.10^{-6}$	1.3	4.7	0.124	0.244	1.7
10	$4.96.10^{-6}$	1.3	8.8	0.124	0.482	2.0
15	$4.96.10^{-6}$	1.3	12.5	0.124	0.729	2.2

Table 4: **ALE propagation of a contact discontinuity**: Time step factor K, CPU of the explicit scheme per explicit time-step Δt and per node, percentage of nodes in the inner region, theoretical gain in scalar mode, CPU of the prediction phase per time-step $K\Delta t$, CPU of the correction phase per time-step $K\Delta t$, and measured parallel gain.

Tandem Cylinders

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic and dynamic versions of the WALE SGS model

• Flow parameters : Reynolds = 1.66×10^5 Mach=0.1 L/D = 3.7

・ロト ・ 日 ・ ・ 正 ・ ・

 $\exists \rightarrow$

Multirate time advancing by volume agglomeration

Tandem Cylinders

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic and dynamic versions of the WALE SGS model

Computational grid :

Nodes	Elements	Subdomains
16M	92M	768

• Flow parameters : Reynolds = 1.66×10^5 Mach=0.1L/D = 3.7

Introduction	Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusion
	0000000000	0000000000000	0000
Tandem	Cylinders		

Figure 3: Animation of Q-criterion to observe the vortical structures in the flow

K	CPU	$N^{small}(K)/N$	Expected	CPU	CPU	Measured
	explicit	(%)	gain	pred. phase	cor. phase	gain
	$(s/\Delta t/node)$		(scalar)	$(s/K\Delta t)$	$(s/K\Delta t)$	(parallel)
5	10 ⁻⁷	18	2.63	1.55	6.93	0.91
10	10^{-7}	24	2.94	1.52	14.15	0.99
20	10 ⁻⁷	35	2.50	1.53	28.94	1.02

Table 5: Tandem cylinder - fine mesh: Time step factor K, CPU of the explicit scheme per explicit time-step Δt and per node, percentage of nodes in the inner region, theoretical gain in scalar mode, CPU of the prediction phase per time-step $K\Delta t$, CPU of the correction phase per time-step $K\Delta t$, and measured parallel gain.

Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusion
0000000000	00000000000000	0000

Cylinder

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

• Flow parameters : Reynolds = 8.4×10^{6} Mach=0.1

Turbulence Modelling	Multirate time advancing by volume agglomeration
0000000000	00000000000000

Cylinder

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

• Computational grid :

Nodes	Elements	Subdomains
4.3M	25M	768

• Flow parameters : Reynolds = 8.4×10^{6} Mach=0.1

	Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusion 0000
ylinder			
		CYL, Re+ 8.4M	

141 142.8

0.000335675

0.0003357 0.000 Time (sec)

Figure 4: Left: Instantaneous Q-criterion isosurfaces; Right: Lift curves for explicit, implicit and multirate schemes.

K	CPU	$N^{small}(K)/N$	Expected	CPU	CPU	Measured	Error
	explicit	(%)	gain	pred. phase	cor. phase	gain	(%)
	$(s/\Delta t/node)$		(scalar)	$(s/K\Delta t)$	$(s/K\Delta t)$	(parallel)	
5	$8.4 \ 10^{-8}$	15	2.86	0.39	1.53	1.02	$4.4 \ 10^{-4}$
10	$8.4 \ 10^{-8}$	19	3.45	0.39	3.12	1.11	$7.8 \ 10^{-4}$
20	$8.4 \ 10^{-8}$	24	3.45	0.39	6.24	1.18	$2.6 \ 10^{-3}$
Implicit						12.12	1.0

Table 6: Circular cylinder: Time step factor K, CPU of the explicit scheme per explicit time-step Δt and per node, percentage of nodes in the inner region, theoretical gain in scalar mode, CPU of the prediction phase per time-step $K\Delta t$, CPU of the correction phase per time-step $K\Delta t$, measured parallel gain, and relative error.

Multirate time advancing by volume agglomeration

Space probe model

Test case definition

• Flow parameters : Reynolds = 1×10^{6} Mach=2.0

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

Multirate time advancing by volume agglomeration

Space probe model

Test case definition

• Flow parameters : Reynolds = 1×10^{6} Mach=2.0

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

• Computational grid :

Nodes	Elements	Subdomains
4.38M	25.8M	192

< □ > < 部 > < 臣 > < 臣 > 臣 の 26

luction

Conclusion 0000

Space probe model

Figure 5: Left: Instantaneous pressure with streaklines; Right: Lift curves for explicit, implicit and multirate schemes.

ĸ	CPU	$N^{small}(K)/N$	Expected	CPU	CPU	Measured	Error
	explicit		gain	pred. phase	cor. phase	gain	
	$(s/\Delta t/node)$	(%)	(scalar)	$(s/K\Delta t)$	$(s/K\Delta t)$	(parallel)	(%)
10	$4.13.10^{-7}$	0.015	8.69	1.81	4.36	2.93	1 10-5
40	$4.13.10^{-7}$	0.040	15.38	1.83	17.35	3.82	1.6 10-4
Implicit						36.88	2.10^{-2}

Table 7: Spatial probe: Time step factor K, CPU of the explicit scheme per explicit time-step Δt and per node, percentage of nodes in the inner region, theoretical gain in scalar mode, CPU of the prediction phase per time-step $K\Delta t$, CPU of the correction phase per time-step $K\Delta t$, measured parallel gain, and relative error.

Mesh partitioning improvement / Inner nodes

Mesh partitioning improvement / Inner nodes

- At the present time, domain decomposition designed to minimize the intercore communications (objective) under the requirement of an equivalent number of vertices in each partition (constraint)
 - \Longrightarrow inner nodes not equally distributed among the subdomains
 - \Longrightarrow loss of parallel efficiency due to a too costly correction phase
- Idea : multi-constraint partitioning (*) with weights assigned to vertices (the objective being always the minimization of the edge-cut)
 ⇒ two weights per node : a first weight equal for each node (first constraint : partitions of same size), a second weight more important for the inner nodes (second constraint : equal distribution of the inner nodes among the partitions)
 ⇒ a more efficient correction phase and multirate algorithm on parallel computers
- Use of Metis 5.1.0 software

(*) George Karypis and Vipin Kumar, *Multilevel Algorithms for Multi-Constraint Graph Partitioning*, Technical report # 98-019, university of Minnesota, 1998.

Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusion
0000000000	0000000000000	0000

Conclusion, perspectives

- Presentation of a new **multirate scheme** based on agglomeration and relying on a **prediction step** and a **correction step**
- The proposed multirate strategy has been applied in **complex CFD problems** such as the prediction of three-dimensional flows around bluff bodies with complex hybrid turbulence models
- Progress is underway to **adapt the domain partitioning** in such a way that the cores workload becomes shared equally for both steps of the multirate scheme : use of weights in mesh partitioning (multi-constraint, Metis 5.1.0)
- Further efficiency can be gained in some cases if more than two zones can be considered (Inner zone Medium zone Outer Zone)
- Development in parallel of a hybrid turbulence model based on RANS and VMS-LES approaches with an automatic RANS shielding zone, applicable on a broad spectrum of Reynolds numbers and adapted to massive separated flows.

	Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusion
0	0000000000	0000000000000	0000

Thank you for your attention !

Multirate time advancing by volume agglomeration

Appendix - Low Reynolds $k - \epsilon$ Goldberg Model

Modeling turbulent viscosity

Furbulent viscosity is modeled by :
$$\mu_t = C_\mu f_\mu \rho \frac{k}{d}$$

where $C_{\mu} = 0.09$, and the damping function is given by : $f_{\mu} = \frac{1 - e^{A_{\mu}R_t}}{1 - e^{-R_t^{1/2}}} \max(1, \psi^{-1})$

with
$$A_{\mu} = 0.01, \psi = R_t^{1/2}/C_{\tau}, R_t = k^2/(\nu \varepsilon)$$

Transport equations for low Reynolds $k - \epsilon$ Goldberg Model

The turbulent kinetic energy k and its dissipation rate ϵ , respectively, are determined by the following transport equations:

$$\frac{\partial \bar{\rho}k}{\partial t} + \frac{\partial (\bar{\rho}\tilde{v}_jk)}{\partial x_j} = \frac{\partial \left[\left(\mu + \frac{\mu_t}{\sigma_t} \right) \frac{\partial k}{\partial x_j} \right]}{\partial x_j} + \tau_{ij} \frac{\partial \tilde{v}_i}{\partial x_j} - \bar{\rho}\epsilon$$

and

$$\frac{\partial \bar{\rho}\epsilon}{\partial t} + \frac{\partial (\bar{\rho}\tilde{v}_{j}\epsilon)}{\partial x_{j}} = \frac{\partial \left[\left(\mu + \frac{\mu_{t}}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_{j}} \right]}{\partial x_{j}} + \left(C_{\epsilon 1}\tau_{ij} \frac{\partial \tilde{v}_{i}}{\partial x_{j}} - C_{\epsilon 2}\bar{\rho}\epsilon + E \right) T_{\tau}^{-1}$$

where $C_{\tau} = 1.41$, $C_{e1} = 1.42$, $C_{e2} = 1.83$, $E = \rho A_E V (\varepsilon T_{\tau})^{0.5} \xi$ and the following realizable time scale is used here :

$$T_{ au} = rac{k}{\epsilon} \max\left(1, \psi^{-1}
ight)$$

with $A_E = 0.3$, $V = max(\sqrt{k}, (\nu \varepsilon)^{0.25})$ and $\xi = max(\frac{\partial k}{\partial x_i} \frac{\partial \tau}{\partial x_i}, 0)$ where $\tau = k/\varepsilon$.

Intro	

Appendix

Menter correction

The turbulent viscosity is limited as follows :

$$\mu_{t} = \frac{\rho k \sqrt{C_{\mu}}}{\max\left(\frac{\epsilon}{k \sqrt{C_{\mu}} f_{\mu}}, \mid r \mid \psi\right)}$$

where |r| is the norm of the vorticity, $\psi = tanh(arg^2)$,

with
$$\arg = \max\left(2\frac{k^{3/2}}{\epsilon d}, \frac{500\nu B^*k}{d^2\epsilon}\right)$$
, $\nu = \frac{\epsilon}{B^*k}$ and $B^* = 0.09 (= C_{\mu})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □